The present disclosure generally relates to footbeds used in footwear and used with footwear of all types including casual, dress, work, and athletic footwear. More specifically, the present disclosure relates to footbeds with improved performance via improved cushioning, comfort, and stability.
Footbeds (also commonly referred to as sockliners or insoles) are a common component of many types of footwear with a large variation in design, shape, materials, cost, and overall quality. Much of this variation exists between footwear categories and footwear brands to adapt the design of the footbed into the design of the shoe, the intended consumer (athlete, casual, etc.), and price point of the footwear product.
Footbeds are a primary source of comfort and function in footwear as they are in direct contact with the plantar surface of the foot where high loads and pressures are realized. Typically, footbeds are made from a relatively thin (3.0-5.0 mm) layer of foam topped by a thin polyester fabric (top cover) that is adhered to the foam.
The footbed is often a flat piece of foam that does not provide sufficient cushioning, pressure reduction, and support for the foot. Footbeds that are molded only from inexpensive foam will quickly breakdown and take a compression set. This compression set changes the shape of the footbed and reduces the cushioning capability by as much as 75%, thus effecting overall comfort and support for the foot. Additionally, standard insoles provide inferior performance due to variance in foot shapes and sizes.
The majority of shoes, regardless of type and style, are made according to the following process:
The above process has proven to be an efficient method for creating various types of footwear. With regard to the footbed used in the above construction, there are some limitations. The upper is constructed with a “footbed lasting allowance”. The footbed lasting allowance is a dimension for the thickness of the footbed that is “allowed for” after the last is removed from the upper. This means that the upper dimensions once lasted allow for a footbed to be inserted into the upper once the last has been removed and finalizes the footwear construction process.
In general, footwear designers strive to make a shoe sleek in profile. The cost of expensive upper materials (and need to use lower yields) and the belief that footwear aesthetics are better with a sleeker profile drive these decisions. Due to the above considerations, the standard footbed allowance is 5.0 mm allowing for a maximum footbed thickness of 5.0 mm. However, in some examples, this maximum footbed thickness is not enough to provide adequate cushioning and support for the foot.
In at least some examples, openings in the lasting board are made in the heel and forefoot to accept thicker portions of the footbed in matched areas. A molded footbed with thicker regions in the heel and forefoot is then inserted into the shoe. The heel and forefoot regions of thicker footbed foam can be shaped and optimized according to biomechanical principles to allow for ideal comfort in varying activities and consumers depending on functional needs.
Various embodiments of the presently disclosed devices and methods are shown herein with reference to the drawings wherein:
It is to be appreciated that these drawings depict only some embodiments of the invention and are therefore not to be considered limiting of its scope.
Footbeds (insoles) are an extremely important component of footwear with respect to providing comfort, fit, and shock absorption. Despite many improvements in the comfort of footwear, there have been limited advances in providing optimal footbed comfort. Primarily, this is due to the nature and process of footwear manufacturing that minimizes the potential comfort of the footbed due to trying to meet footwear manufacturing efficiencies and accepted aesthetics. The current approach to footbed design and manufacturing is surprising given how important a role the footbed can play while trying to deliver comfort to the wearer. The footbed is in direct contact with the plantar foot surface and bears the load of the wearer as forces rise to 2-5 times the wearers body weight during walking and running activities.
Footbeds may include a shape in the top surface that attempts to match the contours of the foot. These footbeds can be made with more durable materials such as polyurethane foams and support structures made with composite materials such as injected plastics and carbon fiber so the footbed shape is maintained. Footbeds from corporations such as Spenco Medical Corp. and Superfeet Worldwide are examples.
Higher quality materials may be used to produce such footbeds, including materials that are more durable, stiffer, and shaped to match the foot. It should be understood that using more durable, higher quality materials will reduce the breakdown of materials and maintain the like-new performance. However, the limited dimensions available for footbed thickness may limit the performance.
A footbed for an article of footwear that demonstrates an ideal geometry for comfort, foot control and stability, and ambulatory efficiency is disclosed in U.S. Pat. No. 10,653,204, the disclosure of which is hereby incorporated by reference in its entirety. The footbed described in the '204 Patent is the result of extensive research, development, and mathematical modeling of thousands of human feet. Footbeds using the geometry disclosed in the '204 Patent provide excellent performance in stability and comfort, and the use of a large number of human subjects contributing to the scanned data ensure that footbed represents an ideal geometry for the majority of the population.
The above-mentioned patent addresses, among other parameters, the top geometry of the footbed and how it interacts with the foots morphology and biomechanics. While the top surface geometry is extremely important for comfort and support, providing additional footbed foam would be beneficial in providing additional cushioning, comfort, and support.
Therefore, there is a need for further improvements to the devices, systems, and methods of forming footbeds. Among other advantages, the present disclosure may address one or more of these needs.
Just as the top geometry of a footbed is shaped to provide the foot with comfort and stability, the bottom surface of a footbed can be designed to provide improved performance. The only thing preventing an improved footed bottom surface is conventional footwear manufacturing norms.
Footwear midsoles may play a role in cushioning by providing compliance to the wearer as they walk or run. However, midsoles also have critical importance in the overall construction of the shoe. For instance, in athletic, casual, and other types of footwear the upper is stitched or cemented to the midsole and the outsole is stitched or cemented to the midsole. One familiar in the art will understand that these operations require certain physical properties for the midsole. For instance, the midsole is exposed to the outside world and should possess a certain level of abrasion resistance, resistance to staining and yellowing (in the case of white midsoles), resistance to hydrolysis, and the ability to maintain embossed and debossed graphics. Moreover, the midsole foam must have enough tensile and tear strength to resist the upper or outsole being torn away from the midsole during normal use. One skilled in the art will understand without sufficient strength properties, the foam will tear under normal loading rendering the footwear useless.
In some examples, the footbed foam may not require similar physical strength properties. One familiar in the art will understand the footbed is contained in the interior of the shoe and therefore not subjected to abrasive objects, UV light, dirt, or grime. Moreover, the footbed does not join other components of the shoe via stitching or cementing (midsole to upper, midsole to outsole). This drastically reduces the strength and tear requirements of footbed foam. Without these additional material property requirements footbed foam can be optimized to provide cushioning, support, and comfort to the foot. However, in order to provide the best footbed comfort, one must include more footbed foam. As mentioned above, providing additional optimized footbed foam is a challenge given the footwear manufacturing norms that limit the thickness of footbeds to a nominal 5.0 mm in the heel and 3.5 mm in the forefoot.
Previous attempts to construct footwear have used thicker footbeds in an attempt to improve the cushioning response in footwear. While the thicker footbed foam will provide improved cushioning it also introduces a problem.
All footbed foams will take a compression set over time. The shoe upper is constructed with a lasting allowance that “allows” for a footbed to be inserted once the upper is attached to the bottom and the last removed. Thus, using a thick footbed will affect the fit of the shoe over time as the footbed foam takes a compression set. Thicker footbeds will take a greater absolute compression set (millimeters of compression set) and will negatively affect the fit of the shoe as more volume is allowed, essentially making the fit larger than desired.
What is needed is a method that creates a footbed with thicker foam in significant areas for support and comfort while not affecting overall fit.
The present disclosure includes a footbed with improved cushioning and support in significant comfort areas (typically the heel and forefoot) while not creating a looser fit over time due to compression set of the foam. The proposed footbed maintains industry standard thickness through the midfoot and perimeter of the footbed to keep compression set values at industry norms. However, in the significant comfort areas of the forefoot and heel, additional footbed foam is provided by allowing the foam to protrude through the lasting board of the shoe. One skilled in the art will understand that the overall thickness, surface area, shape, and placement of the foam areas protruding through the lasting board can be adjusted in shape, size, depth, and surface area, to create different levels of comfort and support with variations specific to certain activities or wearers (specific sports and activities, gait adjustment, user population).
Turning now to the details of the present disclosure in
Materials used in the molding of the preferred footbed will be known by those familiar in with the art. Open or closed cell foams made from ethyl-vinyl acetate (EVA), thermoplastic polyurethane (TPU), Polyurethane (PU), Polyolefins (PO), and others can be used to create the molded shapes from foam. Importantly, the foams should be molded to provide enhanced comfort and cushioning. For instance, foams with a specific gravity ranging from 0.15-0.40 may be used. The foam hardness can range from 10-70 on the asker C scale depending on the desired application, activity, and type of footwear the footbed is being used in.
In some embodiments, the lasting board is modified to allow for ease of manufacturing. One familiar in the art of shoe making will understand that the current disclosure might present challenges during the lasting of the shoe's upper. Typically, the lasting board is made from textiles or fiber boards that have low elongation properties. The lasting board defines the bottom parameter of a shoe's upper and maintaining the bottom dimensions of a shoe upper is important during manufacturing procedures as well as achieving the desired fit in a finished shoe.
During die-cutting of the lasting board, cross-supports 1371,1372 may be left in the lasting board. These cross-supports 1371,1372 are part of the original lasting board material and are simply left in place during the die-cutting operation. The cross-support pieces may provide structure to the hole during the lasting operation and keep the hole from deforming. In at least some examples, the cross-supports 1371,1372 can be thin and still provide ample support. Cross-supports of 3-6 mm in width are typical. Of course, the cross-supports can be of any width the resists deformation of the hole opening. However, 3-6 mm provides ample support and is still easily removed during the next step. As shown in
Once the shoe upper is lasted, the upper is then joined to the shoe bottom through various standard methods such as cementing, stitching, or injecting the midsole on to the upper. With the shoe upper firmly attached to the shoe bottom, the cross-support 1371,1372 of the lasting board can be removed with no effect on the fit or performance of the shoe since the lasting board is now supported by other means (e.g., bonded to the midsole).
With the lasting board permanently secured to the shoe bottom, the cross-supports of the lasting board are simply cut out of the lasting board with a sharp tool such as scissors or a sharp blade allowing for the protrusions of the footbed to be inserted into the matching holes of the lasting board.
Described above is a design and method of creating a footbed with improved cushioning and support. The design and methods described optimize the characteristics of the footbed to bring higher performance to a shoe. Various footbed shapes, material density and hardness, and the use of different polymers may be used to improve overall cushioning and comfort.
It will be appreciated that the various dependent claims and the features set forth therein can be combined in different ways than presented in the initial claims. It will also be appreciated that the features described in connection with individual embodiments may be shared with others of the described embodiments.
The present disclosure claims priority to U.S. Provisional Application Ser. No. 63/214,332, filed Jun. 24, 2021, the contents of which are hereby incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
63214332 | Jun 2021 | US |