The present teachings generally include a heel spring device for an article of footwear.
Traditionally, placing footwear on a foot often requires the use of one or both hands to stretch the ankle opening of a footwear upper, and hold the rear portion during foot insertion, especially in the case of a relatively soft upper and/or an upper that does not have a heel counter secured to a flexible fabric rearward of the ankle opening.
Heel spring devices for easing foot entry into an article of footwear are disclosed herein. Each of the heel spring devices may enable hands-free foot entry, such as by loading the heel spring device with the foot to access a foot-receiving cavity from a rearward position, and sliding the foot forward and downward into the foot-receiving cavity.
Within the scope of the present disclosure, a device for easing foot entry into a foot-receiving cavity of an article of footwear is configured to surround a portion of the foot-receiving cavity at a heel region of an article of footwear and comprises a control bar having a center segment, a first side arm extending from the center segment, and a second side arm spaced from the first side arm and extending from the center segment. A continuous base may support the control bar and may be connected to both of the first side arm and the second side arm. The control bar is biased to an unloaded position with the center segment a first distance from the base, and elastically deforms under an applied force to a loaded position with the center segment a second distance from the base less than the first distance. The device stores potential energy that returns the control bar to the unstressed position upon removal of the applied load.
In one or more embodiments of the device, the base is connected to the first side arm at a first joint, and the base is connected to the second side arm at a second joint. The joints may be referred to herein as hinged joints, or as a hinged junction.
The device, including the control bar and the base, may be a single, unitary, one-piece component. For example, in one or more embodiments, the control bar has an arced shape, and the base has an arced shape. Accordingly, the control bar and the base are configured as a full elliptical leaf spring.
In one or more embodiments of the device, the base has a center segment, a first base arm, and a second base arm all disposed in a common plane. The first base arm is spaced apart from the second base arm and both extend from the center segment of the base. The first base arm and the first side arm are connected at the first joint. The second base arm and the second side arm are connected at the second joint. The first side arm and the second side arm extend at an acute angle to the common plane of the base when the control bar is in the unloaded position. The first side arm and the second side arm extend at a second acute angle to the common plane of the base when the control bar is depressed. The second acute angle is less than the first acute angle.
In one or more embodiments of the device, the first side arm and the second side arm bow apart from one another when the control bar is in the loaded position. With a footwear upper attached to the side arms, a foot-receiving cavity of the footwear upper is opened wider when the side arms bow apart, thus further easing foot entry into the foot-receiving cavity.
In one or more embodiments of the device, one of the control bar and the base has an extension that extends toward the other of the control bar and the base. The extension is spaced apart from the other of the control bar and the base when the control bar is in the unstressed position, and contacts the other of the control bar and the base when the control bar is in the loaded position, limiting further depression of the control bar. The extension thus limits the amount of deformation, such as by preventing the second angle from becoming too small, thereby preventing plastic deformation.
In one or more embodiments of the device, the center segment of the control bar has an extension extending toward the base, and the base has a recess. The extension is spaced apart from the base when the control bar is in the unloaded position, and protrudes into the recess when the control bar is depressed to the loaded position. Interfacing the control bar and the base via the extension and the recess also limits side-to-side movement of the control bar relative to the base.
In one or more embodiments of the device, the center segment of the control bar has a ramped surface that declines toward an inner periphery of the center segment between the first side arm and the second side arm. The ramped surface helps direct the foot downward and forward into the foot-receiving cavity during application of the downward force on the control bar.
In one or more embodiments of the device, the first side arm and the second side arm are each twisted outwardly along their respective longitudinal axis from the base to the center segment of the control bar. The outward twist helps to encourage the down and back movement of the center segment during loading by the foot.
In one or more embodiments of the device, the first side arm and the second side arm are asymmetrical about a longitudinal axis extending between the first side arm and the second side arm through the base. For example, the first side arm may be a medial side arm and the second side arm may be a lateral side arm. The medial side arm may be shorter than the lateral side arm and may have a greater lateral curvature than the lateral side arm, similar to the shape of a typical heel region of a foot.
In one or more embodiments of the device, the base has an inwardly-extending flange. For example, the flange may be seated in the recess and secured to the foot-receiving surface of a footwear sole structure in a heel region of the sole structure.
In one or more embodiments of the device, a footwear sole structure may have an outer wall with a recess in the heel region, and the base of the device may at least partially nest in the recess and be secured to the outer wall of the sole structure.
In one or more embodiments of the device, the base may underlie the control bar with the first side arm at a medial side of a footwear upper that defines at least a portion of an ankle opening, the second side arm at a lateral side of the footwear upper, and the center segment of the control bar rearward of the ankle opening of a footwear upper.
In one or more embodiments of the device, a forwardmost portion of an inner surface of the first side arm includes a medial recess such that the first side arm is thinner at the medial recess than rearward of the medial recess, and a forwardmost portion of an inner surface of the second side arm includes a lateral recess such that the second side arm is thinner at the lateral recess than rearward of the lateral recess. The upper may be secured to the first side arm at the medial recess and to the second side arm at the lateral recess.
In one or more embodiments of the device, the center segment has an aperture, and the footwear upper includes a tab that extends through the aperture. The tab may be secured to a rear portion of the footwear upper. A pin may be secured to the tab rearward of the aperture. The tab with the pin thereon may be wider than the aperture such that the tab is anchored to the center segment by the pin.
In one or more embodiments of the device, a lever may extend outward from the control bar. The lever may facilitate depression of the control bar.
In one or more embodiments, the heel device comprises a bladder element including one or more fluid-filled interior cavities. The one or more fluid-filled interior cavities may include cavities extending along the center segment. The cavities extending along the center segment may also extend along either or both of the first side arm or the second side arm, and may be tubular or other shapes. The one or more fluid-filled interior cavities may also include one or more reservoirs disposed at either or both of the first side arm and the second side arm and in fluid communication with the cavities extending along the center segment. The one or more reservoirs expand with fluid displaced from the cavities extending along the center segment when the heel spring device resiliently deforms under the applied force.
The base of the device may be secured to a flexible footwear upper that defines at least a portion of an ankle opening such that the base underlies the control bar with the first side arm at a medial side of the footwear upper, the second side arm at a lateral side of the footwear upper, and the center segment of the control bar rearward of the ankle opening. The base may extend around a rearmost portion of the footwear upper from the lateral side to the medial side. The control bar may be embedded within the footwear upper.
The flexible footwear upper may define a foot-receiving void (also referred to as a foot-receiving cavity), and the base may underlie the foot-receiving void. The base may couple to forwardmost portions of the first side arm and the second side arm. The base may extend rearward from the control bar, the base may extend forward from the control bar, or the base may extend both rearward from and forward from the control bar.
In one or more embodiments, the base has a forward-extending protrusion underlying the foot-receiving void adjacent the medial side of the footwear upper, and a rearward extending protrusion underlying the foot-receiving void along the lateral side of the footwear upper.
In one or more embodiments, a sole structure is secured to the footwear upper and underlies the foot-receiving void. The sole structure has a foot-facing surface with a recess, the base has a main portion and a protrusion extending from the main portion, and the protrusion is configured to seat within the recess.
In one or more embodiments of the device, the center segment of the control bar has an aperture. A heel pull tab of a footwear upper may extend through the aperture to further secure the footwear upper to the device. The device may have thinned portions that enable stitching of the device to the footwear upper through the thinned portions.
In one or more embodiments of the device, the control bar is embedded within the footwear upper. For example, the device may be covered by and between layers of a flexible covering of the footwear upper.
In one or more embodiments of the device, the base of the device is a sole structure of an article of footwear. In another embodiment of the device, the base is a flexible footwear upper. In such an embodiment, the upper provides resilient flexing at the junction with the control bar.
In one or more embodiments of the device, the first side arm and the second side arm each have at least one slot extending therethrough. In one or more embodiments, the at least one slot extending through the first side arm may extend through the first side arm along a length of the first side arm, and the at least one slot extending through the second side arm may through the second side arm along a length of the second side arm. In an alternative embodiment, the at least one slot extending through the first side arm extends transverse to a length of the first side arm, and the at least one slot extending through the second side arm extends transverse to a length of the second side arm.
Within the scope of the present disclosure, a heel spring device for easing foot entry into an article of footwear is configured to surround a portion of a foot-receiving cavity at a heel region of an article of footwear and comprises a control bar and a base underlying the control bar. In one or more embodiments, the control bar includes a series of slats. Each slat has a center segment, a medial side arm extending from the center segment to a medial end connected to a medial side of the base, and a lateral side arm extending from the center segment to a lateral end connected to a lateral side of the base. The control bar is biased to an unloaded position and elastically bends under an applied force to a loaded position in which at least one center segment is closer to the base than in the unloaded position, storing potential energy that returns the control bar to the unloaded position upon removal of the applied load. For example, the control bar and the base may be configured as a full elliptical leaf spring.
The device stores potential energy, such as elastic energy and/or spring energy, which returns the control bar to the unstressed position upon removal of the applied load. As used herein, elastic bending may also be referred to as resilient bending, and entails resilient deformation or elastic deformation. For example, a foot can press down on the control bar, and slip into the foot-receiving cavity of an attached footwear upper without requiring the use of a hand or of any tool to adjust the upper for foot entry.
In one or more embodiments of the device, the control bar defines slots extending between the slats. The slats are spaced apart from one another by the slots when the control bar is in the unloaded position. The slots may close between the slats so that one or more adjacent center segments contact one another in the loaded position. The slots may be parallel with one another, and exterior sides of the slats may be flush with one another in the unloaded position.
In one or more embodiments of the device, a lowermost one of the slats closest to the base at the center segment is shorter from the medial end to the lateral end than an uppermost one of the slats furthest from the center segment. In one or more embodiments, the lowermost one of the slats is thinner than the uppermost one of the slats. In one or more embodiments of the device, a lowermost one of the slats has a tab extending from a lower edge of the center segment. The outer surface of the base may have a peripheral recess extending from a lower edge of the base. For example, the peripheral recess may receive a flange of a sole structure.
In one or more embodiments of the device, a resilient insert at least partially fills the slots. The resilient insert may comprise a resiliently compressible material, such as at least one of rubber or thermoplastic polyurethane, and may be a foam, but is not limited to these materials. The resilient insert may include a sleeve extending along an inner side of the slats, and spaced protrusions extending from the sleeve into the slots. In one or more embodiments of the device, the resilient insert is configured as bellows that extend outward between the slats from an inner side of the slats.
Within the scope of the present disclosure, a heel spring device for easing foot entry into an article of footwear is configured to surround a portion of a foot-receiving cavity at a heel region of an article of footwear and comprises an elastic corrugated body including a center segment, a medial side arm extending forwardly from the center segment, and a lateral side arm extending forwardly from the center segment. The corrugated body may include alternating ridges and grooves that extend lengthwise along the medial side arm, the center segment, and the lateral side arm. The corrugated body is biased to an unloaded position and compresses under an applied force to a loaded position in which adjacent ones of the alternating ridges are closer to one another than in the unloaded position, storing elastic energy that returns the corrugated body to the unloaded position upon removal of the applied load.
For example, the corrugated body may comprise bellows. The ridges may be pleats of the bellows and the grooves may be folds of the bellows. The corrugated body may be an elastically deformable material, such as at least one of rubber or thermoplastic polyurethane, and may be a resilient foam (e.g., a polymer foam material, etc.), but is not limited to these materials.
In one or more embodiments of the device, a first set of the ridges and grooves extend from the medial side arm to the lateral side arm, and a second set of the ridges and grooves extend only along the center segment.
The device may include an upper flange extending along an upper edge of the corrugated body at the center segment, and may further comprise a lower flange extending along a lower edge of the corrugated body at the medial arm, the center segment, and the lateral arm.
Within the scope of the present teachings, an article of footwear comprises an upper defining at least a portion of an ankle opening, a sole structure secured to and underlying the upper, and a heel spring device. The heel spring device may comprise a center segment secured to the upper rearward of the ankle opening, a medial side arm extending downwardly and forwardly from the center segment, a lateral side arm extending downwardly and forwardly from the center segment, and a base connected to both of the medial side arm and the lateral side arm. The base may be secured to the sole structure. The center segment is biased to an unloaded position and the heel spring device elastically deforms under an applied force to a loaded position in which the center segment is closer to the base than in the unloaded position. The heel spring device stores elastic energy that returns the center segment to the unloaded position upon removal of the applied load, and the upper moves with the center segment such that the ankle opening is closer to the sole structure when the center segment is in the loaded position than when the center segment is in the unloaded position.
In one or more embodiments of the article of footwear, the sole structure includes a midsole, and the base is partially recessed into the midsole.
In one or more embodiments of the article of footwear, the medial side arm is secured to a medial side of the upper, and the lateral side arm is secured to a lateral side of the upper. The medial side arm and the lateral side arm may bow laterally outward and apart from one another when the center segment is in the loaded position, widening the ankle opening.
In one or more embodiments of the article of footwear, the center segment is spaced apart from the base in the unloaded position, and the device is characterized by the absence of a rigid heel counter between the center segment and the base aft of a junction of the medial side arm and the base, and aft of a junction between the lateral side arm and the base.
In one or more embodiments of the article of footwear, the medial side arm and the lateral side arm are each twisted outwardly along their respective longitudinal axis from the base to the center segment.
In one or more embodiments of the article of footwear, one of the center segment and the base has an extension that extends at least partially toward the other of the center segment and the base. The extension is spaced apart from the other of the center segment and the base when the center segment is in the unloaded position. The extension may extend from the center segment at least partially toward the base. The base may have a recess. The extension may be spaced apart from the base when the center segment is in the unloaded position, and may protrude into the recess when the center segment is in the loaded position.
In one or more embodiments of the article of footwear, the extension extends from the center segment at least partially toward the base, and the article of footwear further comprises a strap having a proximal end secured to the upper and a pocket at a distal end. The extension is disposed in the pocket. The strap may be outward of the center segment.
In one or more embodiments of the article of footwear, an outer surface of the base has a peripheral recess extending from a lower edge of the base. The sole structure has a flange seated in the peripheral recess.
In one or more embodiments of the article of footwear, the heel spring device comprises a bladder element including one or more fluid-filled interior cavities. The one or more fluid-filled interior cavities may include cavities extending along the center segment. The cavities extending along the center segment may also extend along either or both of the medial side arm or the lateral side arm, and may be tubular or other shapes. The one or more fluid-filled interior cavities may also include one or more reservoirs disposed at either or both of the medial side arm and the lateral side arm and in fluid communication with the cavities extending along the center segment. The one or more reservoirs expand with fluid displaced from the cavities extending along the center segment when the heel spring device resiliently deforms under the applied force.
In one or more embodiments of the article of footwear, the center segment has a ramped surface that declines toward an inner periphery of the center segment between the medial side arm and the lateral side arm. In one or more embodiments, the heel spring device is a single, unitary, one-piece component.
In one or more embodiments, a footwear upper comprises a flexible covering defining at least a portion of an ankle opening. The footwear upper includes a heel spring device comprising a control bar having a center segment secured to the flexible covering rearward of the ankle opening, a medial side arm extending from the center segment and secured to a medial side of the flexible covering, and a lateral side arm extending from the center segment and secured to a lateral side of the flexible covering. The heel spring device may further comprise a continuous base supporting the control bar and connected to both of the medial side arm and the lateral side arm. The control bar is biased to an unloaded position with the center segment a first distance from the base, the control bar elastically deforms under an applied force to a loaded position with the center segment a second distance from the base less than the first distance, and the device stores potential energy that returns the control bar to the unloaded position upon removal of the applied load.
In one or more embodiments of the footwear upper, the flexible covering is an elastically stretchable fabric, and the footwear upper further comprises a collar secured to the flexible covering and defining a front portion of the ankle opening. The collar is stiffer than the elastically stretchable fabric.
In one or more embodiments, the footwear upper further comprises a heel pull tab secured to the flexible covering. The center segment of the control bar has an aperture, and the heel pull tab extends through the aperture.
In one or more embodiments of the footwear upper, the medial side arm and the lateral side arm bow laterally outward and apart from one another when the center segment is in the loaded position, widening the ankle opening of the flexible covering.
In one or more embodiments, the footwear upper is characterized by the absence of a rigid heel counter between the control bar and the base aft of a junction between the control bar and the base.
In one or more embodiments of the footwear upper, the medial side arm and the lateral side arm are each twisted outwardly along their respective longitudinal axis from the base to the center segment of the control bar.
In one or more embodiments of the footwear upper, one of the control bar and the base has an extension that extends toward the other of the control bar and the base. The extension is spaced apart from the other of the control bar and the base when the control bar is in the unloaded position, and contacts the other of the control bar and the base when the control bar is in the loaded position, limiting further depression of the control bar.
In one or more embodiments of the footwear upper, the center segment of the control bar has an extension extending toward the base, the base has a recess. The extension is spaced apart from the base when the control bar is in the unstressed position, and protrudes into the recess when the control bar is in the loaded position.
In one or more embodiments, the footwear upper comprises a bladder element including one or more fluid-filled interior cavities. The one or more fluid-filled interior cavities may include cavities extending along the center segment. The cavities extending along the center segment may also extend along either or both of the medial side arm or the lateral side arm, and may be tubular or other shapes. The one or more fluid-filled interior cavities may also include one or more reservoirs disposed at either or both of the medial side arm and the lateral side arm and in fluid communication with the cavities extending along the center segment. The one or more reservoirs expand with fluid displaced from the cavities extending along the center segment when the heel spring device resiliently deforms under the applied force.
In one or more embodiments of the footwear upper, the center segment of the control bar has a ramped surface that declines toward an inner periphery of the center segment between the medial side arm and the lateral side arm.
In one or more embodiments of the footwear upper, the heel spring device is a single, unitary, one-piece component.
In one or more embodiments, an article of footwear comprises a footwear upper that includes a flexible covering defining at least a portion of an ankle opening. The article of footwear further comprises a sole structure secured to and underlying the footwear upper, and a heel spring device. The heel spring device may comprise a control bar having a center segment secured to the flexible covering rearward of the ankle opening, a medial side arm extending downwardly and forwardly from the center segment, and a lateral side arm extending downwardly and forwardly from the center segment and. The heel spring device may further comprise a continuous base supporting the control bar and connected to both of the medial side arm and the lateral side arm. The base may be secured to the sole structure. The control bar is biased to an unloaded position with the center segment a first distance from the base, the control bar elastically bends under an applied force to a loaded position with the center segment a second distance from the base less than the first distance, and the device stores elastic energy that returns the control bar to the unloaded position upon removal of the applied load. The flexible covering moves with the control bar.
In one or more embodiments of the article of footwear, the sole structure includes a midsole, and the base is partially recessed into the midsole. In one or more embodiments of the article of footwear, the medial side arm is secured to a medial side of the flexible covering, and the lateral side arm is secured to a lateral side of the flexible covering. In one or more embodiments of the article of footwear, the medial side arm and the lateral side arm bow laterally outward and apart from one another when the center segment is in the loaded position, widening the ankle opening of the flexible covering. In one or more embodiments of the article of footwear, the article of footwear is characterized by the absence of a rigid heel counter between the control bar and the base aft of a junction between the control bar and the base.
In one or more embodiments of the article of footwear, the medial side arm and the lateral side arm are each twisted outwardly along their respective longitudinal axis from the base to the center segment of the control bar. In one or more embodiments of the article of footwear, one of the control bar and the base has an extension that extends toward the other of the control bar and the base. The extension is spaced apart from the other of the control bar and the base when the control bar is in the unloaded position, and contacts the other of the control bar and the base when the control bar is in the loaded position, limiting further depression of the control bar.
In one or more embodiments of the article of footwear, the extension extends from the center segment of the control bar toward the base, the base has a recess, and the extension is spaced apart from the base when the control bar is in the unloaded position, and protrudes into the recess when the control bar is in the loaded position. In one or more embodiments of the article of footwear, the center segment of the control bar has a ramped surface that declines toward an inner periphery of the center segment between the medial side arm and the lateral side arm. In one or more embodiments of the article of footwear, the device is a single, unitary, one-piece component.
In one or more embodiments, an article of footwear comprises a footwear upper including a flexible covering defining at least a portion of an ankle opening, a sole structure secured to and underlying the footwear upper, and a heel spring device. The heel spring device may comprise a control bar having a center segment secured to the flexible covering rearward of the ankle opening, a medial side arm extending downwardly and forwardly from the center segment along a medial side of the footwear upper, and a lateral side arm extending downwardly and forwardly from the center segment along a medial side of the footwear upper. The heel spring device may further comprise a mechanical spring operatively connected to the control bar and biasing the control bar to an unloaded position. The control bar may pivot rearward under an applied force to a loaded position, storing potential energy in the spring that returns the control bar to the unloaded position upon removal of the applied load, the flexible covering moving with the control bar.
In one or more embodiments of the article of footwear, a pin is connected to both of the medial side arm and the lateral side arm and extends through the sole structure. The spring is wound around the pin and has an end fixed to pivot with the control bar and another end fixed relative to the control bar.
In one or more embodiments, an article of footwear comprises a footwear upper including a flexible covering defining at least a portion of an ankle opening, and a sole structure secured to and underlying the footwear upper. The article of footwear may further comprise a heel spring device. The heel spring device may comprise a rear control bar that has a center segment secured to the flexible covering rearward of the ankle opening, a medial side arm extending downwardly and forwardly from the center segment along a medial side of the footwear upper, and a lateral side arm extending downwardly and forwardly from the center segment along a medial side of the footwear upper. The heel spring device may further comprise a front bar that has a center segment secured to the flexible covering forward of the ankle opening, a medial side arm extending downwardly and rearwardly from the center segment along a medial side of the footwear upper, and a lateral side arm extending downwardly and rearwardly from the center segment along a medial side of the footwear upper. The front bar and the rear control bar may cross at and be fixed to one another at the lateral side of the footwear upper and at the medial side of the footwear upper. The rear control bar pivots rearward under an applied force to a loaded position, storing potential energy that returns the front bar to the unloaded position upon removal of the applied load, the flexible covering moving with the rear control bar.
Within the scope of the present teachings, an article of footwear comprises a footwear upper including a flexible covering defining at least a portion of an ankle opening, a sole structure secured to and underlying the footwear upper, and a heel spring device. The heel spring device may comprise a control bar and a continuous base. The control bar may have a center segment secured to the flexible covering rearward of the ankle opening, a medial side arm extending from the center segment and secured to a medial side of the flexible covering, and a lateral side arm extending from the center segment and secured to a lateral side of the flexible covering. The base may support the control bar and may be connected to both of the medial side arm and the lateral side arm and secured to the sole structure. The control bar is biased to an unloaded position with the center segment a first distance from the base, and elastically bends under an applied force to a loaded position with the center segment a second distance from the base less than the first distance. The device stores potential energy, such as elastic energy and/or spring energy, potential energy, such as elastic energy and/or spring energy that returns the control bar to the unloaded position upon removal of the applied load, the flexible covering moving with the control bar.
Referring to the drawings, wherein like reference numbers refer to like components,
The device 10 is configured to surround a portion of a foot-receiving cavity 47 at a heel region 13 of an article of footwear 12, as shown in
The device 10 includes a control bar 14 that has a center segment 16, a first side arm 18 extending downwardly and forwardly from the center segment 16, and a second side arm 20 spaced from the first side arm 18 and also extending downwardly and forwardly from the center segment 16. The first side arm 18 is a medial side arm and the second side arm 20 is a lateral side arm.
The device 10 also includes a base 22 supporting the control bar 14 and connected to the control bar 14 at a resiliently bendable junction 24A, 24B. The base 22 is continuous and extends between and connects to the first side arm 18 and the second side arm 20. The base 22 is continuous, in that it is without breaks or connections through other components in extending from the first side arm 18 to the second side arm 20. The base 22 has a center segment 26, a first base arm 28, and a second base arm 30 all disposed in a common plane. The common plane P is parallel with a horizontal surface when the base 22 of the device 10 rests on a horizontal surface, and is best indicated in
The junction 24A, 24B includes a first joint 24A at which the base 22 and the first side arm 18 connect, and a second joint 24B at which the base 22 and the second side arm 20 connect. The first joint 24A is the connection of the first base arm 28 to the first side arm 18. The second joint 24B is the connection of the second base arm 30 to the second side arm 20.
The control bar 14 has an arced shape from the first joint 24A to the second joint 24B. Similarly, the base 22 has an arced shape from the first joint 24A to the second joint 24B. With this arrangement, the control bar 14 and the base 22 are configured as a full elliptical leaf spring as described herein. The device may be referred to as a heel spring. Additionally, the device 10 is a single, unitary, one-piece component. For example, the device 10 may be injection molded as a single, unitary, one-piece component.
The control bar 14 is biased to an unloaded position shown in
As shown in
The flexible footwear upper 38 defines at least a portion of an ankle opening 39. The base 22 underlies the control bar 14 and is secured to the footwear upper 38 with the first side arm 18 secured to a medial side 41 of the footwear upper 38, and the second side arm 20 secured to a lateral side 43 of the footwear upper 38. As best indicated in
The upper 38 may include a flexible covering 42 (also referred to as a flexible cover layer) for receiving and covering a foot 46 (indicated in
Traditionally, slipping a foot into an upper often requires the use of one or both hands to stretch the ankle opening and hold the rear portion during foot insertion, especially in the case of a relatively soft upper and/or an upper that does not have a heel counter secured to the flexible fabric rearward of the ankle opening. The device 10 alleviates these issues, and allows the foot 46 to enter into a foot-receiving cavity 47 formed by the upper 38 without the use of hands or other tools. Only the foot 46 is used to gain entry. Specifically, using the bottom of the foot 46, a force F is applied to press on the control bar 14 as shown in
To further ease entry of the foot 46 into the foot-receiving cavity 47 of the upper 38, the center segment 16 of the control bar 14 has a ramped surface 50 that declines toward an inner periphery 52 of the center segment 16, as indicted in
With reference to
The material of the device 10 is selected to provide the ability to elastically deform by elastic bending as described, and store potential energy, such as elastic energy, that returns the device 10 to the unstressed position. Example materials include plastics (such as thermoplastics), composites, and nylon. Another example material is a polyether block amide such as PEBAX® available from Arkema, Inc. in King of Prussia, Pa. USA. Another example material is a fiberglass reinforced polyamide. An example fiberglass reinforced polyamide is RISLAN® BZM 7 0 TL available from Arkema, Inc. in King of Prussia, Pa. USA. Such a fiberglass reinforced polyamide may have a density of 1.07 grams per cubic centimeter under ISO 1183 test method, an instantaneous hardness of 75 on a Shore D scale under ISO 868 test method, a tensile modulus of 1800 MPa under ISO 527 test method (with samples conditioned 15 days at 23 degrees Celsius with 50% relative humidity), and a flexural modulus of 1500 MPa under ISO 178 test method (with samples conditioned 15 days at 23 degrees Celsius with 50% relative humidity).
Additionally, the relative dimensions and shape of the device at the joints and at the side arms 18, 20 contributes to the spring-biased nature of the device 10, and its ability to elastically deform under a desired amount of loading and return to its original unstressed position. The device 10 may be configured to elastically bend under a maximum force of 160N. For example, with reference to
Additionally, the side arms 18 and 20 are each twisted outwardly along their respective longitudinal axis 23A, 23B from the joints 24A, 24B at the base to the center segment 16. Stated differently, the inward-facing surfaces 60 of the side arms 18, 20 flow continually into a slightly upward-facing surface 62 as a ridge 64 along the side arm 18 or 20 turns from an upward extending ridge to a partially rearward extending ridge at the back of the center segment 16, as best shown in
The device 10 is also configured to widen as it is moved from the unstressed position to the loaded position. This helps ease insertion of the foot 46 into a flexible upper 38, as the first side arm 18 and the second side arm 20 bow apart from one another when the control bar 14 is depressed, pulling the upper 38 attached to the inward-facing surfaces 60 outward. The bowing of the device 10 in the loaded position 10A is indicated in the plan view of
While the device 10 is thus configured to ease foot entry with its ability to resiliently deform and store elastic energy, it is also configured to limit the amount of deformation to prevent plastic deformation. More specifically, the control bar 14 has an extension 70 that extends generally toward the base 22. The extension 70 is spaced apart from the base 22 when the control bar 14 is in the unstressed position of
In the embodiment of
A center segment of the control bar 414 of the device 410 has a thinned portion 445 where the flexible covering 442 of the upper 438 is stitched to the device 410. The foam collar 435 is also stitched to the device 410 at the thinned portion 445 as shown in
As shown in
As shown in
The medial side arm 1918 and the lateral side arm 1920 each have at least one slot 1980 extending therethrough, and in the embodiment shown have multiple slots 1980. The slots 1980 extend through the first side arm 1918 and lengthwise along a longitudinal axis of the medial side arm 1918 (i.e., along the length of the side arm 1918). Separate slots 1980 extend through the lateral side arm 1920 and lengthwise along a longitudinal axis of the lateral side arm 1920 (i.e., along the length of the side arm 1920). The slots 1980 reduce the thickness of the side arms 1918, 1920, and accordingly reduce the force required to bend the side arms 1918, 1920. More specifically, with the slots 1980, each side arm is separated into multiple slats 1981 at the slots. The slats 1981 function as multiple thinner side arms that bend along their lengths in the region of the slots 1980.
As shown in
The medial side arm 2018 and the lateral side arm 2020 each have at least one slot 2080 extending therethrough, and in the embodiment shown have multiple slots 2080. The slots 2080 extend through the medial side arm 2018 and are transverse to a longitudinal axis 23A of the medial side arm 2018 (i.e., transverse to the length of the side arm 2018). Separate slots 2080 extend through the lateral side arm 2020 and are transverse to a longitudinal axis 23B of the lateral side arm 2020 (i.e., transverse to the length of the side arm 2020). The slots 2080 reduce the thickness of the side arms 2018, 2020, and accordingly reduce the force required to bend the side arms 2018, 2020. More specifically, with the slots 2080, each side arm is separated into multiple fingers 2081 at the slots 2080. The fingers 2081 function to reduce the thickness of the bending portion of the side arms 2018, 2020 to that of the thickness between the end 2083 of each slot 2080 and the upper surface 2085 of each of the side arms 2018, 2020, rather than the full thickness of the side arm from the upper surface 2085 to the lower surface 2087. The fingers 2081, ends 2083, and surfaces 2085, 2087 are labelled in
A pin 2290 is disposed substantially horizontally when the footwear 2212 is in the position of
The control bar 2214 is biased to an unstressed position shown in solid. The control bar 1714 is shown in phantom as 2214A when the device 2210 is pivoted under an applied force to a loaded position, in which the device is indicated as 2210A. The ankle opening 2739 widens in the loaded position and may tilt downward and rearward relative to the unloaded position, as the flexible covering 2442 (also referred to as a flexible cover layer) of the upper 2238 is secured to the control bar 2214 and moves downward with the control bar 2214. The spring 2291 stores spring energy that returns the control bar 2214 to the unstressed position upon removal of the applied load.
As shown in
The control bar 2314 has at least one slot 2380 that extends continuously from the first side arm 2318, across the center segment 2316, to the second side arm, and extends through the first side arm 2318, through the center segment 2316, and through the second side arm (mirror image of slots as shown). In the embodiment shown, there are multiple slots 2380. The same slots 2380 that extend through the first side arm 2318 and lengthwise along a longitudinal axis of the first side arm 2318 (i.e., along the length of the side arm 2318) also extend through the second side arm and lengthwise along a longitudinal axis of the second side arm (i.e., along the length of the second side arm). The slots 2380 reduce the thickness of the side arms, and accordingly reduce the force required to bend the side arms. More specifically, with the slots 2380, each side arm is separated into multiple slats 2381 at the slots. The slats 2381 function as multiple thinner side arms that bend along their lengths in the region of the slots 2380.
The center segment 16 has an aperture 2445, and the upper 2438 has a heel pull tab 2449 that extends through the aperture 2445, further securing the upper 2438 to the device 2410. The center segment 16 also has an extension 2470 that extends downward from the center segment 16 and may limit bending of the device 10 by interference with the base 22, similarly as described with respect to extension 70. The extension 2470 has a fastener opening 2451 that receives a stud (not shown) that can be used to secure the heel pull tab 2449 to the extension 2470 with a fastener such as a stud, a snap, or a button. Alternatively, or in addition, the heel pull tab 2449 may be secured to a mounting surface 2472 of the extension 2470 with adhesive or otherwise.
The bars 2514 and 2515 may be anchored at their ends to the sole structure 2532. The bars 2514, 2515 are positioned to cross one another at both the medial and lateral sides, and are pivotably secured to one another at a connection 2590 (one shown) at both the lateral and medial sides where they cross. The connection 2590 may be a pin joint. A torsion spring 2591 may be operatively secured at the connection. Upper portions of the bars 2514, 2515 may be elastically bendable so that the center segments 2416 and 2516 can move apart from one another when a force is applied on the center segment 2416, such as the force of a foot gaining entry to the upper 2538. Positions of the center segments 2416, 2516 under loading are shown in phantom as 2416A, 2516A. The device 2510 stores potential energy, such as elastic energy and/or spring energy, that returns the rear control bar 2514 to the unstressed position upon removal of the applied force (i.e., after a foot slides into the foot-receiving cavity of the upper 2538).
The article of footwear 2612 includes a sole structure 2632 and a footwear upper 38 with a flexible covering which is described with respect to
The heel spring device 2610 is also secured to the sole structure 2632 at the base 2622 of the heel spring device 2610, as shown in
The control bar 2614 is biased to an unloaded position shown in
The slots 2680 reduce the amount of material between an uppermost one 2681B of the slats and a lowermost one 2681A of the slats at the side arms as shown in
In one or more embodiments, the lowermost one of the slats 2681A is thinner than the uppermost one of the slats 2681B at any location along their lengths between the medial ends and the lateral ends, as is evident by comparing thickness T3 of the lowermost slat 2681A to thickness T4 of the uppermost slat 2681B in the exemplary embodiment of
The slats 2681 are spaced apart from one another by the slots 2680 when the control bar 2614 is in the unloaded position of
More specifically, the upper 38 is connected to the heel spring device 2610 via an extension 2684 and a strap that has a pocket 2635. With reference to
With reference to
The slots 2780 reduce the amount of material between an uppermost one 2781B of the slats and a lowermost one 2781A of the slats at the side arms, and accordingly reduce the amount of force required to bend the side arms via the force F applied to the center segment 2616. More specifically, due to the slots 2780, the slats 2781 function as multiple thinner side arms that bend along their lengths in the region of the slots 2780. As shown in
At any point along the lowermost one of the slats 2781A, the lowermost one of the slats 2781A is thinner than any one of the other slats at a corresponding point (e.g., at a point directly aligned above the point along the lowermost one of the slats), as best shown in
The slats 2781 are spaced apart from one another by the slots 2780 when the control bar 2714 is in the unloaded position of
The spaced protrusions 2792 extend from the sleeve 2791 into the slots 2780 between the slats 2781. The spaced protrusions 2792 are shaped and dimensioned to completely fill the slots 2780 when the device 2710 is in the unloaded position of
The slots 2780 partially close between the slats 2781 when a downward force F is applied to the control bar 2714, moving the control bar 2714 to the loaded position of
The article of footwear 2712 includes the sole structure 2632 and the footwear upper 38 with a flexible covering. The heel spring device 2710 is secured to the flexible covering of the footwear upper 38 with adhesive, stitching, thermal bonding, or otherwise so that a rear portion of the upper 38 rearward of the ankle opening 39 moves with the heel spring device 2710. The heel spring device 2710 is also secured to the sole structure 2632 at its base 2622 by the flange 2632A of the sole structure 2632 secured in the peripheral recess 2622A.
The control bar 2714 is biased to an unloaded position shown in
The slats 2781 and base 2622 may be injection molded. Once molded, the slats 2781 and base 2622 are a single, unitary component. The material of the foam insert 2790 may then be injected into a mold cavity containing the molded slats 2781 and base 2622.
The corrugated body 2815 is biased to an unloaded position shown in
As indicated in
Referring to
The lower flange 2822 is also referred to as a base. The sole structure 2632 is secured to the lower flange 2822 by adhesive, thermal bonding, or otherwise, so that the sole structure 2632 generally underlies the upper 38 and the heel spring device 2810 as shown in
The upper flange 2823 is stitched to the upper 38 rearward of the ankle opening 39 as shown by stitches 2829 in
The ridges 2881 and grooves 2880 of the corrugated body 2815 may also be referred to as bellows. The ridges 2881 are pleats of the bellows and the grooves 2880 are folds of the bellows. The device 2810 is a one-piece, unitary component that includes the corrugated body 2815 and the flanges 2822, 2823. The device 2810 may be injection molded of an elastically deformable material, such as at least one of rubber or thermoplastic polyurethane, and may be a resilient foam (e.g., a polymer foam material, etc.), but is not limited to these materials.
Application of a downward force F on the center segment 3116 moves the bladder element 3115 from an unloaded position (
The bladder element 3115 may be thermoformed from a first polymeric sheet 3117 and a second polymeric sheet 3119 (best shown in
For example, the bladder element 3115 can be a TPU material, a urethane, polyurethane, polyester, polyester polyurethane, and/or polyether polyurethane. Moreover, in one embodiment, the bladder element 3115 can be formed from sheets having layers of different materials. The sheets 3117, 3119 may be laminate membranes formed from thin films having one or more first layers that comprise thermoplastic polyurethane layers and that alternate with one or more second layers, also referred to herein as barrier layers, gas barrier polymers, or gas barrier layers. The second layers may comprise a copolymer of ethylene and vinyl alcohol (EVOH) that is impermeable to the pressurized fluid contained therein as disclosed in U.S. Pat. No. 6,082,025 to Bonk et al., which is incorporated by reference in its entirety. The first layer may be arranged to form an outer surface of the polymeric sheet. That is, the outermost first layer may be the outer surface of the bladder element 3115. The bladder element 3115 may also be formed from a material that includes alternating layers of thermoplastic polyurethane and ethylene-vinyl alcohol copolymer, as disclosed in U.S. Pat. Nos. 5,713,141 and 5,952,065 to Mitchell et al. which are incorporated by reference in their entireties. Alternatively, the layers may include ethylene-vinyl alcohol copolymer, thermoplastic polyurethane, and a regrind material of the ethylene-vinyl alcohol copolymer and thermoplastic polyurethane. The sheets 3117, 3119 may have alternating layers of thermoplastic urethane (TPU) and a gas barrier material. In the embodiment shown, the sheets 3117, 3119 are transparent.
The sheets 3117, 3119 are bonded to one another at a periphery of the bladder element 3115, such as at an upper flange 3123 and the lower flange 3122, also referred to as a base. The lower flange 3122 is continuous and is connected to and supports the medial side arm 3118, the center segment 3116, and the lateral side arm 3120. The sheets 3117, 3119 are also bonded to one another at various intermediate bond locations 3124, referred to as webbing. The upper flange 3123 is thermally bonded, adhered, or otherwise secured to the upper 38 rearward of the ankle opening 39 as shown in
The bonded sheets 3117, 3119 form various fluid-filled interior cavities 3181A, 3181B, 3181C, 3183A, and 3183B which are fluid-tight, and may be pressurized or unpressurized. In the embodiment shown, the fluid-filled interior cavities 3181A, 3181B, 3181C, 3183A, and 3183B are at the ambient pressure of the environment in which the fluid-filled cavities were sealed. Alternatively, the fluid-filled interior cavities 3181A, 3181B, 3181C, 3183A, and 3183B could be pressurized by fluid introduced into the cavities through one or more inflation ports (not shown) that are then sealed.
In the embodiment shown, each of the fluid-filled interior cavities 3181A, 3181B, and 3181C is generally tubular, and extends lengthwise along the medial side arm 3118, the center segment 3116, and the lateral side arm 3120. In some embodiments, the cavities 3181A, 3181B, 3181C only extend along the center segment 3116. The cavities 3181A, 3181B, 3181C may be referred to as elongated cavities or tubular cavities. Alternatively, fluid-filled cavities of other shapes may extend along the center segment 3116, and may also extend along either or both of the medial side arm and the lateral side arm. For example, multiple discrete cavities shaped as tubes that are shorter than the cavities 3181A, 3181B, 3181C, or having other shapes, may extend along the center segment 3116 and may be fluidly-interconnected to one another by channels formed by the sheets.
The tubular cavities 3181A, 3181B, and 3181C are connected with and in fluid communication with the fluid-filled interior cavities 3183A, 3183B, which may be referred to as a medial reservoir 3183A and a lateral reservoir 3183B. In this manner, the tubular cavities 3181A, 3181B, and 3181C are indirectly in fluid communication with one another via the reservoirs 3183A, 3183B. In some embodiments, channels extending directly between adjacent ones of the tubular cavities 3181A, 3181B, and 3181C may also be provided such that the tubular cavities 3181A, 3181B, 3181C are in direct fluid communication with one another. In some embodiments, only one of the reservoirs 3183A, 3183B is provided, or no reservoirs are provided, and the tubular cavities 3181A, 3181B, and 3181C simply end on the side arm that does not have a reservoir. In still other embodiments, each of the tubular cavities may have its own separate reservoir on either or both of the side arms. The reservoirs 3183A, 3183B are formed by the first and second polymeric sheets 3117 and 3119 at medial and lateral extremities of the tubular cavities 3181A, 3181B, and 3181C, respectively. As is apparent from
The formed sheets 3117, 3119 with interior cavities 3181A, 3181B, 3181C, 3183A, 3183B bias the heel spring device 3110 to the unloaded position shown in
Some of the fluid within the fluid-filled interior cavities 3181A, 3181B, and 3181C may be displaced to the reservoirs 3183A, 3183B as the tubular cavities 3181A, 3181B, and 3181C are compressed, causing the reservoirs to expand and bulge outward, as represented in
The base 22 supports the control bar 14 and is connected to the control bar 14 at resiliently bendable junction 3224A, 3224B. The base 22 is continuous and extends between and connects to the first side arm 18 and the second side arm 20. The base 22 is continuous in that it is without breaks or connections through other components in extending from the first side arm 18 to the second side arm 20. The base 22 has a center segment 26, a first base arm 28, and a second base arm 30 all disposed in a common plane, as described with respect to the device 10 of
The junction 3224A, 3224B includes a first joint 3224A at which the base 22 and the first side arm 18 connect, and a second joint 3224B at which the base 22 and the second side arm 20 connect. The first joint 3224A is the connection of the first base arm 28 to the first side arm 18. The second joint 3224B is the connection of the second base arm 30 to the second side arm 20. The joints 3224A, 3224B may be referred to herein as hinged joints, or as a hinged junction.
The control bar 14 has an arced shape from the first joint 3224A to the second joint 3224B. Similarly, the base 22 has an arced shape from the first joint 3224A to the second joint 3224B. With this arrangement, the control bar 14 and the base 22 are configured as a full elliptical leaf spring as described herein. The device 3210 may be referred to as a heel spring. Additionally, the device 3210 is a single, unitary, one-piece component. For example, the device 3210 may be injection molded as a single, unitary, one-piece component.
The center segment 16 of the control bar 14 has the ramped surface 50 that declines toward an inner periphery of the center segment 16 between the first side arm 18 and the second side arm 20 and helps direct the foot downward and forward into the foot-receiving cavity 47 during application of the downward force F on the control bar 16 as described with respect to device 10. Additionally, the first side arm 18 and the second side arm 20 are each twisted outwardly along their respective longitudinal axis from the junction 3224A, 3224B near the base 22 to the center segment 16 of the control bar 14. The outward twist helps to encourage the down and back movement of the center segment 16 during loading by the foot.
The article of footwear 3212 includes a sole structure 3232, and the flexible footwear upper 38 has a medial side 41 and a lateral side 43, and defines an ankle opening 39 and a foot-receiving cavity 47, as described with respect to the article of footwear 12. The sole structure 3232 includes one or more sole components that may be sole layers, such as an outsole, a midsole, or a sole layer 3234 that is a unitary combination of an outsole and a midsole and may be referred to as a unisole. The sole layer 3234 underlies the upper 38 and the foot-receiving cavity 47 defined by the upper 38. A lower portion 40 of the footwear upper 38 is secured to the sole layer 3234, such as by adhesive or otherwise. The base 22 is secured to the sole layer 3234 such as by bonding with adhesive, thermal bonding, or otherwise.
As best shown in
The control bar 14 is biased to an unloaded position shown in
As best indicated in
With reference to
As best indicated in
The heel spring device 3310 is configured to secure to the upper 38 at forwardmost portions of the side arms 18, 20, and via a heel tab extending through an aperture 3245 of the center segment 16 as indicated with respect to the upper 38 shown in phantom in
In addition to attaching to the upper 38 (or outer portion 38A) at the forwardmost portions 3371, 3375, the upper 38 may be secured to the heel spring device 3310 via a heel tab 3249 (see
The various embodiments of heel spring devices disclosed herein enhance the ease of foot entry, allowing hands free foot entry into an article of footwear.
The following Clauses provide example configurations of an article of footwear, a device, and a footwear upper disclosed herein.
Clause 1: A device configured to surround a portion of a foot-receiving cavity at a heel region of an article of footwear, the device comprising a control bar having a center segment, a first side arm extending from the center segment, and a second side arm spaced from the first side arm and extending from the center segment; a continuous base supporting the control bar and connected to both of the first side arm and the second side arm; and wherein the control bar is biased to an unstressed position with the center segment a first distance from the base, the control bar elastically deforms under an applied force to a loaded position with the center segment a second distance from the base less than the first distance, and the device stores potential energy that returns the control bar to the unstressed position upon removal of the applied load.
Clause 2: The device of Clause 1, wherein the base is connected to the first side arm at a first joint, and the base is connected to the second side arm at a second joint.
Clause 3: The device of Clause 2, wherein: the control bar has an arced shape from the first joint to the second joint; the base has an arced shape from the first joint to the second joint; and the control bar and the base are configured as a full elliptical leaf spring.
Clause 4: The device of any of Clauses 2-3, wherein: the base has a center segment, a first base arm, and a second base arm all disposed in a common plane; the first base arm is spaced apart from the second base arm and both extend from the center segment of the base; the first base arm and the first side arm are connected at the first joint; the second base arm and the second side arm are connected at the second joint; the first side arm and the second side arm extend at an acute angle to the common plane of the base when the control bar is in the unstressed position; the first side arm and the second side arm extend at a second acute angle to the common plane of the base when the control bar is in the loaded position; and the second acute angle is less than the first acute angle.
Clause 5: The device of any of Clauses 1-4, wherein the center segment of the control bar has a ramped surface that declines toward an inner periphery of the center segment between the first side arm and the second side arm.
Clause 6: The device of any of Clauses 1-5, wherein the first side arm and the second side arm are each twisted outwardly along their respective longitudinal axis from the base to the center segment of the control bar.
Clause 7: The device of any of Clauses 1-6, wherein the first side arm and the second side arm are asymmetrical about a longitudinal axis extending between the first side arm and the second side arm through the base.
Clause 8: The device of any of Clauses 1-7, wherein the base has an inwardly-extending flange.
Clause 9: The device of Clause 8 in combination with a footwear sole structure having a foot-receiving surface with a recess in a heel region; and wherein the flange is seated in the recess and secured to the foot-receiving surface.
Clause 10: The device of any of Clauses 1-7 in combination with a footwear sole structure having an outer wall with a recess in a heel region; and wherein the base of the device at least partially nests in the recess and is secured to the outer wall of the sole structure.
Clause 11: The device of any of Clauses 1-10 in combination with a footwear upper that defines at least a portion of an ankle opening, wherein the base underlies the control bar with the first side arm at a medial side of the footwear upper, the second side arm at a lateral side of the footwear upper, and the center segment of the control bar rearward of the ankle opening.
Clause 12: The device of Clause 11, wherein a forwardmost portion of an inner surface of the first side arm includes a medial recess such that the first side arm is thinner at the medial recess than rearward of the medial recess, and a forwardmost portion of an inner surface of the second side arm includes a lateral recess such that the second side arm is thinner at the lateral recess than rearward of the lateral recess; and wherein the upper is secured to the second side arm at the lateral recess, and to the first side arm at the medial recess.
Clause 13: The device of any of Clauses 1-12, wherein the center segment has an aperture; and wherein the footwear upper includes a tab that extends through the aperture.
Clause 14: The device of Clause 13, wherein the tab is secured to a rear portion of the footwear upper.
Clause 15: The device of Clause 13, further comprising: a pin secured to the tab rearward of the aperture, wherein the tab with the pin thereon is wider than the aperture such that the tab is anchored to the center segment by the pin.
Clause 16: The device of any of Clauses 1-15, further comprising: a lever extending outward from the control bar.
Clause 17: The device of any of Clauses 1-16, wherein the first side arm and the second side arm each have at least one slot extending therethrough.
Clause 18: The device of Clause 17, wherein the control bar includes a series of slats each extending along the first side arm, the center segment, and the second side arm, and wherein the at least one slot includes a series of slots, each extending along the first side arm, the center segment, and the second side arm and disposed between respective adjacent ones of the slats.
Clause 19: The device of any of Clauses 1-16, wherein the device comprises a bladder element including one or more fluid-filled interior cavities.
Clause 20: The device of Clause 19, wherein: the one or more fluid-filled interior cavities include: cavities extending along the center segment; and one or more reservoirs disposed at either or both of the first side arm and the second side arm and in fluid communication with the cavities extending along the center segment; and the one or more reservoirs expand with fluid displaced from the cavities extending along the center segment when the heel spring device resiliently deforms under the applied force.
Clause 21: The device of any of Clauses 1-18, wherein the first side arm and the second side arm bow apart from one another when the control bar is in the loaded position.
Clause 22: The device of any of Clauses 1-18, wherein: one of the control bar and the base has an extension that extends toward the other of the control bar and the base; and the extension is spaced apart from the other of the control bar and the base when the control bar is in the unstressed position, and contacts the other of the control bar and the base when the control bar is in the loaded position, limiting further depression of the control bar.
Clause 23: The device of Clause 22, wherein: the extension extends from the center segment of the control bar toward the base; the base has a recess; and the extension is spaced apart from the base when the control bar is in the unstressed position, and protrudes into the recess when the control bar is in the loaded position.
Clause 24: The device of Clause 11, wherein the control bar is embedded within the footwear upper.
Clause 25: The device of Clause 11, wherein the base has a forward-extending protrusion underlying the foot-receiving void adjacent the medial side of the footwear upper, and a rearward extending protrusion underlying the foot-receiving void along the lateral side of the footwear upper.
Clause 26: The device of Clause 1, wherein the base couples to forwardmost portions of the first side arm and the second side arm.
Clause 27: The device of Clause 1, wherein the base extends rearward from the control bar.
Clause 28: The device of Clause 1, wherein the base extends forward from the control bar.
Clause 29: The device of Clause 1, wherein the base is a sole structure of an article of footwear.
Clause 30: The device of Clause 1, wherein the base is a flexible footwear upper.
Clause 31: The device of any of Clauses 1-30, wherein the device is a single, unitary, one-piece component.
Clause 32: A device for easing foot entry into an article of footwear and configured to surround a portion of a foot-receiving cavity at a heel region of an article of footwear, the device comprising: a control bar and a base underlying the control bar; wherein the control bar includes a series of slats each having: a center segment; a medial side arm extending from the center segment to a medial end connected to a medial side of the base; and a lateral side arm extending from the center segment to a lateral end connected to a lateral side of the base; and wherein the control bar is biased to an unloaded position and elastically bends under an applied force to a loaded position in which at least one center segment is closer to the base than in the unloaded position, storing potential energy that returns the control bar to the unloaded position upon removal of the applied load.
Clause 33: The device of Clause 32, wherein the control bar and the base are configured as a full elliptical leaf spring.
Clause 34: The device of any of Clauses 32 and 33, wherein: the control bar defines slots extending between the slats; the slats are spaced apart from one another by the slots when the control bar is in the unloaded position; and one or more of the slots close between the slats so that one or more adjacent center segments contact one another in the loaded position.
Clause 35: The device of Clause 34, wherein: the slots are parallel with one another; and exterior sides of the slats are flush with one another in the unloaded position.
Clause 36: The device of any of Clauses 32-35, wherein a lowermost one of the slats closest to the base at the center segment is shorter from the medial end to the lateral end than an uppermost one of the slats furthest from the center segment; and wherein the lowermost one of the slats is thinner than the uppermost one of the slats.
Clause 37: The device of any of Clauses 32-36, wherein a lowermost one of the slats has a tab extending from a lower edge of the center segment.
Clause 38: The device of any of Clauses 32-37, wherein an outer surface of the base has a peripheral recess extending from a lower edge of the base.
Clause 39: The device of any of Clauses 32-38, further comprising: a resilient insert at least partially filling the slots.
Clause 40: The device of Clause 39, wherein the resilient insert includes: a sleeve extending along an inner side of the slats; and spaced protrusions extending from the sleeve into the slots.
Clause 41: The device of Clause 39, wherein the resilient insert is configured as bellows that extend outward between the slats from an inner side of the slats.
Clause 42: The device of any of Clauses 39-41, wherein the resilient insert comprises at least one of rubber or thermoplastic polyurethane.
Clause 43: A device for easing foot entry into an article of footwear and configured to surround a portion of a foot-receiving cavity at a heel region of an article of footwear, the device comprising: an elastic corrugated body including a center segment, a medial side arm extending forwardly from the center segment, and a lateral side arm extending forwardly from the center segment; wherein the corrugated body includes alternating ridges and grooves that extend lengthwise along the medial side arm, the center segment, and the lateral side arm; and wherein the corrugated body is biased to an unloaded position and compresses under an applied force to a loaded position in which one or more adjacent ones of the alternating ridges are closer to one another than in the unloaded position, storing elastic energy that returns the corrugated body to the unloaded position upon removal of the applied load.
Clause 44: The device of Clause 43, wherein: the corrugated body comprises bellows; and the ridges are pleats of the bellows and the grooves are folds of the bellows.
Clause 45: The device of Clause 44, wherein: a first set of the ridges and grooves extend from the medial side arm to the lateral side arm, and a second set of the ridges and grooves extend only along the center segment.
Clause 46: The device of any of Clauses 43-45, further comprising an upper flange extending along an upper edge of the corrugated body at the center segment.
Clause 47: The device of any of Clauses 43-46, further comprising a lower flange extending along a lower edge of the corrugated body at the medial arm, the center segment, and the lateral arm.
Clause 48: The device of any of Clauses 43-47, wherein the corrugated body is at least one of rubber or thermoplastic polyurethane.
Clause 49: An article of footwear comprising: an upper defining at least a portion of an ankle opening; a sole structure secured to and underlying the upper; and a heel spring device comprising: a center segment secured to the upper rearward of the ankle opening; a medial side arm extending downwardly and forwardly from the center segment; a lateral side arm extending downwardly and forwardly from the center segment; and a base connected to both of the medial side arm and the lateral side arm; wherein the base is secured to the sole structure; and wherein the center segment is biased to an unloaded position, the heel spring device resiliently deforms under an applied force to a loaded position in which the center segment is closer to the base than in the unloaded position, and the heel spring device stores elastic energy that returns the center segment to the unloaded position upon removal of the applied load, the upper moving with the center segment such that the ankle opening is closer to the sole structure when the center segment is in the loaded position than when the center segment is in the unloaded position.
Clause 50: The article of footwear of Clause 49, wherein: the sole structure includes a midsole; and the base is partially recessed into the midsole.
Clause 51: The article of footwear of any of Clauses 49-50, wherein the medial side arm is secured to a medial side of the upper, and the lateral side arm is secured to a lateral side of the upper.
Clause 52. The article of footwear of Clause 51, wherein the medial side arm and the lateral side arm bow laterally outward and apart from one another when the center segment is in the loaded position, widening the ankle opening.
Clause 53: The article of footwear of any of Clauses 49-52, wherein the center segment is spaced apart from the base in the unloaded position, and the device is characterized by the absence of a rigid heel counter between the center segment and the base aft of a junction of the medial side arm and the base, and aft of a junction between the lateral side arm and the base.
Clause 54: The article of footwear of any of Clauses 49-53, wherein the medial side arm and the lateral side arm are each twisted outwardly along their respective longitudinal axis from the base to the center segment.
Clause 55: The article of footwear of any of Clauses 49-54, wherein: one of the center segment and the base has an extension that extends at least partially toward the other of the center segment and the base; and the extension is spaced apart from the other of the center segment and the base when the center segment is in the unloaded position.
Clause 56: The article of footwear of Clause 55, wherein: the extension extends from the center segment at least partially toward the base; the base has a recess; and the extension is spaced apart from the base when the center segment is in the unloaded position, and protrudes into the recess when the center segment is in the loaded position.
Clause 57: The article of footwear of Clause 55, wherein the extension extends from the center segment at least partially toward the base; and further comprising: a strap having a proximal end secured to the upper and a pocket at a distal end; and the extension is disposed in the pocket with the strap overlaying the center segment.
Clause 58: The article of footwear of any of Clauses 49-57, wherein: an outer surface of the base has a peripheral recess extending from a lower edge of the base; and the sole structure has a flange seated in the peripheral recess.
Clause 59: The article of footwear of any of Clauses 49-58, wherein the center segment has a ramped surface that declines toward an inner periphery of the center segment between the medial side arm and the lateral side arm.
Clause 60: The article of footwear of any of Clauses 49-59, wherein the heel spring device is a single, unitary, one-piece component.
Clause 61. The article of footwear of Clause 49, wherein the heel spring device comprises a bladder element including one or more fluid-filled interior cavities.
Clause 62: The article of footwear of Clause 61, wherein: the one or more fluid-filled interior cavities include: cavities extending along the center segment; and one or more reservoirs disposed at either or both of the medial side arm and the lateral side arm and in fluid communication with the cavities extending along the center segment; and the one or more reservoirs expand with fluid displaced from the cavities extending along the center segment when the heel spring device resiliently deforms under the applied force.
Clause 63: A footwear upper comprising: a flexible covering defining at least a portion of an ankle opening; a heel spring device comprising: a control bar having: a center segment secured to the flexible covering rearward of the ankle opening; a medial side arm extending from the center segment and secured to a medial side of the flexible covering; and a lateral side arm extending from the center segment and secured to a lateral side of the flexible covering; and a continuous base supporting the control bar and connected to both of the medial side arm and the lateral side arm; and wherein the control bar is biased to an unstressed position with the center segment a first distance from the base, the control bar elastically deforms under an applied force to a loaded position with the center segment a second distance from the base less than the first distance, and the heel spring device stores potential energy that returns the control bar to the unstressed position upon removal of the applied load.
Clause 64: The footwear upper of Clause 63, wherein the flexible covering is an elastically stretchable fabric, and further comprising a collar secured to the flexible covering and defining a front portion of the ankle opening; wherein the collar is stiffer than the elastically stretchable fabric.
Clause 65: The footwear upper of any of Clauses 63-64, further comprising: a heel pull tab secured to the flexible covering; wherein the center segment of the control bar has an aperture, and the heel pull tab extends through the aperture.
Clause 66: The footwear upper of any of Clauses 63-65, wherein the medial side arm and the lateral side arm bow laterally outward and apart from one another when the center segment is in the loaded position, widening the ankle opening of the flexible covering.
Clause 67: The footwear upper of any of Clauses 63-66, characterized by the absence of a rigid heel counter between the control bar and the base aft of a junction between the control bar and the base.
Clause 68: The footwear upper of any of Clauses 63-67, wherein the medial side arm and the lateral side arm are each twisted outwardly along their respective longitudinal axis from the base to the center segment of the control bar.
Clause 69: The footwear upper of any of Clauses 63-68, wherein: one of the control bar and the base has an extension that extends toward the other of the control bar and the base; and the extension is spaced apart from the other of the control bar and the base when the control bar is in the unstressed position, and contacts the other of the control bar and the base when the control bar is in the loaded position, limiting further depression of the control bar.
Clause 70: The footwear upper of Clause 69, wherein: the center segment of the control bar has the extension extending toward the base; the base has a recess; and the extension is spaced apart from the base when the control bar is in the unstressed position, and protrudes into the recess when the control bar is in the loaded position.
Clause 71: The footwear upper of any of Clauses 63-70, wherein the center segment of the control bar has a ramped surface that declines toward an inner periphery of the center segment between the medial side arm and the lateral side arm.
Clause 72: The footwear upper of any of Clauses 63-71, wherein the heel spring device is a single, unitary, one-piece component.
Clause 73: The footwear upper of Clause 63, wherein the heel spring device comprises a bladder element including one or more fluid-filled interior cavities.
Clause 74: The footwear upper of Clause 73, wherein: the one or more fluid-filled interior cavities include: cavities extending along the center segment; and one or more reservoirs disposed at either or both of the medial side arm and the lateral side arm and in fluid communication with the cavities extending along the center segment; and the one or more reservoirs expand with fluid displaced from the cavities extending along the center segment when the heel spring device resiliently deforms under the applied force.
Clause 75: An article of footwear comprising: a footwear upper including a flexible covering defining at least a portion of an ankle opening; a sole structure secured to and underlying the footwear upper; a heel spring device comprising: a control bar having: a center segment secured to the flexible covering rearward of the ankle opening; a medial side arm extending downwardly and forwardly from the center segment along a medial side of the footwear upper; and a lateral side arm extending downwardly and forwardly from the center segment along a lateral side of the footwear upper; and a spring operatively connected to the control bar and biasing the control bar to an unstressed position; and wherein the control bar pivots rearward under an applied force to a loaded position, storing potential energy in the spring that returns the control bar to the unstressed position upon removal of the applied load, the flexible covering moving with the control bar.
Clause 76: The article of footwear of Clause 75, further comprising: a pin connected to both of the medial side arm and the lateral side arm and extending through the sole structure; and wherein the spring is wound around the pin and has an end fixed to pivot with the control bar and another end fixed relative to the control bar.
Clause 77: An article of footwear comprising: a footwear upper including a flexible covering defining at least a portion of an ankle opening; a sole structure secured to and underlying the footwear upper; a heel spring device comprising: a rear control bar having: a center segment secured to the flexible covering rearward of the ankle opening; a medial side arm extending downwardly and forwardly from the center segment along a medial side of the footwear upper; and a lateral side arm extending downwardly and forwardly from the center segment along a lateral side of the footwear upper; a front bar having: a center segment secured to the flexible covering forward of the ankle opening; a medial side arm extending downwardly and rearwardly from the center segment along a medial side of the footwear upper; and a lateral side arm extending downwardly and rearwardly from the center segment along a lateral side of the footwear upper; wherein the front bar and the rear control bar cross at and are fixed to one another at the lateral side of the footwear upper and at the medial side of the footwear upper; and wherein the rear control bar pivots rearward under an applied force to a loaded position, storing potential energy that returns the rear control bar to the unstressed position upon removal of the applied load, the flexible covering moving with the rear control bar.
“A”, “an”, “the”, “at least one”, and “one or more” are used interchangeably to indicate that at least one of the items is present. A plurality of such items may be present unless the context clearly indicates otherwise. All numerical values of parameters (e.g., of quantities or conditions) in this specification, unless otherwise indicated expressly or clearly in view of the context, including the appended claims, are to be understood as being modified in all instances by the term “about” whether or not “about” actually appears before the numerical value. “About” indicates that the stated numerical value allows some slight imprecision (with some approach to exactness in the value; approximately or reasonably close to the value; nearly). If the imprecision provided by “about” is not otherwise understood in the art with this ordinary meaning, then “about” as used herein indicates at least variations that may arise from ordinary methods of measuring and using such parameters. In addition, a disclosure of a range is to be understood as specifically disclosing all values and further divided ranges within the range. All references referred to are incorporated herein in their entirety.
The terms “comprising”, “including”, and “having” are inclusive and therefore specify the presence of stated features, steps, operations, elements, or components, but do not preclude the presence or addition of one or more other features, steps, operations, elements, or components. Orders of steps, processes, and operations may be altered when possible, and additional or alternative steps may be employed. As used in this specification, the term “or” includes any one and all combinations of the associated listed items. The term “any of” is understood to include any possible combination of referenced items, including “any one of” the referenced items. The term “any of” is understood to include any possible combination of referenced claims of the appended claims, including “any one of” the referenced claims.
Those having ordinary skill in the art will recognize that terms such as “above”, “below”, “upward”, “downward”, “top”, “bottom”, etc., may be used descriptively relative to the figures, without representing limitations on the scope of the invention, as defined by the claims.
While several modes for carrying out the many aspects of the present teachings have been described in detail, those familiar with the art to which these teachings relate will recognize various alternative aspects for practicing the present teachings that are within the scope of the appended claims. It is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative only and not as limiting.
This application is a continuation of U.S. application Ser. No. 16/720,387, filed Dec. 19, 2019, which is a divisional of U.S. application Ser. No. 15/793,008, filed Oct. 25, 2017, now U.S. Pat. No. 10,568,385, issued Feb. 25, 2020, which claims the benefit of priority to United States Provisional Application No. 62/413,062, filed Oct. 26, 2016, and also claims the benefit of priority to United States Provisional Application No. 62/532,449, filed Jul. 14, 2017, and all of which are incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3425075 | Murray | Feb 1969 | A |
3810318 | Epstein | May 1974 | A |
4026047 | Ahmer | May 1977 | A |
4864736 | Bierk | Sep 1989 | A |
5152082 | Culpepper | Oct 1992 | A |
5678330 | Van Dyke et al. | Oct 1997 | A |
5822888 | Terry | Oct 1998 | A |
6079128 | Hoshizaki et al. | Jun 2000 | A |
6726225 | Stewart et al. | Apr 2004 | B1 |
7698836 | Schmelzer et al. | Apr 2010 | B2 |
11191321 | Kilgore | Dec 2021 | B2 |
11213097 | Beers | Jan 2022 | B2 |
11464287 | Kilgore | Oct 2022 | B2 |
11484095 | Beers | Nov 2022 | B2 |
20010011430 | Davis et al. | Aug 2001 | A1 |
20010022434 | Sauter et al. | Sep 2001 | A1 |
20020133977 | Pan | Sep 2002 | A1 |
20060003160 | Goldberg | Jan 2006 | A1 |
20060196079 | Terlizzi et al. | Sep 2006 | A1 |
20080000106 | Culpepper | Jan 2008 | A1 |
20080005933 | Auger et al. | Jan 2008 | A1 |
20110083341 | Baum | Apr 2011 | A1 |
20140305005 | Yeh | Oct 2014 | A1 |
20170055630 | Marshall | Mar 2017 | A1 |
20170119100 | Yamada | May 2017 | A1 |
20170127760 | Arquilla | May 2017 | A1 |
20170215517 | Silva | Aug 2017 | A1 |
20180104536 | Stewart | Apr 2018 | A1 |
Number | Date | Country |
---|---|---|
2253129 | Apr 1997 | CN |
1166998 | Dec 1997 | CN |
101528072 | Sep 2009 | CN |
201898951 | Jul 2011 | CN |
102871329 | Jan 2013 | CN |
203884809 | Oct 2014 | CN |
204070772 | Jan 2015 | CN |
105658105 | Jun 2016 | CN |
205267152 | Jun 2016 | CN |
106998856 | Aug 2017 | CN |
107874384 | Apr 2018 | CN |
108135329 | Jun 2018 | CN |
114343284 | Apr 2022 | CN |
2082658 | Jul 2009 | EP |
2647303 | Oct 2013 | EP |
2000139502 | May 2000 | JP |
2004344396 | Dec 2004 | JP |
2010042224 | Feb 2010 | JP |
20010105550 | Nov 2001 | KR |
20090093548 | Sep 2009 | KR |
M318332 | Sep 2007 | TW |
201215342 | Apr 2012 | TW |
0187106 | Nov 2001 | WO |
Entry |
---|
Merrell Winter Climbing Shoes Polar Land 6 Released, Stylogue.co.kr, https://blog.naver.com/th_media/220192038921, Nov. 26, 2014. |
Number | Date | Country | |
---|---|---|---|
20220079291 A1 | Mar 2022 | US |
Number | Date | Country | |
---|---|---|---|
62532449 | Jul 2017 | US | |
62413062 | Oct 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15793008 | Oct 2017 | US |
Child | 16720387 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16720387 | Dec 2019 | US |
Child | 17532394 | US |