The present disclosure generally relates to an article of footwear with a heel support device configured for ease of foot entry.
Traditionally, placing footwear on a foot often requires the use of one or both hands to stretch the ankle opening of a footwear upper, and hold the rear portion during foot insertion, especially in the case of a relatively soft upper and/or an upper that does not have a heel counter secured to a flexible fabric rearward of the ankle opening.
The drawings described herein are for illustrative purposes only, are schematic in nature, and are intended to be exemplary rather than to limit the scope of the disclosure.
Various heel support devices and articles of footwear having the heel support devices are disclosed herein that enable relatively easy foot entry and removal in a hands-free manner. In an example, an article of footwear may include an upper and a heel support device. The upper may define a foot-receiving cavity with a heel region. The heel support device may be disposed at a rear portion of the upper, and may extend around the rear of the heel region. For example, the heel support device may be disposed in the rear portion of the upper, secured in position at the rear portion of the upper, or both. The heel support device may include a plurality of slats and a base. Each slat may have a center segment and an arm extending downwardly and forwardly from the center segment to the base. Each slat may be resiliently bendable between an unloaded position and a loaded position when depressed toward the base from the unloaded position to the loaded position. The center segment may be spaced further apart from the base in the unloaded position than in the loaded position. The plurality of slats may include an uppermost slat, a lowermost slat closer to the base than the uppermost slat, and at least one intermediate slat disposed between the uppermost slat and the lowermost slat. The plurality of slats may include a progressive gradient of widths from the lowermost slat to the uppermost slat. Additionally, in some example heel support devices, the plurality of slats may include a progressive gradient of lengths from the lowermost slat to the uppermost slat. For example, the lowermost slat may be shorter and thinner than the at least one intermediate slat, and the at least one intermediate slat may be shorter and thinner than the uppermost slat. Each slat may be considered to act similar to a beam fixed at one end and free at the center segment when a downward load is applied to the center segment. For a given downward applied load to the center segment of such a slat, downward deflection is greater for a longer slat than for a shorter slat, and for a narrower slat than for a wider slat (e.g., where length is measured along the longitudinal center axis of the slat and thickness is measured perpendicular to the longitudinal axis of the slat), and assuming that the cross-sectional area of the narrower slat is less than the cross-sectional area of the wider slat. Accordingly, configuring the device with a plurality of slats with a progressive gradient of widths, a progressive gradient of lengths, or both, may enable each slat to tend to deflect a similar amount under a given load.
In an aspect of the disclosure, the heel support device may include a peg extending through an aperture in the upper and secured at a surface of the upper. For example, a portion of the peg extending outward of the aperture may be secured by radio-frequency welding or otherwise to an exterior surface of the upper. In some embodiments, the upper may include an inner layer and an outer layer. The aperture may extend through the outer layer. The heel support device may be disposed between the inner layer and the outer layer. In one example, the peg extends outward from the center segment of the lowermost slat of the plurality of slats, and may be the only peg extending outward from the plurality of slats. Because the lowermost one of the slats is the thinnest slat, in order to enable the peg to have a larger diameter, the center segment of the lowermost one of the slats from which the peg extends may have a thickened region from which the peg extends. In other examples, the peg may extend outward from the center segment of a different one of the slats and/or one or more additional pegs may extend outward from the rear of the base or from the sides of the base.
In another aspect of the disclosure, the center segment of one slat of the plurality of slats may include an elongated tip extending rearwardly. The elongated tip serves to increase the surface area upon which a foot may rest while applying a downward force and moving into the foot-receiving cavity of the upper. For example, the elongated tip may extend from the uppermost slat of the plurality of slats. In some implementations, the upper is configured to receive the elongated tip. For example, the upper may have a heel collar defining an opening into the foot-receiving cavity. The upper may have a tapered extension extending rearward from the heel collar. The tapered extension of the heel collar may overlay the elongated tip. The tapered extension of the heel collar may form an internal cavity, and the elongated tip may be disposed in the internal cavity of the tapered extension of the heel collar. An upper surface of the elongated tip may slope downward and inward toward the foot-receiving cavity. In some embodiments, a slope of the upper surface of the elongated tip may increase in a forward direction along a longitudinal midline of the article of footwear, providing a ramp. This may help to ease the foot into the foot-receiving cavity. In some embodiments, an outer perimeter of the center segment may have a discontinuity point at the elongated tip. Stated differently, the outer perimeter angles outward at the elongated tip. For example, there may be a discontinuity point on either side of the elongated tip. The location of the elongated tip is more easily determined from above due to the discontinuity point(s) in comparison to a center segment without a discontinuity at the outer perimeter, increasing the ease with which the heel of the foot may be aligned with and rest on the elongated tip during depression of the heel support device and insertion of the foot into the foot-receiving cavity.
In another aspect, the heel support device may be configured to enable easy and accurate securement of the upper to the heel support device during manufacturing. For example, the base of the heel support device may include a relatively thick portion adjacent an uppermost extent of the base and a relatively thin portion adjacent a lowermost extent of the base. The upper may be sewn or adhered to the relatively thin portion of the base. Due to its relative thinness, a sewing needle may more easily penetrate the relatively thin portion during sewing of the upper to the heel support device. Additionally, the bounds of the relatively thin portion may be readily apparent due to the contrast with the thicker portion of the base, facilitating accurate alignment and placement of the upper against the relatively thin portion during stitching or adhering processes.
In a configuration, an article of footwear may include an upper and a heel support device. The upper may define a foot-receiving cavity with a heel region, the upper may have a heel collar defining an opening into the foot-receiving cavity, and the upper may have a tapered extension extending rearward from the heel collar. The heel support device may extend around a rear of a heel region and may include a control bar and a base. The control bar may have a center segment and an arm extending downwardly and forwardly from the center segment to the base. The control bar may be resiliently bendable between an unloaded position and a loaded position, and may be depressible toward the base from the unloaded position to the loaded position. The center segment may be spaced further apart from the base in the unloaded position than in the loaded position. The center segment may include an elongated tip extending rearwardly. The tapered extension of the heel collar may overlay the elongated tip. The tapered extension of the heel collar may form an internal cavity, and the elongated tip may be disposed in the internal cavity of the tapered extension of the heel collar. For example, the tapered extension may be configured, shaped, and dimensioned so that the internal cavity closely matches the shape and dimensions of the elongated tip, the tapered extension serving as a pocket that helps to closely fit the upper around the elongated tip of the heel support device.
In a configuration, an article of footwear may include an upper and a heel support device. The upper may define a foot-receiving cavity with a heel region, and the upper may have a heel collar defining an opening into the foot-receiving cavity. The heel support device may extend around a rear of a heel region and may include a control bar and a base. The control bar may have a center segment and an arm extending downwardly and forwardly from the center segment to the base. The control bar may be resiliently bendable between an unloaded position and a loaded position, and may be depressible toward the base from the unloaded position to the loaded position. The center segment may be spaced further apart from the base in the unloaded position than in the loaded position. The center segment may include an elongated tip extending rearwardly. The upper may overlay at least one of the arm and the elongated tip. In some implementations, the upper may overlay each of the arm and the elongated tip.
Referring to the drawings, wherein like reference numbers refer to like components throughout the views, embodiments of heel support devices are depicted with various features advantageous for promoting foot entry into an article of footwear potentially in a hands-free manner.
The material of the device 10 is selected to provide the ability to elastically deform by elastic bending to a loaded or access position, as described, and store potential energy, such as elastic energy, that returns the device 10 to an unstressed position (referred to as an unloaded position, unstressed position, or use position). Example materials for the device 10 include plastics (such as thermoplastics), composites, and nylon. An example material for the device 10 is a polyether block amide such as PEBAX® available from Arkema, Inc. in King of Prussia, Pa. USA. Another example material for the device 10 is a fiberglass reinforced polyamide. An example fiberglass reinforced polyamide is RISLAN® BZM 7 0 TL available from Arkema, Inc. in King of Prussia, Pa. USA. Such a fiberglass reinforced polyamide may have a density of 1.07 grams per cubic centimeter under ISO 1183 test method, an instantaneous hardness of 75 on a Shore D scale under ISO 868 test method, a tensile modulus of 1800 MPa under ISO 527 test method (with samples conditioned 15 days at 23 degrees Celsius with 50% relative humidity), and a flexural modulus of 1500 MPa under ISO 178 test method (with samples conditioned 15 days at 23 degrees Celsius with 50% relative humidity). Another example material for the device 10 is Nylon 12 (with or without glass fiber), such as RTP 200F or RTP 201F available from RTP Company of Winona, Minn. USA. Another example material for the device 10 is rigid thermoplastic polyurethane (with or without glass fiber), such as RTP 2300 or RTP 2301 available from RTP Company of Winona, Minn. USA. Still another example material for the device is Acetal (Polyoxymethylene (POM)) (with or without glass fiber), such as RTP 800 or RTP 801 available from RTP Company of Winona, Minn. USA. The materials specifically named above are intended only as examples, not as an exclusive listing, and in combination with the entire provided description, inform an ordinarily skilled artisan regarding alternative materials having similar properties that may be useful when formed according to one or more of the structural embodiments disclosed herein.
As shown in
Each slat 12A-12D has a center segment 22, a medial arm 24 extending downwardly and forwardly from the center segment 22 to the base 14, and a lateral arm 26 extending downwardly and forwardly from the center segment 22 to the base 14. In some embodiments disclosed herein with only a single slat or a plurality of slats, each slat may include only a medial arm or only a lateral arm extending from the center segment to the base. Lower ends of the medial and lateral arms 24, 26 are integrally formed with the base 14 so that the arms 24, 26 function as resiliently bendable junctions near their connection to the base 14, as described herein. When in the unloaded position shown in
The center segment 22D of the lowermost slat 12D is disposed closer to the base 14 than the center segment 22A of the uppermost slat 12A and also closer to the base 14 than the center segments 22B and 22C of the first and second intermediate slats 12B and 12C, respectively. As further discussed herein, when the plurality of slats 12 is depressed downward toward the base 14 by a force such as the force of a foot entering an article of footwear, each of the slats elastically bends toward the base 14, and adjacent slats 12 may come into contact with one another at the center segments 22. When in the loaded position shown in
The plurality of slats 12 includes a progressive gradient of widths and lengths from the lowermost slat 12D to the uppermost slat 12A. Stated differently, and with reference to
As is apparent in
As best shown in
As shown in
In some embodiments, the heel support device may include at least one peg extending through an aperture in the upper and secured at a surface of the upper. For example, referring to
When the device 110 is depressed under the force F of the foot 60 as shown in
In other embodiments, there may be two or more pegs 62 extending from the heel support device. Providing at least two spaced pegs 62 extending from a heel support device like those shown and described herein enables accurate positioning of the heel support device relative to a footwear upper during manufacturing where the footwear upper is configured with the same number of apertures arranged with the same relative spacing as the multiple pegs 62. For example,
Some heel support devices may include an elongated tip that extends rearward from the center segment of the uppermost slat to further increase the ease of foot entry.
The features and advantages of the heel support devices described herein may be provided in combination or separately to enable the increased functionality and ease of entry to footwear as described. Additionally, the following commonly-owned, co-pending applications are incorporated by reference in their entireties: U.S. Nonprovisional application Ser. No. 15/793,008 filed Oct. 25, 2017 (now published as US 2018/0110292); U.S. Nonprovisional application Ser. No. 16/008,797 filed on Jun. 14, 2018 (now published as US 2018/0289109); U.S. Nonprovisional application Ser. No. 16/689,590 filed Nov. 20, 2019; and U.S. Nonprovisional application Ser. No. 16/689,665 filed Nov. 20, 2019.
The following Clauses provide example configurations of an article of footwear disclosed herein.
Clause 1. An article of footwear comprising: an upper defining a foot-receiving cavity with a heel region; a heel support device disposed at and/or in and/or secured in position at a rear portion of the upper, extending around the rear of a heel region, and including a plurality of slats and a base; wherein each slat has a center segment and an arm extending downwardly and forwardly from the center segment to the base; each slat resiliently bendable between an unloaded position and a loaded position when depressed toward the base from the unloaded position to the loaded position, the center segment spaced further apart from the base in the unloaded position than in the loaded position; the plurality of slats including an uppermost slat, a lowermost slat closer to the base than the uppermost slat, and at least one intermediate slat disposed between the uppermost slat and the lowermost slat; and wherein the plurality of slats includes a progressive gradient of lengths and/or widths from the lowermost slat to the uppermost slat.
Clause 2. The article of footwear of clause 1, wherein: the lowermost slat is shorter and thinner than the at least one intermediate slat; and the at least one intermediate slat is shorter and thinner than the uppermost slat.
Clause 3. The article of footwear of any of clauses 1-2, wherein the heel support device includes at least one peg extending through an aperture in the upper and secured at a surface of the upper.
Clause 4. The article of footwear of clause 3, wherein: the upper includes an inner layer and an outer layer; the aperture extends through the outer layer; and the heel support device is disposed between the inner layer and the outer layer.
Clause 5. The article of footwear of clause 3, wherein the at least one peg extends from the center segment of one slat of the plurality of slats.
Clause 6. The article of footwear of clause 5, wherein the at least one peg is a single peg.
Clause 7. The article of footwear of clause 6, wherein: the single peg extends outward from the lowermost slat of the plurality of slats.
Clause 8. The article of footwear of any of clauses 1-7, wherein one of the center segments includes an elongated tip extending rearwardly.
Clause 9. The article of footwear of clause 8, wherein the elongated tip extends from an uppermost slat of the plurality of slats.
Clause 10. The article of footwear of clause 8, wherein: the upper has a heel collar defining an opening into the foot-receiving cavity; the upper has a tapered extension extending rearward from the heel collar; and the tapered extension of the heel collar overlays the elongated tip.
Clause 11. The article of footwear of clause 10, wherein the tapered extension of the heel collar forms an internal cavity, and the elongated tip is disposed in the internal cavity of the tapered extension of the heel collar.
Clause 12. The article of footwear of clause 10, wherein an upper surface of the elongated tip slopes downward and inward toward the foot-receiving cavity.
Clause 13. The article of footwear of clause 12, wherein a slope of the upper surface of the elongated tip increases in a forward direction along a longitudinal midline of the article of footwear, providing a ramp.
Clause 14. The article of footwear of clause 12, wherein the upper surface of the elongated tip includes a discontinuity point.
Clause 15. The article of footwear of clause 12, wherein an outer perimeter of the center segment has a discontinuity point at the elongated tip.
Clause 16. The article of footwear of clause 12, wherein an outer perimeter of the center segment is characterized by an absence of a discontinuity point at the elongated tip.
Clause 17. The article of footwear of any of clauses 1-16, wherein the base includes a relatively thick portion adjacent an uppermost extent of the base and a relatively thin portion adjacent a lowermost extent of the base.
Clause 18. The article of footwear of clause 17, wherein the upper is sewn or adhered to the relatively thin portion of the base.
Clause 19. An article of footwear comprising: an upper defining a foot-receiving cavity with a heel region, the upper having a heel collar defining an opening into the foot-receiving cavity, and the upper having a tapered extension extending rearward from the heel collar; a heel support device extending around a rear of a heel region and including a control bar and a base, the control bar having a center segment and an arm extending downwardly and forwardly from the center segment to the base; wherein the control bar is resiliently bendable between an unloaded position and a loaded position, and is depressible toward the base from the unloaded position to the loaded position, the center segment spaced further apart from the base in the unloaded position than in the loaded position; the center segment including an elongated tip extending rearwardly; and the tapered extension of the heel collar overlaying the elongated tip.
Clause 20. The article of footwear of clause 19, wherein the tapered extension of the heel collar forms an internal cavity, and the elongated tip is disposed in the internal cavity of the tapered extension of the heel collar.
Clause 21. An article of footwear comprising: an upper defining a foot-receiving cavity with a heel region, the upper having a heel collar defining an opening into the foot-receiving cavity; a heel support device extending around a rear of a heel region and including a control bar and a base, the control bar having a center segment and an arm extending downwardly and forwardly from the center segment to the base; wherein the control bar is resiliently bendable between an unloaded position and a loaded position, and is depressible toward the base from the unloaded position to the loaded position, the center segment spaced further apart from the base in the unloaded position than in the loaded position; the center segment including an elongated tip extending rearwardly; and wherein the upper overlays at least one of the arm and the elongated tip.
Clause 22. The article of footwear of clause 21, wherein the upper overlays each of the arm and the elongated tip.
To assist and clarify the description of various embodiments, various terms are defined herein. Unless otherwise indicated, the following definitions apply throughout this specification (including the claims). Additionally, all references referred to are incorporated herein in their entirety.
An “article of footwear”, a “footwear article of manufacture”, and “footwear” may be considered to be both a machine and a manufacture. Assembled, ready to wear footwear articles (e.g., shoes, sandals, boots, etc.), as well as discrete components of footwear articles (such as a midsole, an outsole, an upper component, etc.) prior to final assembly into ready to wear footwear articles, are considered and alternatively referred to herein in either the singular or plural as “article(s) of footwear”.
“A”, “an”, “the”, “at least one”, and “one or more” are used interchangeably to indicate that at least one of the items is present. A plurality of such items may be present unless the context clearly indicates otherwise. All numerical values of parameters (e.g., of quantities or conditions) in this specification, unless otherwise indicated expressly or clearly in view of the context, including the appended claims, are to be understood as being modified in all instances by the term “about” whether or not “about” actually appears before the numerical value. “About” indicates that the stated numerical value allows some slight imprecision (with some approach to exactness in the value; approximately or reasonably close to the value; nearly). If the imprecision provided by “about” is not otherwise understood in the art with this ordinary meaning, then “about” as used herein indicates at least variations that may arise from ordinary methods of measuring and using such parameters. As used in the description and the accompanying claims, a value is considered to be “approximately” equal to a stated value if it is neither more than 5 percent greater than nor more than 5 percent less than the stated value. In addition, a disclosure of a range is to be understood as specifically disclosing all values and further divided ranges within the range.
The terms “comprising”, “including”, and “having” are inclusive and therefore specify the presence of stated features, steps, operations, elements, or components, but do not preclude the presence or addition of one or more other features, steps, operations, elements, or components. Orders of steps, processes, and operations may be altered when possible, and additional or alternative steps may be employed. As used in this specification, the term “or” includes any one and all combinations of the associated listed items. The term “any of” is understood to include any possible combination of referenced items, including “any one of” the referenced items. The term “any of” is understood to include any possible combination of referenced claims of the appended claims, including “any one of” the referenced claims.
For consistency and convenience, directional adjectives may be employed throughout this detailed description corresponding to the illustrated embodiments. Those having ordinary skill in the art will recognize that terms such as “above”, “below”, “upward”, “downward”, “top”, “bottom”, etc., may be used descriptively relative to the figures, without representing limitations on the scope of the invention, as defined by the claims.
The term “longitudinal” refers to a direction extending a length of a component. For example, a longitudinal direction of a shoe extends between a forefoot region and a heel region of the shoe. The term “forward” or “anterior” is used to refer to the general direction from a heel region toward a forefoot region, and the term “rearward” or “posterior” is used to refer to the opposite direction, i.e., the direction from the forefoot region toward the heel region. In some cases, a component may be identified with a longitudinal axis as well as a forward and rearward longitudinal direction along that axis. The longitudinal direction or axis may also be referred to as an anterior-posterior direction or axis.
The term “transverse” refers to a direction extending a width of a component. For example, a transverse direction of a shoe extends between a lateral side and a medial side of the shoe. The transverse direction or axis may also be referred to as a lateral direction or axis or a mediolateral direction or axis.
The term “vertical” refers to a direction generally perpendicular to both the lateral and longitudinal directions. For example, in cases where a sole is planted flat on a ground surface, the vertical direction may extend from the ground surface upward. It will be understood that each of these directional adjectives may be applied to individual components of a sole. The term “upward” or “upwards” refers to the vertical direction pointing towards a top of the component, which may include an instep, a fastening region and/or a throat of an upper. The term “downward” or “downwards” refers to the vertical direction pointing opposite the upwards direction, toward the bottom of a component and may generally point towards the bottom of a sole structure of an article of footwear.
The “interior” of an article of footwear, such as a shoe, refers to portions at the space that is occupied by a wearer's foot when the shoe is worn. The “inner side” of a component refers to the side or surface of the component that is (or will be) oriented toward the interior of the component or article of footwear in an assembled article of footwear. The “outer side” or “exterior” of a component refers to the side or surface of the component that is (or will be) oriented away from the interior of the shoe in an assembled shoe. In some cases, other components may be between the inner side of a component and the interior in the assembled article of footwear. Similarly, other components may be between an outer side of a component and the space external to the assembled article of footwear. Further, the terms “inward” and “inwardly” refer to the direction toward the interior of the component or article of footwear, such as a shoe, and the terms “outward” and “outwardly” refer to the direction toward the exterior of the component or article of footwear, such as the shoe. In addition, the term “proximal” refers to a direction that is nearer a center of a footwear component, or is closer toward a foot when the foot is inserted in the article of footwear as it is worn by a user. Likewise, the term “distal” refers to a relative position that is further away from a center of the footwear component or is further from a foot when the foot is inserted in the article of footwear as it is worn by a user. Thus, the terms proximal and distal may be understood to provide generally opposing terms to describe relative spatial positions.
While various embodiments have been described, the description is intended to be exemplary, rather than limiting and it will be apparent to those of ordinary skill in the art that many more embodiments and implementations are possible that are within the scope of the embodiments. Any feature of any embodiment may be used in combination with or substituted for any other feature or element in any other embodiment unless specifically restricted. Accordingly, the embodiments are not to be restricted except in light of the attached claims and their equivalents. Also, various modifications and changes may be made within the scope of the attached claims.
While several modes for carrying out the many aspects of the present teachings have been described in detail, those familiar with the art to which these teachings relate will recognize various alternative aspects for practicing the present teachings that are within the scope of the appended claims. It is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative and exemplary of the entire range of alternative embodiments that an ordinarily skilled artisan would recognize as implied by, structurally and/or functionally equivalent to, or otherwise rendered obvious based upon the included content, and not as limited solely to those explicitly depicted and/or described embodiments.
This application is a continuation of U.S. Nonprovisional application Ser. No. 16/751,508, filed Jan. 24, 2020, which claims the benefit of priority to U.S. Provisional Application No. 62/805,037 filed Feb. 13, 2019, and each of which are incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
2693039 | Balut | Nov 1954 | A |
2736110 | Hardimon | Feb 1956 | A |
2920402 | Minera | Jan 1960 | A |
3146535 | Owings | Sep 1964 | A |
3425075 | Murray | Feb 1969 | A |
3810318 | Epstein | May 1974 | A |
4026047 | Ahmer | May 1977 | A |
4864736 | Bierk | Sep 1989 | A |
5678330 | Van Dyke et al. | Oct 1997 | A |
5822888 | Terry | Oct 1998 | A |
6000148 | Cretinon | Dec 1999 | A |
6079128 | Hoshizaki et al. | Jun 2000 | A |
6726225 | Stewart et al. | Apr 2004 | B1 |
7698836 | Schmelzer et al. | Apr 2010 | B2 |
10617174 | Hopkins | Apr 2020 | B1 |
10638810 | Cheney | May 2020 | B1 |
10905192 | Cheney | Feb 2021 | B1 |
11191321 | Kilgore | Dec 2021 | B2 |
20010011430 | Davis et al. | Aug 2001 | A1 |
20010022434 | Sauter et al. | Sep 2001 | A1 |
20020133977 | Pan | Sep 2002 | A1 |
20060003160 | Goldberg | Jan 2006 | A1 |
20060196079 | Terlizzi et al. | Sep 2006 | A1 |
20080000106 | Culpepper | Jan 2008 | A1 |
20080005933 | Auger et al. | Jan 2008 | A1 |
20110083341 | Baum | Apr 2011 | A1 |
20160374427 | Zahabian | Dec 2016 | A1 |
20170119100 | Yamada | May 2017 | A1 |
20170127760 | Arquilla | May 2017 | A1 |
20170215517 | Silva | Aug 2017 | A1 |
20170303632 | Pratt | Oct 2017 | A1 |
20180104536 | Stewart | Apr 2018 | A1 |
20180110292 | Beers | Apr 2018 | A1 |
20180289109 | Beers | Oct 2018 | A1 |
20200196703 | Hopkins | Jun 2020 | A1 |
20200205511 | Hopkins | Jul 2020 | A1 |
20200205516 | Kilgore | Jul 2020 | A1 |
20200205517 | Happen | Jul 2020 | A1 |
20200205518 | Hopkins | Jul 2020 | A1 |
20200205520 | Kilgore | Jul 2020 | A1 |
20210112914 | Cheney | Apr 2021 | A1 |
20210112916 | Schulten | Apr 2021 | A1 |
Number | Date | Country |
---|---|---|
2253129 | Apr 1997 | CN |
1166998 | Dec 1997 | CN |
101528072 | Sep 2009 | CN |
201898951 | Jul 2011 | CN |
102871329 | Jan 2013 | CN |
203884809 | Oct 2014 | CN |
204070772 | Jan 2015 | CN |
105658105 | Jun 2016 | CN |
205267152 | Jun 2016 | CN |
106998856 | Aug 2017 | CN |
107874384 | Apr 2018 | CN |
108135329 | Jun 2018 | CN |
114343284 | Apr 2022 | CN |
2082658 | Jul 2009 | EP |
2647303 | Oct 2013 | EP |
2000139502 | May 2000 | JP |
2004344396 | Dec 2004 | JP |
2010042224 | Feb 2010 | JP |
20010105550 | Nov 2001 | KR |
20090093548 | Sep 2009 | KR |
M318332 | Sep 2007 | TW |
201215342 | Apr 2012 | TW |
M547871 | Sep 2017 | TW |
0187106 | Nov 2001 | WO |
Entry |
---|
Merrell Winter Climbing Shoes Polar Land 6 Released, Stylogue.co.kr, https://blog.naver.com/th_media/220192038921, Nov. 26, 2014. |
Number | Date | Country | |
---|---|---|---|
20220053884 A1 | Feb 2022 | US |
Number | Date | Country | |
---|---|---|---|
62805037 | Feb 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16751508 | Jan 2020 | US |
Child | 17516762 | US |