Walking is one of the primary gaits of locomotion for humans. Walking is defined or modeled by an “inverted pendulum” gait in which the body vaults over the stiff limb with each step, such that the center of mass oscillates vertically from step to step. Walking is typically slower than other gaits, such as running, and may be further distinguished from gaits such as running or jogging by considering that only one foot leaves contact with the ground at a time.
Footwear articles are thus designed differently for different gaits, as the mechanics of the body are different. For example, footwear articles designed for running are typically constructed to provide additional cushioning in the heel which is the point of impact, to provide shock absorption. Meanwhile, footwear articles designed specifically for walking are typically constructed to be more flexible through the ball of the foot to allow a greater range of motion through the roll of the forefoot.
The inventors have recognized several drawbacks with this traditional approach. For example, the range of oscillation of the center of mass may be rather large, such that a walking motion may be considered “bouncy” with excessive energy expenditure. Further, the flexing of the ankle joint and the metatarsal joint adjacent to the ball of the foot during the stance phase (i.e., from heel strike to toe off) results in substantial energy loss. As a result, even if some footwear articles designed for walking may be comfortable due to properly positioned cushioning and flexibility, a user of such footwear may become fatigued after walking for an extended period of time.
To at least partially address the above issues, the inventors herein have taken alternative approaches to footwear construction. In one example, a footwear article may include a midsole with a lower surface of constant curvature extending from a heel of the midsole to a toe of the midsole, wherein the lower surface maintains the constant curvature throughout a stance phase of a walking gait, such that the curved midsole helps to achieve a smooth step-to-step transition and a smaller range of oscillation of the center of mass. The footwear article further includes a moderation plate which is inflexible and inhibits the range of flexion at the metatarsal joint, while also imparting a rigidity to the midsole which further promotes smooth rolling of the foot while walking. In this way, the loss of energy at the metatarsal joint is minimized and overall energy expenditure during walking is reduced. In turn, a wearer of the footwear article may smoothly walk for extended periods of time with reduced fatigue.
Systems and methods for a footwear article are described herein. A footwear article, such as the footwear articles shown in
As discussed further herein, a footwear article with a sole of constant heel-to-toe curvature provides a number of advantages, including dispersing the load on impact over a larger, more non-uniform area. When the weight of the person wearing the footwear article touches down, if the force is concentrated on one flat area, the force will be greater as it will be applied to the single one-dimensional surface, while the curvature of a curved sole as provided herein disperses the load. Further, once the initial impact has occurred and load is applied, the constant curve of the sole promotes a fluid and consistent transition from heel impact all the way through to toe-off. As the curved sole holds its shape while correlated to the wearer's biomechanics properly, the curved sole helps smooth out the transition from heel to toe. Further, the curvature provides energy transfer through the transition. Furthermore, as discussed herein, the constant curve is extended past the point of the actual heel of the wearer, which effectively lengthens the foot thereby allowing for a shorter stride or increased cadence which in turn promotes efficiency and reduces the overall time spent on either foot, decreasing the load to each side of the body during a step. As another advantage of the extended heel and curved sole, the footwear article described herein provides a slight amount of cushion before the transition to the stiffer plate before the full weight of the body has loaded the plate.
As another example,
As another example,
As an illustrative example, the first radius 311 may be selected as 5 mm, the second radius 313 may be selected as 7.5 mm, and the third radius 315 may be selected as 12 mm. The radius 342 of the cylinder 340 fit to the first cylinder 310 and the third cylinder 314 is therefore 400 mm. Meanwhile, the radius 342 of the cylinder when fit to the first cylinder 310 and the second cylinder 312 is 450 mm.
It should be appreciated that the pivot position of the footwear article depends on the construction choice (e.g., the relative radii of the cylinders 310, 312, and 314) as well as the radius 342. In general, the pivot position of the footwear article (i.e., the position along the bottom surface of the midsole 302 in contact with a horizontal surface when the footwear article is placed at rest on the horizontal surface, or the point along the bottom surface of the midsole 302 around which the footwear article pivots during a stance phase of walking) may be positioned close to the ball 322.
It should be appreciated that such cylinders may be positioned virtually rather than physically under the last 305 for determining an appropriate radius 342 for a given size of the last 305 which may correspond to a size of a footwear article. As an illustrative example, the radius 342 for a footwear article of men's size 9 in US specification may vary from 380 mm to 500 mm. For example, in some embodiments, the radius 342 may comprise 400 mm for a footwear article of men's size 9 in US specification. The radius 342 may be scaled depending on the size of the footwear article, such that the radius 342 for a footwear article of men's size 12, for example, may range from 380 mm to 600 mm, whereas the radius 342 for a footwear article of women's size 7 may range from 300 cm to 500 cm.
In some examples, a 10 mm heel-toe offset may be provided by adjusting the relative radii of the cylinders 310, 312, and 314. Such an offset provides a lift that encourages forward momentum. It should be appreciated that the last 305 may be adapted to accommodate the heel-toe offset. The toe spring of the last 305 may also be increased relative to typical lasts in order to promote a powerful and complete toe-off and to fully capitalize on the constant curvature of the sole. Further, the last 305 may be adapted with a wide toe box which provides a more stable platform for generating power and thus allows for a more powerful toe-off.
Further, as mentioned hereinabove, the heel of the midsole 302 may be elongated or extend beyond the heel of the last 305. As an example,
As another example,
In some examples, the curved midsole 302 may further include a forward extension, similar to the rear extension depicted in
In some examples, the footwear articles provided herein include a moderation plate for inhibiting the flexion of the metatarsal joint and to minimize the loss of energy during walking. As an example,
Upon initial contact with the ground, the energy produced by the wearer's weight, gravity, and motion is translated to the plate in the heel strike zone. The extended heel 830 provides a brief moment of cushioning before the full weight of the body is loaded onto the moderation plate 810. The moderation plate 810 is positioned in the center of the footwear article 800 and extends past the known peak pressure zones of the heel and into lesser loaded areas. In this way, more energy that would normally be dissipated into the footwear article 800 and then into the ground is instead transferred into the stiff, rigid moderation plate 810. By extending the moderation plate 810 from the heel to the toe of the wearer, the initial peak force(s) of the heel strike are captured and carried through the lull of the gait and then transferred to toe-off. Further, at the toe-off, the moderation plate 810 supports the motion by acting as a rigid platform for the toes. By providing a secure platform for the foot, with energy-returning materials such as the moderation plate 810, and furthermore by providing a smooth transition from heel strike to toe-off via the curved sole or curved midsole 802, the toe-off is smoother and more powerful while involving less overall energy expenditure by the user.
The moderation plate 810 may be made of any suitable material to achieve optimal and/or required range of stiffness. For example, the moderation plate 810 may be formed from carbon fiber for high-performance embodiments, or alternatively nylon, plastics, or a combination of nylon with another element such as glass for different embodiments.
The moderation plate 810 may be positioned as close as possible to the forefoot, i.e., between the midsole 302 and the sock line of the upper 805. As illustrative examples,
Further, as depicted, the length of the moderation plate 810 along the longitudinal axis (i.e., from heel to toe) extends to most of the length of the midsole 802 along the longitudinal axis. The relative size of the moderation plate 810 to the midsole 802 may be as depicted in
The moderation plate 810 has at least two functions, including minimizing the loss of energy at the metatarsal joint by inhibiting the range of flexion of the metatarsal joint, and to work in combination with the midsole 802 to promote a smooth rolling of the foot while walking. The moderation plate 810 reduces the range of motion of the ankle joint, thereby further reducing energy lost during walking.
As mentioned above, various geometric profiles of the moderation plate 810 may be selected to minimize energy expenditure during walking while also moderating or maintaining the curvature of the midsole 802. For example, the moderation plate may be shaped similar to the moderation plate 238 depicted in
As an additional illustrative and non-limiting example of a moderation plate,
As yet another illustrative and non-limiting example of a moderation plate,
It should be appreciated that the geometric profiles of the moderation plates disclosed herein are distinct from geometric profiles of moderation plates that may be used for footwear articles designed for running or jogging. As mentioned hereinabove, during running or jogging, a substantial amount of force impacts the heel during collision of the foot with the ground, and a moderation plate designed for a footwear article for running would likely be designed with a distinctly different curvature, and possible even an inverted curvature, with respect to the moderation plates described herein, to reduce the impact at the heel and/or to provide recoil energy back to the wearer during running.
Testing indicates that a moderation plate with a shape rather than a flat plate provides better performance, though moderation plate with too radical of a shape that acts like a spring may introduce biomechanical issues. Locating the plate close to the foot provides a stable platform on top of the cushioned sole, creating one complete unit. This allows the initial energy of the gait coming from bodyweight and gravity to transition directly to the plate which then captures the energy and also creates a stable platform on top of the cushioning provided by the midsole. Generally having a very stiff platform on top of a soft structure is not optimal for stability, and so the plate may be narrower than the overall width of the actual sole to promote stability. Further, the relative softness of the sole allows for deformation of the sole so the plate can move down into the sole and the sole up and around the plate. This allows for comfortable use of the footwear article on flat ground as well as uneven terrain including rocks, roots, or other inconsistent surfaces. If the plate extends too far to the sides, the plate creates a hard surface for the foot to shear off of and over the top of the sole.
Many current plated shoes that include a plate typically sandwich the plate between two layers of foam. This foam sandwiching creates a more cushioned feel which may be preferable in an on-road setting as it allows for a more substantial, immediate cushioning on initial impact followed by the transition of energy to the plate and then additional cushioning under the plate. However, this arrangement has drawbacks when applied to an off-road application. In an off-road setting, as the foot is loading the shoe at the same time a rock, root, or other foreign non-uniform object can load the shoe from the bottom, inside the shoe the plate which is sandwiched between two soft foams begins to shift under loads from different directions. With the plate being stiffer than the foams, the foams and the foot and body on the foam will be inclined to shear, thereby putting the body in a compromised position. Further, under extreme loads, such as a person walking or even jogging downhill (which increases the forces on impact) or if the person is carrying a load (e.g., a backpack), the plate is then at a less than ideal non-neutral angle which could promote instability to the point that a supination or rolling effect may occur with increased load and therefore speed, which may in turn may cause acute ankle or knee injuries such as ankle sprains. For these reasons, positioning the moderation plate closer to the foot, narrower and supported by a softer and wider foam is a safer option for off-road/trail use.
Further, positioning the moderation plate closer to the foot and away from the ground is especially advantageous when walking uphill with a substantial grade (e.g., greater than 5%). When walking uphill, for example, the apex of the moderation plate moves forward approximately 20 mm so the walker expends less effort before getting to this point. From that point on, the walker expends substantially less energy to maintain their position. Further, the moderation plate provides a stable platform extending from their heel to their toe, and the cushioning under the plate is confirming to the ground as opposed to the weight of the body. A moderation plate positioned closer to the ground, in contrast, hinders efficiency on hills, as the walker is forced to overcome the apex of the moderation plate earlier. Further, with the stiff moderation plate positioned closer to the ground, the shoe will tend to pivot from the point of contact down the hill so the walker has to do additional work to keep the shoe up and moving forward, while they sink into the soft midsole. Thus, for footwear articles intended for use on high-grade terrain, the moderation plate is preferably positioned as close to the foot as possible. For footwear articles intended for “urban” or flat use, wherein terrain is less graded and is more uniform, the plate may be positioned further away from the foot to increase cushioning and comfort. In some examples, the moderation plate may even be positioned in the midsole adjacent to the outer sole, and may be curved according to the constant curvature of the midsole and/or outer sole.
Further, in some embodiments, traction elements may be selectively positioned on an outsole of footwear articles provided herein according to a center-of-pressure line. As an example,
As mentioned above, traction elements may be selectively positioned along the average center-of-pressure line as typically exhibited during a stance phase while walking. Other traction elements are positioned in plantar areas where necessary and sufficient for traction, for example in the heel strike and toe-off areas. The placement of traction elements along the center-of-pressure line optimizes traction along the force transfer path and implements traction only where necessary, thereby increasing efficiency of walking and also reducing weight of the footwear article, thereby further reducing energy expenditure while walking.
The center-of-pressure line 1717 may further be utilized to minimize the amount of material in the midsole 1705. As an illustrative example,
By constructing the upper 1810 from minimal weight materials, such as a 3D knitted upper with an incorporated minimal tongue and fusible material to achieve desired zonal stiffness by heat pressing, the weight of the footwear article 1810 is further reduced. Further, the midsole 1805 may be constructed from low density phylon, with blown rubber utilized for the outsole, and the moderation plate included in the midsole 1805 may be constructed from low density/stiffness ratio materials such as carbon fiber or reinforced nylon to further reduce the weight of the footwear article 1800.
In this way, the footwear article 1800 and other footwear articles described herein are constructed with a minimum yet sufficient number of components, with materials and construction techniques to achieve minimal possible weight, thus helping with minimization of energy expenditure while walking.
In some examples, the curvature of the midsole may extend through both the sagittal and the coronal plane. For example, rather than curving the midsole along the sagittal plane (i.e., from heel to toe) as described hereinabove with regard to
In some examples, the curvature may be instead defined by a cylinder such as cylinder 1920, which is rotated such that the central axis 1922 of the cylinder 1922 is rotated by an angle 1918 with respect to the central axis 1912 of the cylinder 1910, or similarly with respect to the longitudinal axis of the foot 1902. The angle 1918, as depicted, is selected such that the central axis 1922 is generally fit to the center-of-pressure line 1904 of the foot 1902. By defining the curvature of the midsole according to the cylinder 1910 rotated by the angle 1918, the rolling motion from heel strike to toe off during walking is further refined such that the trajectory of the center of motion of a person wearing the footwear article is smoother. It should be appreciated that in such examples, the geometric profile of the moderation plate contained with the midsole of the footwear article may be adjusted to accommodate the curvature of the midsole angled away from the longitudinal axis or the sagittal plane.
In some examples, the constant curvature of the midsole may be asymmetric. For example, to address pronation issues, the curvature may be offset such that the constant curvature on the lateral side of the midsole is greater than the constant curvature on the medial side of the midsole, or vice versa. For example, the medial side of the midsole may have a constant curvature of 410 or 420 mm, while the lateral side of the midsole may have a constant curvature of 400 mm.
Thus, in one embodiment, a footwear article comprises a midsole with a lower surface of constant curvature extending from a heel of the midsole to a toe of the midsole wherein the lower surface maintains the constant curvature throughout a stance phase of a walking gait.
In a first example of the footwear article, the footwear article further comprises a moderation plate positioned within a cavity of the midsole towards an upper surface of the midsole. In a second example of the footwear article optionally including the first example, the moderation plate includes curvature such that the curvature is positioned adjacent to a ball of a foot inserted into an upper of the footwear article. In a third example of the footwear article optionally including one or more of the first and second examples, the moderation plate is inflexible. In a fourth example of the footwear article optionally including one or more of the first through third examples, the heel of the midsole extends outward from a heel of a foot inserted into an upper of the footwear article. In a fifth example of the footwear article optionally including one or more of the first through fourth examples, the midsole is constructed of rigid material such that the constant curvature of the midsole does not deform during a stance phase of walking. In a sixth example of the footwear article optionally including one or more of the first through fifth examples, a plane of the constant curvature aligns with a center-of-pressure line of a foot inserted into an upper of the footwear article. In a seventh example of the footwear article optionally including one or more of the first through sixth examples, the footwear article further comprises a cavity in the midsole away from the center-of-pressure line. In an eighth example of the footwear article optionally including one or more of the first through seventh examples, the footwear article further comprises traction elements on an outsole coupled to the lower surface of the midsole, the traction elements selectively positioned along a center-of-pressure line of a foot inserted into an upper of the footwear article. In a ninth example of the footwear article optionally including one or more of the first through eighth examples, the footwear article further comprises an upper coupled to the midsole. In a tenth example of the footwear article optionally including one or more of the first through ninth examples, the upper comprise a first upper component and a second upper component, the first upper component coupled to the midsole and of a first flexibility, the second upper component coupled to the first upper component and of a second flexibility greater than the first flexibility. In an eleventh example of the footwear article optionally including one or more of the first through tenth examples, the second upper component defines a rim through which a foot is inserted into the footwear article. In a twelfth example of the footwear article optionally including one or more of the first through eleventh examples, the footwear article further comprises a lace cord, wherein the second upper component includes a plurality of lace bights through which the lace cord is laced. In a thirteenth example of the footwear article optionally including one or more of the first through twelfth examples, a radius of the constant curvature ranges from 300 mm to 550 mm.
In another embodiment, a footwear article comprises an upper, a midsole coupled to the upper, wherein a bottom surface of the midsole includes a constant curvature extending from a heel of the midsole to a toe of the midsole, a moderation plate positioned within the midsole at an upper surface of the midsole, and a sole coupled to the bottom surface of the midsole, the sole comprising a plurality of traction elements selectively positioned along a strike axis of the footwear article.
In a first example of the footwear article, a plane of the constant curvature extends along the strike axis. In a second example of the footwear article optionally including the first example, a heel of the midsole extends a specified length from a heel of the upper. In a third example of the footwear article, the moderation plate is inflexible, the midsole is rigid, and the upper comprises a knitted upper conformable to a foot positioned within the upper.
In yet another embodiment, a midsole for a footwear article comprises at least one rigid material forming a bottom surface with a constant curvature from a heel to a toe of the midsole, the constant curvature extending away from a relatively flat top surface.
In a first example of the midsole, a distance from the top surface to the bottom surface at the toe is a first distance, a distance from the top surface to the bottom surface at a central position of the midsole is a second distance, and a distance from the top surface to the bottom surface at the heel is a third distance, wherein the second distance is greater than the first distance and the third distance. In a second example of the midsole, the third distance is greater than the second distance.
It will be appreciated that the configurations and/or approaches described herein are exemplary in nature, and that these specific embodiments or examples are not to be considered in a limiting sense, because numerous variations are possible. The subject matter of the present disclosure includes all novel and nonobvious combinations and subcombinations of the various features, functions, acts, and/or properties disclosed herein, as well as any and all equivalents thereof.
The present application claims priority to U.S. Provisional Application No. 62/802,123, entitled FOOTWEAR ARTICLE FOR WALKING, and filed on Feb. 6, 2019. The entire contents of the above-listed application are hereby incorporated by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
2810213 | Jonas | Oct 1957 | A |
4098010 | Rothmayer | Jul 1978 | A |
4155180 | Phillips | May 1979 | A |
4206558 | Bivona | Jun 1980 | A |
4247996 | Grapin | Feb 1981 | A |
4372059 | Ambrose | Feb 1983 | A |
5135450 | Smith, IV | Aug 1992 | A |
6421935 | Bartlett | Jul 2002 | B1 |
6782639 | Muller | Aug 2004 | B1 |
D650979 | Marku | Dec 2011 | S |
8529411 | DiGiovanni | Sep 2013 | B2 |
9655401 | Colpack | May 2017 | B2 |
9770066 | Grelle | Sep 2017 | B2 |
9878229 | Lefebvre | Jan 2018 | B2 |
10292452 | Hansen | May 2019 | B2 |
20030079373 | Geer | May 2003 | A1 |
20070068043 | Clark | Mar 2007 | A1 |
20080289215 | Park | Nov 2008 | A1 |
20090183393 | Lee | Jul 2009 | A1 |
20090193687 | Kim | Aug 2009 | A1 |
20100146819 | Teteriatnikov | Jun 2010 | A1 |
20100146825 | Teteriatnikov | Jun 2010 | A1 |
20100263228 | Kang | Oct 2010 | A1 |
20100263234 | Teteriatnikov | Oct 2010 | A1 |
20100275471 | Teteriatnikov | Nov 2010 | A1 |
20100299969 | Paez | Dec 2010 | A1 |
20100307028 | Teteriatnikov | Dec 2010 | A1 |
20110067269 | Luo | Mar 2011 | A1 |
20110072690 | Teteriatnikov | Mar 2011 | A1 |
20110185593 | Ramos | Aug 2011 | A1 |
20120167414 | Shrairman | Jul 2012 | A1 |
20140047740 | Tucker | Feb 2014 | A1 |
20140230281 | Engell | Aug 2014 | A1 |
20140276317 | Batterson | Sep 2014 | A1 |
20150033582 | Colpack | Feb 2015 | A1 |
20150164179 | Walborn | Jun 2015 | A1 |
20150289594 | Rushbrook | Oct 2015 | A1 |
20160345668 | Dyer et al. | Dec 2016 | A1 |
20160345675 | Bruce | Dec 2016 | A1 |
20170224048 | Nagano | Aug 2017 | A1 |
20170258175 | Li | Sep 2017 | A1 |
20180184756 | Bartel et al. | Jul 2018 | A1 |
20180213886 | Connell | Aug 2018 | A1 |
20180255868 | Cole | Sep 2018 | A1 |
20210085025 | Geis | Mar 2021 | A1 |
Number | Date | Country |
---|---|---|
100798868 | Feb 2008 | KR |
20090081710 | Jul 2009 | KR |
Entry |
---|
“Pébiott: primitive foot comfort,” Pébiott Website, Available Online at http://pebiott.com/, Available as Early as Oct. 23, 2017, 20 pages. |
ISA Korean Intellectual Property Office, International Search Report and Written Opinion Issued in Application No. PCT/US2020/016884, dated May 25, 2020, WIPO, 12 pages. |
Number | Date | Country | |
---|---|---|---|
20200245717 A1 | Aug 2020 | US |
Number | Date | Country | |
---|---|---|---|
62802123 | Feb 2019 | US |