Articles of footwear generally include two primary elements: an upper and a sole structure. The upper is often formed from a plurality of material elements (e.g., textiles, polymer sheet layers, foam layers, leather, synthetic leather) that are stitched or adhesively bonded together to form a void on the interior of the footwear for comfortably and securely receiving a foot. More particularly, the upper forms a structure that extends over instep and toe areas of the foot, along medial and lateral sides of the foot, and around a heel area of the foot. The upper may also incorporate a lacing system to adjust fit of the footwear, as well as permitting entry and removal of the foot from the void within the upper. In addition, the upper may include a tongue that extends under the lacing system to enhance adjustability and comfort of the footwear, and the upper may incorporate a heel counter.
The various material elements forming the upper impart different properties to different areas of the upper. For example, textile elements may provide breathability and may absorb moisture from the foot, foam layers may compress to impart comfort, and leather may impart durability and wear-resistance. As the number of material elements increases, the overall mass of the footwear may increase proportionally. The time and expense associated with transporting, stocking, cutting, and joining the material elements may also increase. Additionally, waste material from cutting and stitching processes may accumulate to a greater degree as the number of material elements incorporated into an upper increases. Moreover, products with a greater number of material elements may be more difficult to recycle than products formed from fewer material elements. By decreasing the number of material elements, therefore, the mass of the footwear and waste may be decreased, while increasing manufacturing efficiency and recyclability.
The sole structure is secured to a lower portion of the upper so as to be positioned between the foot and the ground. In athletic footwear, for example, the sole structure includes a midsole and an outsole. The midsole may be formed from a polymer foam material that attenuates ground reaction forces (i.e., provides cushioning) during walking, running, and other ambulatory activities. The midsole may also include fluid-filled chambers, plates, moderators, or other elements that further attenuate forces, enhance stability, or influence the motions of the foot, for example. The outsole forms a ground-contacting element of the footwear and is usually fashioned from a durable and wear-resistant rubber material that includes texturing to impart traction. The sole structure may also include a sockliner positioned within the upper and proximal a lower surface of the foot to enhance footwear comfort.
An article of footwear is described below as having an upper and a sole structure secured to the upper. The upper includes a base layer, a plurality of strand segments, and a deposition layer. The a base layer has a first surface and an opposite second surface. The strand segments are located adjacent to the first surface and extend substantially parallel to the first surface for a distance of at least five centimeters. The deposition layer is deposited upon the first surface and the strand segments, and the deposition layer is joined with the first surface and the strand segments.
A screen print layer is also described below. The screen print layer is deposited upon the first surface of the base layer and the strand segments. Additionally, the screen print layer is joined with the first surface and the strand segments.
In addition, a method of manufacturing an article of footwear is described below. The method includes laying a plurality of strand segments adjacent to a base layer, with at least a portion of the strand segments extending substantially parallel to the base layer for a distance of at least five centimeters. An at least partially liquid material is deposited onto the base layer and the strand segments to form a deposition layer, the strand segments being located between the base layer and the deposition layer. The base layer, strand segments, and deposition layer are incorporated into an upper of the article of footwear.
The advantages and features of novelty characterizing aspects of the invention are pointed out with particularity in the appended claims. To gain an improved understanding of the advantages and features of novelty, however, reference may be made to the following descriptive matter and accompanying figures that describe and illustrate various configurations and concepts related to the invention.
The foregoing Summary and the following Detailed Description will be better understood when read in conjunction with the accompanying figures.
The following discussion and accompanying figures disclose an article of footwear having an upper that includes tensile strand elements. The article of footwear is disclosed as having a general configuration suitable for walking or running. Concepts associated with the footwear, including the upper, may also be applied to a variety of other athletic footwear types, including baseball shoes, basketball shoes, cross-training shoes, cycling shoes, football shoes, tennis shoes, soccer shoes, and hiking boots, for example. The concepts may also be applied to footwear types that are generally considered to be non-athletic, including dress shoes, loafers, sandals, and work boots. The concepts disclosed herein apply, therefore, to a wide variety of footwear types.
General Footwear Structure
An article of footwear 10 is depicted in
Sole structure 20 is secured to upper 30 and extends between the foot and the ground when footwear 10 is worn. The primary elements of sole structure 20 are a midsole 21, an outsole 22, and an sockliner 23. Midsole 21 is secured to a lower surface of upper 30 and may be formed from a compressible polymer foam element (e.g., a polyurethane or ethylvinylacetate foam) that attenuates ground reaction forces (i.e., provides cushioning) when compressed between the foot and the ground during walking, running, or other ambulatory activities. In further configurations, midsole 21 may incorporate fluid-filled chambers, plates, moderators, or other elements that further attenuate forces, enhance stability, or influence the motions of the foot, or midsole 21 may be primarily formed from a fluid-filled chamber. Outsole 22 is secured to a lower surface of midsole 21 and may be formed from a wear-resistant rubber material that is textured to impart traction. Sockliner 23 is located within upper 30 and is positioned to extend under a lower surface of the foot. Although this configuration for sole structure 20 provides an example of a sole structure that may be used in connection with upper 30, a variety of other conventional or nonconventional configurations for sole structure 20 may also be utilized. Accordingly, the structure and features of sole structure 20 or any sole structure utilized with upper 30 may vary considerably.
The various portions of upper 30 may be formed from one or more of a plurality of material elements (e.g., textiles, polymer sheets, foam layers, leather, synthetic leather) that are stitched or bonded together to form a void within footwear 10 for receiving and securing a foot relative to sole structure 20. The void is shaped to accommodate the foot and extends along the lateral side of the foot, along the medial side of the foot, over the foot, around the heel, and under the foot. Access to the void is provided by an ankle opening 31 located in at least heel region 13. A lace 32 extends through various lace apertures 33 and permits the wearer to modify dimensions of upper 30 to accommodate the proportions of the foot. More particularly, lace 32 permits the wearer to tighten upper 30 around the foot, and lace 32 permits the wearer to loosen upper 30 to facilitate entry and removal of the foot from the void (i.e., through ankle opening 31). As an alternative to lace apertures 33, upper 30 may include other lace-receiving elements, such as loops, eyelets, and D-rings. In addition, upper 30 includes a tongue 34 that extends between the interior void and lace 32 to enhance the comfort of footwear 10. In some configurations, upper 30 may incorporate a heel counter that limits heel movement in heel region 13 or a wear-resistant toe guard located in forefoot region 11.
A variety of material elements or other components may be incorporated into upper 30, as discussed above. In addition, areas of one or both of lateral side 14 and medial side 15 incorporate various first strands 41 and second strands 42. When incorporated into upper 30, strands 41 and 42 are located between a base layer 43 and a deposition layer 44, as depicted in
Strand Configuration
The locations and orientations of strands 41 and 42 may vary significantly. As an example,
During activities that involve walking, running, or other ambulatory movements (e.g., cutting, braking), a foot within the void in footwear 10 may tend to stretch upper 30. That is, many of the material elements forming upper 30 may stretch when placed in tension by movements of the foot. Although strands 41 and 42 may also stretch, strands 41 and 42 generally stretch to a lesser degree than the other material elements forming upper 30 (e.g., base layer 43 and deposition layer 44). Each of the segments of strands 41 and 42 may be located, therefore, to form structural components in upper 30 that (a) resist stretching in specific directions or locations, (b) limit excess movement of the foot relative to sole structure 20 and upper 30, (c) ensure that the foot remains properly positioned relative to sole structure 20 and upper 30, and (d) reinforce locations where forces are concentrated.
Suitable materials for strands 41 and 42 include various filaments, fibers, yarns, threads, cables, or ropes that are formed from rayon, nylon, polyester, polyacrylic, silk, cotton, carbon, glass, aramids (e.g., para-aramid fibers and meta-aramid fibers), ultra high molecular weight polyethylene, liquid crystal polymer, copper, aluminum, or steel, for example. Although strands 41 and 42 may be formed from similar materials, second strands 42 may be formed to have a greater tensile strength than first strands 41. As an example, strands 41 and 42 may be formed from the same material, but the thickness of second strands 42 may be greater than the thickness of first strands 41 to impart greater tensile strength. As another example, strands 41 and 42 may be formed from different materials, with the tensile strength of the material forming second strands 42 being greater than the tensile strength of the material forming first strands 41. The rationale for this difference between strands 41 and 42 is that the forces induced in upper 30 during braking motions are often greater than the forces induced in upper 30 during cutting motions. In order to account for the differences in the forces from braking and cutting, strands 41 and 42 may exhibit different tensile strengths. As a specific example of suitable materials, first strands 41 may be formed from a bonded nylon 6.6 with a breaking or tensile strength of 3.1 kilograms and a weight of 45 tex (i.e., a weight of 45 grams per kilometer of material) and second strands 42 may be formed from a bonded nylon 6.6 with a breaking or tensile strength of 6.2 kilograms and a tex of 45.
Tensile Element Configuration
A tensile element 40 that may be incorporated into upper 30 is depicted in
Base layer 43 and deposition layer 44 lay adjacent to each other, with strands 41 and 42 being positioned between layers 43 and 44. Strands 41 and 42 lie adjacent to a surface of base layer 43 and substantially parallel to the surface of base layer 43. In general, strands 41 and 42 also lie adjacent to a surface of deposition layer 44 and substantially parallel to the surface of deposition layer 44. As discussed above, segments of strands 41 and 42 form structural components in upper 30 that resist stretch. By being substantially parallel to the surfaces of base layer 43 and deposition layer 44, the segments of strands 41 and 42 resist stretch in directions that correspond with the surfaces of layers 43 and 44. Although strands 41 and 42 may extend through base layer 43 (e.g., as a result of stitching) in some locations, areas where strands 41 and 42 extend through base layer 43 may permit stretch, thereby reducing the overall ability of strands 41 and 42 to limit stretch. As a result, the segments of each of strands 41 and 42 generally lie adjacent to a surface of base layer 43 and substantially parallel to the surface of base layer 43 for distances of at least twelve millimeters, and may lie adjacent to the surface of base layer 43 and substantially parallel to the surface of base layer 43 throughout distances of five centimeters or more.
Layers 43 and 44 are depicted as being coextensive with each other. That is, layers 43 and 44 may have the same shape and size, such that edges of base layer 43 correspond and are even with edges of deposition layer 44. In some manufacturing processes, (a) strands 41 and 42 are located upon base layer 43, (b) deposition layer 44 is applied to base layer 43 and strands 41 and 42, and (c) tensile element 40 is cut from this combination to have the desired shape and size, thereby forming common edges for base layer 43 and deposition layer 44. In this process, ends of strands 41 and 42 may also extend to edges of layers 43 and 44. Accordingly, edges of layers 43 and 44, as well as ends of strands 41 and 42, may all be positioned at edges of tensile element 40.
Base layer 43 may be formed from any generally flat material exhibiting a length and a width that are substantially greater than a thickness. Accordingly, suitable materials for base layer 43 include various textiles, polymer sheets, or combinations of textiles and polymer sheets, for example. Textiles are generally manufactured from fibers, filaments, or yarns that are, for example, either (a) produced directly from webs of fibers by bonding, fusing, or interlocking to construct non-woven fabrics and felts or (b) formed through a mechanical manipulation of yarn to produce a woven or knitted fabric. The textiles may incorporate fibers that are arranged to impart one-directional stretch or multi-directional stretch, and the textiles may include coatings that form a breathable and water-resistant barrier, for example. The polymer sheets may be extruded, rolled, or otherwise formed from a polymer material to exhibit a generally flat aspect. Suitable materials for base layer 43 may also encompass laminated or otherwise layered materials that include two or more layers of textiles, polymer sheets, or combinations of textiles and polymer sheets. In addition to textiles and polymer sheets, other materials may be utilized for base layer 43. Although the materials may have smooth or generally untextured surfaces, some materials forming base layer 43 will exhibit textures or other surface characteristics, such as dimpling, protrusions, ribs, or various patterns, for example. In some configurations, mesh materials or perforated materials may be utilized for base layer 43 to impart greater breathability or air permeability.
Deposition layer 44 may be formed from any material that is deposited upon base layer 43 and strands 41 and 42. As utilized herein, the term “deposit” or variants thereof (e.g., deposited, depositing) is intended to encompass the formation of a layer through spraying, printing, electroplating, filament accumulation, or similar processes. In each of these processes, relatively small drops of a material or a liquid form of the material is applied to base layer 43 and strands 41 and 42 to form deposition layer 44. In effect, therefore, deposition layer 44 is formed or built-up directly upon base layer 43 and strands 41 and 42. In some prior configurations, a pre-formed polymer sheet was utilized to cover a base layer and strands. That is, the polymer sheet for formed prior to being joined with the base layer and strands. In contrast, deposition layer 44 is formed by depositing relatively small drops of a material or a liquid form of the material through spraying, printing, electroplating, filament accumulation, or similar processes.
As noted above, spraying, printing, electroplating, filament accumulation, or similar processes may be utilized to deposit deposition layer 44 upon base layer 43 and strands 41 and 42. When deposited through spraying, a polymer resin, a melted polymer, an adhesive, or an at least partially liquid material, for example, may be aerosolized, atomized, scattered, squirted, or otherwise discharged to coat base layer 43 and strands 41 and 42. Upon setting, curing, or drying, the material is joined, bonded, or otherwise secured to base layer 43 and strands 41 and 42. When deposited through printing, ink, toner, paint, or an at least partially liquid material may be printed upon base layer 43 and strands 41 and 42. Upon setting, curing, or drying, the material is joined, bonded, or otherwise secured to base layer 43 and strands 41 and 42. As a more specific example of printing, screen printing may be used to form a layer of ink on base layer 43 and strands 41 and 42. When applied through electroplating, a material may coat and join with base layer 43 and strands 41 and 42. When applied through filament accumulation, various polymer filaments accumulate upon base layer 43 and strands 41 and 42 to form a non-woven textile. Powdered thermoplastic polymer particles may also be applied, potentially through static charge or similar techniques. Stencils may also ensure that the material is applied to specific areas. Accordingly, various methods may be utilized to deposit a material that forms deposition layer 44 upon base layer 43 and strands 41 and 42.
Deposition layer 44 provides various advantages to footwear 10. As an example, the thickness of deposition layer 44 may be varied throughout tensile element 40. In some configurations, deposition layer 44 may have greater thickness in the areas of strands 41 and 42 and lesser thickness in areas where strands 41 and 42 are absent. As another example, spraying, printing, electroplating, filament accumulation, or similar processes have the potential to impart strong bonding between deposition layer 44 and each of base layer 43 and strands 41 and 42.
Based upon the above discussion, tensile element 40 generally includes two layers 43 and 44 with strands 41 and 42 located between. Although strands 41 and 42 may pass through one of layers 43 and 44, strands 41 and 42 generally lie adjacent to surfaces of layers 43 and 44 and substantially parallel to the surfaces layers 43 and 44 for more than twelve millimeters and even more than five centimeters. Spraying, printing, electroplating, filament accumulation, or similar processes may be utilized to deposit deposition layer 44 upon base layer 43 and strands 41 and 42.
Manufacturing Processes
A variety of processes may be utilized to manufacture tensile element 40. An example process that involves spraying to deposit deposition layer 44 will now be discussed. As an initial step in the process, strands 41 and 42 are positioned relative to base layer 43, as depicted in
Continuing with the process, a nozzle 51 or other device is now positioned near base layer 43 and strands 41 and 42, as depicted in
The general process discussed above may also be utilized to form deposition layer 44 through filament accumulation. More particularly, nozzle 51 also discharges polymer filaments that accumulate upon base layer 43 and strands 41 and 42. When discharged, the polymer filaments may be in a partially melted or softened state. Then, when accumulated upon base layer 43 and strands 41 and 42, the polymer filaments may bond with each other to effectively form a non-woven textile.
An example process that involves screen printing to deposit deposition layer 44 will now be discussed. As an initial step in the process, strands 41 and 42 are positioned relative to base layer 43, as depicted in
Both of the processes discussed above (i.e., spraying and screen printing) deposit material upon base layer 43 and strands 41 and 42 to form deposition layer 44. In these processes, relatively small drops of a material or a liquid form of the material is applied to base layer 43 and strands 41 and 42 to form deposition layer 44 directly upon base layer 43 and strands 41 and 42. In addition to spraying and screen printing, other methods of deposition may also be utilized, including additional printing processes, electroplating, and filament accumulation. In some configurations, thermoplastic polymer particles or powder may also be applied to base layer 43 to form deposition layer 44, and stencils or static charge may be utilized to locate the material in specific areas and ensure the material adheres to base layer 43. Accordingly, various methods may be utilized to deposit a material that forms deposition layer 44 upon base layer 43 and strands 41 and 42.
Further Footwear Configurations
The orientations, locations, and quantity of strands 41 and 42 in
The screen printing process discussed above provides an opportunity to enhance the aesthetic or informational qualities of footwear 10. As an example, the screen printing process may be modified to print areas of deposition layer 44 with different colors. As another example, the screen printing process may be modified to print areas of deposition layer 44 that form indicia, such as trademarks, care instructions, directions, etc. As an example,
Various aspects relating to strands 41 and 42 and layers 43 and 44 in
The invention is disclosed above and in the accompanying figures with reference to a variety of configurations. The purpose served by the disclosure, however, is to provide an example of the various features and concepts related to the invention, not to limit the scope of the invention. One skilled in the relevant art will recognize that numerous variations and modifications may be made to the configurations described above without departing from the scope of the present invention, as defined by the appended claims.
This U.S. Patent Applications is a division of U.S. patent application Ser. No. 14/527,903, which was filed on Oct. 30, 2014, which application is a division of U.S. patent application Ser. No. 13/196,365, which was filed on Aug. 2, 2011 and entitled “Footwear Incorporating A Tensile Element With A Deposition Layer”, which issued on Dec. 9, 2014 as U.S. Pat. No. 8,904,671, which application is a continuation-in-part application and claims priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 12/505,740, which was filed in the U.S. Patent and Trademark Office on 20 Jul. 2009 and entitled “Material Elements Incorporating Tensile Strands”, which issued on Nov. 20, 2012 as U.S. Pat. No. 8,312,645, such prior U.S. Patent Applications being entirely incorporated herein by reference. In turn, U.S. patent application Ser. No. 12/505,740 is a continuation-in-part application and claims priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 11/441,924, which was filed in the U.S. Patent and Trademark Office on 25 May 2006 and entitled “Article Of Footwear Having An Upper With Thread Structural Elements”, which issued on Jan. 18, 2011 as U.S. Pat. No. 7,870,681, such prior U.S. Patent Applications being entirely incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2034091 | Dunbar | Mar 1936 | A |
2048294 | Roberts | Jul 1936 | A |
2205356 | Gruensfelder et al. | Jun 1940 | A |
2311996 | Parker | Feb 1943 | A |
2646379 | Poschel | Jul 1953 | A |
3439434 | Tangorra | Apr 1969 | A |
3449291 | Bartsch | Jun 1969 | A |
3672078 | Fukuoka | Jun 1972 | A |
3823493 | Brehm et al. | Jul 1974 | A |
4271116 | Jones | Jun 1981 | A |
4627369 | Conrad et al. | Dec 1986 | A |
4634616 | Musante et al. | Jan 1987 | A |
4642819 | Ales et al. | Feb 1987 | A |
4756098 | Boggia | Jul 1988 | A |
4858339 | Hayafuchi et al. | Aug 1989 | A |
4873725 | Mitchell | Oct 1989 | A |
4899411 | Johnson | Feb 1990 | A |
5149388 | Stahl | Sep 1992 | A |
5156022 | Altman et al. | Oct 1992 | A |
5271130 | Batra | Dec 1993 | A |
5285658 | Altman et al. | Feb 1994 | A |
5345638 | Nishida | Sep 1994 | A |
5359790 | Iverson et al. | Nov 1994 | A |
5367795 | Iverson et al. | Nov 1994 | A |
5380480 | Okine et al. | Jan 1995 | A |
5399410 | Urase et al. | Mar 1995 | A |
5645935 | Kemper et al. | Jul 1997 | A |
5832540 | Knight | Nov 1998 | A |
D405587 | Merikoski | Feb 1999 | S |
5930918 | Healy et al. | Aug 1999 | A |
5990378 | Ellis | Nov 1999 | A |
6003247 | Steffe | Dec 1999 | A |
6004891 | Tuppin et al. | Dec 1999 | A |
6009637 | Pavone | Jan 2000 | A |
6029376 | Cass | Feb 2000 | A |
6038702 | Knerr | Mar 2000 | A |
6128835 | Ritter et al. | Oct 2000 | A |
6151804 | Hieblinger | Nov 2000 | A |
6164228 | Lin et al. | Dec 2000 | A |
6170175 | Funk | Jan 2001 | B1 |
6213634 | Harrington et al. | Apr 2001 | B1 |
6615427 | Hailey | Sep 2003 | B1 |
6665958 | Goodwin | Dec 2003 | B2 |
6718895 | Fortuna | Apr 2004 | B1 |
6860214 | Wang | Mar 2005 | B1 |
6910288 | Dua | Jun 2005 | B2 |
7086179 | Dojan et al. | Aug 2006 | B2 |
7086180 | Dojan et al. | Aug 2006 | B2 |
7100310 | Foxen et al. | Sep 2006 | B2 |
7287342 | Keen | Oct 2007 | B2 |
7293371 | Aveni | Nov 2007 | B2 |
7337560 | Marvin et al. | Mar 2008 | B2 |
7574818 | Meschter | Aug 2009 | B2 |
7665230 | Dojan et al. | Feb 2010 | B2 |
7676956 | Dojan et al. | Mar 2010 | B2 |
7870681 | Meschter | Jan 2011 | B2 |
7870682 | Meschter et al. | Jan 2011 | B2 |
7894518 | Yang | Feb 2011 | B2 |
7942993 | Gessler | May 2011 | B2 |
8312645 | Dojan et al. | Nov 2012 | B2 |
8312646 | Meschter et al. | Nov 2012 | B2 |
8904671 | Dojan et al. | Dec 2014 | B2 |
20010051484 | Ishida et al. | Dec 2001 | A1 |
20030178738 | Staub et al. | Sep 2003 | A1 |
20040074589 | Gessler et al. | Apr 2004 | A1 |
20040118018 | Dua | Jun 2004 | A1 |
20040142631 | Luk | Jul 2004 | A1 |
20040181972 | Csorba | Sep 2004 | A1 |
20040261295 | Meschter | Dec 2004 | A1 |
20050028403 | Swigart et al. | Feb 2005 | A1 |
20050115284 | Dua | Jun 2005 | A1 |
20050132609 | Dojan et al. | Jun 2005 | A1 |
20050268497 | Alfaro et al. | Dec 2005 | A1 |
20060048413 | Sokolowski et al. | Mar 2006 | A1 |
20060137221 | Dojan et al. | Jun 2006 | A1 |
20070199210 | Vattes et al. | Aug 2007 | A1 |
20070245595 | Chen | Oct 2007 | A1 |
20070271821 | Meschter | Nov 2007 | A1 |
20080110049 | Sokolowski et al. | May 2008 | A1 |
20080168683 | Keating | Jul 2008 | A1 |
20100018075 | Meschter et al. | Jan 2010 | A1 |
20100037483 | Meschter et al. | Feb 2010 | A1 |
20100043253 | Dojan et al. | Feb 2010 | A1 |
20100154256 | Dua et al. | Jun 2010 | A1 |
20100175276 | Dojan et al. | Jul 2010 | A1 |
20100251491 | Dojan et al. | Oct 2010 | A1 |
20100251564 | Meschter | Oct 2010 | A1 |
20110041359 | Dojan et al. | Feb 2011 | A1 |
20110228391 | Bacon, Jr. | Sep 2011 | A1 |
20120023778 | Dojan et al. | Feb 2012 | A1 |
20120055044 | Dojan et al. | Mar 2012 | A1 |
Number | Date | Country |
---|---|---|
20215559 | Jan 2003 | DE |
0082824 | Jun 1983 | EP |
0818289 | Jan 1998 | EP |
1462349 | Feb 1967 | FR |
2046671 | Mar 1971 | FR |
2457651 | Dec 1980 | FR |
1445781 | Aug 1976 | GB |
2 134 418 | Aug 1984 | GB |
WO 9843506 | Oct 1998 | WO |
WO 0036943 | Jun 2000 | WO |
WO 03013301 | Feb 2003 | WO |
WO 2004089609 | Oct 2004 | WO |
WO 2007139567 | Dec 2007 | WO |
WO 2007140055 | Dec 2007 | WO |
WO 2009101642 | Aug 2009 | WO |
Entry |
---|
International Preliminary Report on Patentability and Written Opinion for International Application No. PCT/ US2012/048008, dated Feb. 13, 2014. |
International Search Report and Written Opinion for Application No. PCT/US2012/048008, dated Dec. 7, 2013. |
Exam Report for EP Application No. 12762097.9, dated Apr. 6, 2018 (5 pages). |
Examination Report issued in related European Patent Application No. 12762097.9, dated Jul. 1, 2019, 6 pages. |
Number | Date | Country | |
---|---|---|---|
20180014608 A1 | Jan 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14527903 | Oct 2014 | US |
Child | 15717602 | US | |
Parent | 13196365 | Aug 2011 | US |
Child | 14527903 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12505740 | Jul 2009 | US |
Child | 13196365 | US | |
Parent | 11441924 | May 2006 | US |
Child | 12505740 | US |