Aspects of the present invention generally relate to footwear products, intermediate structures used in making footwear products, and methods of making footwear products and the intermediate structures. In at least some examples of this invention, the structures will include a midsole member located within an interior chamber defined by the upper member of the footwear structure.
Conventional footwear products, and particularly athletic shoes, include an upper member attached to a shoe sole structure. Typically, the upper member will include an internal insole. The shoe sole structure typically includes a midsole and an outsole connected to one another as a single assembly (e.g., using adhesives) that is constructed separate from the upper member. This shoe sole assembly then is attached to the upper member, e.g., using adhesives, stitching, welding, etc.
The use of a conventional external midsole and outsole assembly as described above tends to produce shoe designs having a very pronounced and visually apparent sole structure. Such shoe designs, including a complete upper, midsole, and outsole assembly also tend to have a relatively high weight, which can hamper athletic performance. It would significantly increase the pallet of available designs to provide footwear structures and methods of making these structures that eliminate the need for this pronounced and visually apparent shoe sole structure. Furthermore, eliminating at least a portion of the outsole from the shoe design would help, in at least some instances, reduce the overall weight of the footwear product. Nonetheless, any such designs must remain safe, stable, and comfortable when worn, particularly when the footwear is designed for athletic use.
Aspects of the present invention relate to structures and methods used in making footwear products. Such structures may include: (a) an upper member having a foot-receiving opening defined therein, wherein the upper member defines an interior chamber and an exterior surface; and (b) a midsole provided in the interior chamber of the upper member and fixed to the upper member, wherein the midsole is located or positioned completely within the interior chamber. Optionally, at least a portion of the exterior surface of the upper member may form at least a portion of an outsole of the structure, and/or the structure may include one or more outsole members and/or one or more heel members attached to at least a portion of the exterior surface of the upper member. In some examples, the outsole and/or heel member(s) may be mounted directly on the exterior surface of the upper member. In at least some examples, the resulting footwear product will be lightweight and particularly suitable for athletic use.
Additional aspects of this invention relate to methods for making various structures, including footwear midsole and upper member assemblies, as well as complete pieces of footwear, e.g., like those described above. Such methods may include, for example: (a) applying a cement material to at least one member selected from the group consisting of: at least a portion of an upper member that will form an interior chamber of the upper member and at least a portion of a midsole that will contact the upper member when the midsole is included in the upper member; (b) cooling at least one of the upper member or the midsole to a sufficient extent so that the midsole and upper member will move with respect to one another despite the presence of the cement material; and (c) placing the midsole in the interior chamber of the upper member in a manner such that at least some of the midsole contacts and moves with respect to at least some of the upper member, despite the presence of the cement material. In at least some examples of the invention, both the upper member and the midsole will have cement material applied thereto, and both members will be cooled.
Other example methods in accordance with this invention may include: (a) providing an upper member, wherein the upper member includes a foot-receiving opening defined therein that provides access to an interior chamber defined by the upper member; (b) placing a prelast member through the opening into the interior chamber, wherein the prelast member includes a midsole allowance part; (c) removing the prelast member and the midsole allowance part from the upper member; and (d) placing a midsole in the interior chamber of the upper member through the opening. The upper member and/or the midsole may have cement applied thereto and may be cooled prior to insertion of the midsole into the upper member, as described above.
As noted above, at least one of the midsole and/or the upper member may have cement material applied to it before the midsole is placed in the upper member, and the midsole and/or upper member (preferably at least the part or parts containing the cement material) may be cooled prior to insertion of the midsole into the upper member. When cooled to a sufficient extent, the cement-containing portion of the midsole will be able to contact and still move with respect to the upper member and/or the cement-containing portion of the upper member despite the presence of the cement material. After the midsole has been placed in the interior chamber of the upper member and the cement material contacts the opposite and adjacent piece of the structure, the combined midsole and upper member assembly may be heated to activate the cement and thereby bond the assembly together.
The above and other objects, features, and advantages of the present invention will be more readily apparent and more fully understood from the following detailed description, taken in conjunction with the appended drawings, which illustrate example process steps in accordance with examples of the present invention, wherein:
Various specific examples of structures and methods in accordance with this invention are described in detail below in conjunction with the attached drawings. To assist the reader, this specification is divided into various subsections, as follows: Terms; General Description of Aspects of the Invention; Specific Examples of the Invention; and Conclusion.
The following terms are used in this specification, and unless otherwise noted or clear from the context, these terms have the meanings provided below.
“Footwear” means any type of wearing apparel for the feet, and this term includes, but is not limited to: all types of shoes, boots, sneakers, sandals, thongs, flip-flops, mules, scuffs, slippers, athletic shoes, sport-specific shoes (such as golf shoes, ski boots, etc.), and the like.
“Cement material” or “cement” refers to any type of bonding material including conventional materials known in the art. Included within the scope of “cement materials,” but not limiting the term, are adhesives, contact cements, primers, and the like. The terms “cement,” “cement material,” “adhesive,” and “adhesive material” are used synonymously and interchangeably in this specification and are to be broadly construed as covering any type of bonding material.
In general, aspects of this invention relate to structures and methods used in making footwear products, including completed footwear products. More specific example aspects of the invention relate to structures that include: (a) an upper member having a foot-receiving opening defined therein, wherein the upper member defines an interior chamber and an exterior surface; (b) a midsole provided in the interior chamber of the upper member and fixed to the upper member, wherein the midsole is completely within the interior chamber; and (c) an outsole member attached to at least a portion of the exterior surface of the upper member. As another example, structures in accordance with at least some aspects of the present invention may include: (a) an upper member having a foot-receiving opening defined therein, wherein the upper member defines an interior chamber and an exterior surface, and wherein at least a portion of the exterior surface of the upper member forms at least a portion of an outsole of the structure; and (b) a midsole provided in the interior chamber of the upper member and fixed to the upper member, wherein the midsole is located completely within the interior chamber. Example structures of this type further may include one or more outsole members and/or one or more heel units attached to the exterior surface of the upper member.
If desired, structures in accordance with at least some aspects of the present invention further may include midsoles having alignment systems for aligning and/or otherwise properly orienting the midsole with respect to other elements in the structure. For example, midsoles used in structures in accordance with at least some examples of the invention may include at least one projection (and in some examples plural projections) that fit into corresponding recesses or openings defined in another portion of the structure, such as the upper member, the outsole, the insole, and the like. Alternatively, if desired, the midsole may include one or more openings or recesses and another portion of the structure may include projections designed to fit into the openings or recesses.
Additional aspects of this invention relate to methods for making various structures, including footwear midsole and upper member assemblies, as well as complete pieces of footwear. Such methods may include, for example: (a) applying a cement material to at least one member selected from the group consisting of: at least a portion of an upper member that will form an interior chamber of the upper member and at least a portion of a midsole that will contact the upper member when the midsole is included in the upper member; (b) cooling at least one of the upper member or the midsole to a sufficient extent so that the midsole and upper member will move with respect to one another despite the presence of the cement material; and (c) placing the midsole in the interior chamber of the upper member in a manner such that at least some of the midsole contacts and moves with respect to at least some of the upper member despite the presence of the cement material. In at least some examples, both the upper member and the midsole will have cement material applied thereto, and both members will be cooled.
Methods in accordance with examples of the invention may include additional steps. For example, after cooling and placing the midsole in the interior chamber of the upper member, the combined midsole and upper member assembly may be heated to thereby activate the cement material(s) and bond the midsole and upper member together. Additionally, if desired, one or more additional elements may be attached to or included with the midsole and upper member assemblies, such as: outsole members, heel units, closure systems, designs, logos, and the like.
Additional or alternative methods in accordance with examples of the invention may include: (a) providing an upper member, wherein the upper member includes a foot-receiving opening defined therein providing access to an interior chamber defined by the upper member; (b) placing a prelast member through the opening into the interior chamber, wherein the prelast member includes a midsole allowance part; (c) removing the prelast member and the midsole allowance part from the upper member; and (d) placing a midsole in the interior chamber of the upper member through the opening. Additionally, as noted above, if desired, one or more additional elements may be attached to or included with the midsole and upper member assemblies, such as: outsole members, heel units, closure systems, designs, logos, and the like.
At least one of the midsole and/or the upper member may have cement applied to it before the midsole is placed in the upper member, and the midsole and/or upper member (preferably at least the part or parts containing the cement material) may be cooled prior to insertion of the midsole into the upper member. When cooled to a sufficient extent, the cement material will “deactivate” somewhat such that the cement-containing portion of the midsole will be able to contact and still move with respect to the upper member and/or such that the cement-containing portion of the upper member will be able to contact and still move with respect to the midsole despite the presence of the cement. After the midsole has been placed in the interior chamber of the upper member and the cement contacts the opposite and adjacent piece of the structure, the midsole and upper member assembly may be heated to activate the cement and fix the assembly together.
In at least some example methods in accordance with this invention, including at least some of the various examples described above, the midsole may be placed in the interior chamber of the upper member through a foot-receiving opening defined in the upper member (i.e., the same opening through which a user will insert his/her foot in the finished footwear product). In such examples, the foot-receiving opening may be the only opening provided in the upper member that is capable of receiving the midsole at the time the midsole is placed in the interior chamber (i.e., it may be the only opening in the upper member large enough to allow entry of the midsole into the interior chamber). In at least some examples, a heel portion of the upper member may be closed prior to placing the midsole in the interior chamber of the upper member (e.g., by sewing, adhesives, another fastening means, or in some other manner).
Furthermore, methods in accordance with at least some examples of the invention may include fitting the midsole into the upper member in a predetermined orientation. This may include, for example, use of an alignment aid to assure that the midsole is properly aligned and oriented with respect to one or more other elements in the structure. As noted above, the alignment aid may include one or more projections provided on the midsole that fit into corresponding projection-receiving recesses and/or openings defined in the upper member, in the outsole, in the insole, and/or in some other element of the structure. Alternatively, if desired, the midsole may include the recess(es) or opening(s) and the corresponding projection(s) may be provided on another part of the structure, such as the upper member, the outsole, the insole, etc. In some instances, at least part of the alignment aid and/or an indicator of the correct alignment may be visible from the exterior of the assembly. Other suitable alignment aids or fitting aids are possible and may be used without departing from the invention.
Still additional steps may be included in various methods according to examples of this invention. For example, once the midsole is placed in the interior chamber, a last member may be inserted through the foot-receiving opening into the interior chamber of the upper member, and then this entire assembly may be heated to help form and set the assembly to the desired size and shape. Before, during, and/or after this heating, the assembly may be pressed together, under high pressure, to further bond the structure together.
Aspects of this invention also relate to the midsole and upper member assemblies produced by the various methods described above, as well as to pieces of footwear including these assemblies and/or produced by the methods described above.
Specific examples of the invention are described in more detail below. The reader should understand that these specific examples are set forth merely to illustrate examples of the invention, and they should not be construed as limiting the invention.
The figures in this application illustrate various examples of steps useful in example methods in accordance with this invention. When the same reference number appears in more than one figure, that reference number is used consistently in this specification and the figures to refer to the same part or element throughout.
Step 1—Begin
The method in accordance with the illustrated example of the invention begins with a footwear upper member that has very generally been formed into the shape as it will appear in the finished piece of footwear. In the illustrated example, as shown in
Any suitable or desired material may be used for the upper member sidewall 102 and/or base member 104 without departing from the invention, including conventional materials used and well known in the art, such as conventional natural or synthetic materials and/or combinations thereof. In at least some examples, the portions of the sidewalls 102 and/or the base member 104 that will eventually contact the foot of the wearer may include fabric, foam, and/or cushioning materials, to increase the comfort and/or improve the feel of the upper member 100 on the wearer's foot. The fabric, foam, and/or cushioning materials may be any suitable or desired materials without departing from the invention, including conventional materials known in the art. For example, the base member 104 may include a conventional insole as at least part of its construction. Additionally, the fabric, foam, and/or cushioning materials may be attached to and/or included as part of the structural components of the upper member 100 in any suitable or desired manner without departing from the invention, including in conventional manners known in the art.
As this example process begins, one or more upper members 100 (in some examples, corresponding pairs of upper members) are placed inside-out at the beginning of an assembly line for an assembly process in accordance with one example of the invention. Accordingly, in the illustrated example, the exterior surface illustrated in
a. Step 2—Cementing the Upper Sidewall and Insole
As an initial step in this example process, as illustrated in
The cement material 200 will enable the footwear's midsole, which will be inserted into the upper member 100 later in the process, to stay in place within the final footwear assembly. If this cement material 200 were not applied, the midsole may be able to slide around inside the upper member 100, causing an unstable or insecure fit, potentially damaging the footwear assembly, causing injury to the wearer, and/or providing an uncomfortable fit. Any suitable or desired type of cement material 200 may be used without departing from the invention, including conventional cement materials known to those in the art and commercially available.
Step 3—Heating the Cement—Containing Upper Assembly
Once the cement material 200 has been applied to the sidewall 102 and/or insole area of the upper member 100, the upper member 100 may be heated to dry the cement material 200, if necessary. As illustrated in
Although not illustrated in these figures, the same or a different type of cement material also may be applied to a separate midsole member and/or dried in the same manner described above with respect to the upper member 100. If desired, the midsole member may be cemented and/or dried in parallel along with the upper member 100, optionally drying the midsole member at the same time and under the same conditions as the upper member 100, without departing from the invention. The midsole member will be described in more detail below.
Step 4—Turning the Upper Member Outside-Out
After the drying step, if any, the upper member 100 orientation is reversed so that the outside of the upper member 100 is located on the exterior of the overall assembly (i.e., “outside-out”). As illustrated in
The exterior surface of the upper's base member 104 also now is exposed. As illustrated in
At this point in the illustrated process, the flap member 106 remains unattached and allows access into the interior chamber 402 of the upper member 100 through the heel area 108 of the upper member 100. Additionally, the foot-receiving opening 110 also allows access to the interior chamber 402. The walls within the interior chamber 402 (which were on the outside in the steps illustrated in
The example footwear upper member 100 structure illustrated in
Step 5—Flattening any Internal Seams or Flanges
As illustrated in
Accordingly, in this step, any seams or flanges within the interior chamber 402 of the upper member 100, particularly any located along the upper member 100 bottom or side edges (e.g., at or near the contact cement-containing areas 200), may be flatten or smoothed to allow for smoother and easier insertion of the midsole into the interior chamber 402. Any suitable or desired manner of flattening or smoothing the seams or flanges may be used without departing from the invention. For example, as illustrated in
Step 6—Activating the Heel Counter
In a next example process step, the heel area 108 of the upper member 100 (also called a “heel counter”) is molded and shaped, under heating. “Heel counter activation” and shaping processes of this type are conventional and known in the art. For example, as illustrated in
Any suitable or desired counter heating and/or activation conditions may be used without departing from the invention, depending, for example, on the materials used in making the various components of the upper member 100, ambient temperature and humidity conditions, amount of shape changes needed in the heel area 108, additional structural elements included in the heel area 108, and the like. As one more specific example, in the illustrated process, the heel counter is activated at a temperature in the range from about 85° C. to 95° C. for about one minute. Optionally or alternatively, if desired, pressure also may be applied to the heel counter area 108 to further shape the heel counter area 108 to match the heel counter shaping mold 600.
Step 7—Molding the Backpart of the Upper Member
After the heel counter activation and (optional) shaping processes, the upper member 100, and particularly the heel counter area 108 of the upper member 100, are placed in a chilled or cooled mold 700 and pressed to further form and shape the exterior and/or interior of the heel area 108 of the upper member 100, as shown in
Any suitable or desired temperature, pressure, and/or timing conditions can be used for molding the heel area 108 of the upper member 100 without departing from the invention. For example, the mold surface temperature may be less than or equal to about 50° C. in some examples. In the particular example illustrated in conjunction with
Step 8—Attaching the Strobel at the Heel Area
At this stage in the process, as described above, the heel area 108 of the upper member 100 includes the unattached flap of material 106. This flap 106 of material (also called a “strobel”) was left unattached, as described above, to enable insertion of certain equipment and to allow operation of various pieces of machinery used in the production process. For example, as illustrated in
Accordingly, in this step of the example process, the loose flap of material 106 is attached to the remainder of the upper member 100 (e.g., attached to the sidewall 102) to make the upper member 100 of an integral construction. The flap 106 in this example forms a continuous single piece with the remainder of the base member 104. Of course, any suitable manner of attaching the flap 106 to the remainder of the upper member 100 structure may be used without departing from the invention. While sewing or stitching is used as the attachment means 800 in the example illustrated in
Step 9—Activating the Toe Box
In the next step of the example process illustrated in the figures, “toe box activation” occurs. This process is similar to the heel counter activation process described above in conjunction with
Any suitable or desired activation conditions may be used without departing from the invention, depending, for example, on the materials used in making the various components of the upper member 100, the presence of any additional structural elements, ambient temperature and humidity conditions, degree of shape changes needed in the toe area 902 of the upper member 100, and the like. As one more specific example, in the illustrated process, the toe box area 902 may be activated at a temperature in the range from about 75° C. to 85° C. for about 8 to 15 seconds. In some examples, the toe box activation conditions may be the same as or similar to those used in activating the heel counter area 108, and vice versa. Optionally, if desired, pressure may be applied to the toe box area 902 to further shape the toe box area 902 to match the mold member 900.
Step 10—Prelasting
At this point in the process, a “prelasting” step occurs. As illustrated in
The prelast member 1004, including the midsole allowance part 1002, is inserted into the upper member 100 through the foot-receiving opening 110, as indicated by arrow 1006 in
Step 11—Cooling the Upper Member and the Midsole Member
At this point in the process, as described above, the upper member 100 has been placed on the prelast member 1004 (which includes the midsole allowance part 1002), and the upper member 100 has been cemented and dried (cement material 200 illustrated in
At this time, as illustrated in
Any suitable or desired temperature and/or timing conditions can be used to cool the midsole member 1100 and/or the upper member 100 without departing from the invention. For example, the prelast device 1004 surface temperature, the upper member 100 surface temperature, and/or the midsole 1100 surface may be cooled to less than or equal to about 35° C. in some examples. In the particular example process illustrated with respect to the attached figures, the upper member 100 and the midsole member 1100 may be cooled to a temperature within the range of about −5° C. to 5° C. for about 2 to 2½ minutes. While the illustrated example shows the upper member 100 and midsole member 1100 in the same cooling zone 1104 immediately adjacent to one another, those skilled in the art will appreciate that the midsole 1100 and upper member 100 may be separately cooled, optionally in different cooling devices, without departing from the invention. Optionally, if desired, a variety of midsole members 1100 and/or upper members 100 of varying sizes and/or types may be stored in bulk, optionally with contact cement applied thereto and optionally under cooled conditions, ready for the remaining process steps (e.g., the steps described below) without departing from the invention.
Step 12—De-Lasting the Upper Member
After cooling, the upper member 100 is removed from the prelast member 1004, as shown by arrow 1200 in
Step 13—Inserting the Midsole Member
At this point in the example process, as described above, both the upper member 100 and the midsole member 1100 are in a cooled condition with contact cement 200 and 1102, respectively, applied thereto. Because they are in this cooled condition, as described above, the midsole member 1100 can be slid into the upper member 100 before the contact cement 200 and/or 1102 bonds these parts together.
Accordingly, in the next step of the example process, the midsole member 1100 is slid into the interior chamber 402 of the upper member 100 through the foot-receiving opening 110 of upper member 100, as illustrated in
Notably, in this example process, because the upper member 100 is relatively closed during the midsole 1100 insertion procedure (only the foot-receiving opening 110 remains in this example), the insertion process is a relatively “blind” operation, i.e., one cannot easily see whether the midsole member 1100 is properly seated and oriented inside the upper member 100 (e.g., particularly because of the presence of the contact cement 200 and 1102, the midsole member 1100 can become twisted, bunched, and/or otherwise mis-oriented or mis-seated in the upper member 100). Therefore, if desired, in at least some examples of the invention, the midsole member 1100 may include “nubs” or projections 1106 that fit into openings or recesses 114 provided in the upper member 100, the insole (e.g., part of base member 104), and/or some other portion of the footwear structure. The nubs 1106 and openings or recesses 114 may be used as alignment or positioning aids to assure that the midsole member 1100 is proper oriented and seated inside the upper member 100. In at least some examples, the nubs or projections 1106 may be visible through openings 114 defined in the upper member 100, to provide an externally visible indication and confirmation that the midsole member 1100 is properly inserted and oriented. The upper member 100 may include other openings and/or windows therein such that the midsole 1100 may be visible through the upper member structure without departing from the invention.
Other alignment and/or positioning aid arrangements may be used without departing from the invention. For example, if desired, the upper member may include projections or nubs and the midsole member may include openings or recesses for receiving the projections or nubs. Also, each of the midsole and upper members may include both projections and openings (or recesses) that match up with corresponding elements on the other member. As still additional examples, the projections and/or openings (or recesses) may be of any size or shape, provided at any desired location, and/or provided on any desired surface of the midsole and/or upper members without departing from the invention. As still another example, one or more of the traction elements 400 may be formed on the midsole member 1100 and extend through one or more openings provided in the base member 104. If necessary or desired, additional cement or other sealing material may be applied to the projections and/or opening walls to seal the openings 114 in the base member 104 once the projections are inserted therein.
a. Step 14—Inserting the Last Device
The combined midsole member 1100 and upper member 100 assembly, given reference number 1400 in
Step 15—Loosely Securing the Midsole and Upper Member Assembly to the Last Device
Once on the last device 1402, the midsole and upper member assembly 1400 may be secured thereto, optionally in a somewhat loose fashion, using the securing element(s) that will be present in the finished piece of footwear. This securing step helps maintain the midsole and upper member assembly 1400 on the last device 1402 and helps to hold the assembly 1400 in place on the last device 1402. In the illustrated example, as shown in
Other attachment devices also may be engaged during this step. For example, as shown in the example of
Step 16—Passing Through a Heating Device
The combined midsole and upper member assembly 1400, attached to the last device 1402, now is heated, e.g., by placing the assembly 1400 in a heating device 1600 as shown in
Of course, any suitable or desired heating conditions may be used without departing from the invention, depending, for example, on the type of materials used in the various components, the contact cement type, the ambient conditions, and the like. In the process described in conjunction with the attached figures, the midsole and upper member assembly 1400 may be heated at about 80° C. to 90° C. for about 3 to 4 minutes.
Step 17—Deep Well Pressing
The heated midsole and upper member assembly 1400, including the incorporated last device 1402, then may be subjected to a deep well pressing step, e.g., in a conventional manner known to those skilled in the art. This pressing step generally is illustrated in
Any desired or suitable pressing conditions may be used without departing from the invention. For example, a pressure of at least 10 kg/cm2 for at least five seconds, optionally under heating conditions may be used. In the illustrated procedure, a pressing force of 30-35 kg/cm2 is applied for 12-15 seconds under ambient temperature conditions (although the midsole and upper member assembly 1400 may remain in at least a somewhat heated condition from the previous heating step).
a. Final Steps
Various additional processing steps may be applied without departing from the invention. For example, at some time during the process, the last device 1402 may be removed from the midsole and upper member assembly 1400. Additionally, as shown in
If desired, however, as may be the case in other potential examples of footwear products in accordance with this invention, one or more outsole members 1800 could substantially or entirely cover the base member 104 of the upper member 100 without departing from the invention. In the illustrated example, outsole members 1800 also cover (and optionally seal) the openings 114 in the base member 104 that receive the projections 1106 of the midsole 1100, as described above (see, for example,
The outsole member(s) 1800 may be applied to the midsole and upper member assembly 1400 in any desired manner without departing from the invention, including in conventional manners known in the art. For example, the outsole member(s) may be applied to all or a portion of the base member 104 and/or to other portions of the upper member 100 via primer, contact cement, other adhesives, stitching, via other mechanical connections, and/or in other conventional manners known to those skilled in the art.
In at least some example structures and processes according to this invention, at least one of the outsole member(s) 1800 further may include a heel member that functions as part of the outsole for the piece of footwear. Optionally, if desired, an entire outsole and heel member assembly may be attached to the midsole and upper member assembly 1400 (e.g., to the base member 104) as an integral unit.
As still another example, as illustrated in
Of course, the heel member 1900 may be of any suitable or desired design and construction without departing from the invention. For example, as illustrated in
As described above, the heel members 1900 and/or outsole members 1800 may be attached to an exterior surface of the upper member 100 such that the upper member 100 (and particularly the base portion 104 of the upper member 100) is sandwiched between the midsole and the heel member and/or the outsole member 1800. The major surface of the midsole faces major surfaces of the heel member 1900 and/or the outsole members 1800 with an intervening exterior surface 104 of the upper member 100 sandwiched therebetween. In this manner, the heel members 1900 and/or outsole members 1800 extend over and cover at least some portions of the exterior surface of the upper members 100 (e.g., the base member 104 surface of the upper member 100).
Aspects of the invention also relate to the final footwear products, as well as to the various intermediate products and assemblies used in making the footwear products, such as the various structures and assemblies produced during the various individual process steps described above in conjunction with
While specific processes and structures in accordance with the invention are described in detail above, those skilled in the art will appreciate that these disclosures merely constitute examples of processes and structures in accordance with this invention. The skilled artisan will appreciate that the various structures, materials, process steps, process conditions, and the like may vary widely without departing from the invention. Additionally, the skilled artisan will appreciate that variations in the process steps also may occur without departing from the invention. For example, specific steps described above may be omitted, changed, changed in order, and the like without departing from the invention. Also, additional steps may be included between the various steps described above without departing from aspects of this invention.
Various examples of the present invention have been described above, and it will be understood by those of ordinary skill that the present invention includes within its scope all combinations and subcombinations of these examples. Additionally, those skilled in the art will recognize that the above examples simply exemplify the invention. Various changes and modifications may be made without departing from the spirit and scope of the invention, as defined in the appended claims.
This application is a divisional of U.S. patent application Ser. No. 11/142,674, filed Jun. 2, 2005 which claims priority benefits based on U.S. Provisional Patent Application No. 60/651,495, filed Jun. 4, 2004. U.S. patent application Ser. No. 10/860,638 was assigned U.S. Provisional Patent Application No. 60/651,495 in response to a request to convert this originally non-provisional patent application to a provisional patent application. Each of U.S. patent application Ser. No. 11/142,674 and U.S. Provisional Patent Application No. 60/651,495 are entirely incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1565057 | Chappell | Dec 1925 | A |
1757594 | Shaw | May 1930 | A |
2175117 | Hack et al. | Oct 1939 | A |
2478411 | Martin | Aug 1949 | A |
2509423 | Cramer | May 1950 | A |
2563100 | Chandler | Aug 1951 | A |
3247536 | Rossitto et al. | Apr 1966 | A |
4098632 | Sprague, Jr. | Jul 1978 | A |
4420894 | Glassman | Dec 1983 | A |
4597125 | Jones, Jr. | Jul 1986 | A |
4742625 | Sydor et al. | May 1988 | A |
4760654 | Limbach | Aug 1988 | A |
5345638 | Nishida | Sep 1994 | A |
5410821 | Hilgendorf | May 1995 | A |
5682685 | Terlizzi | Nov 1997 | A |
5799417 | Burke et al. | Sep 1998 | A |
6023859 | Burke et al. | Feb 2000 | A |
6076284 | Terlizzi | Jun 2000 | A |
6226897 | Sand | May 2001 | B1 |
6634121 | Sordi | Oct 2003 | B2 |
6662469 | Belley et al. | Dec 2003 | B2 |
6823551 | Keidel et al. | Nov 2004 | B2 |
6915596 | Grove et al. | Jul 2005 | B2 |
6951066 | Snow | Oct 2005 | B2 |
7028422 | Lewis | Apr 2006 | B1 |
7325336 | Yamashita et al. | Feb 2008 | B2 |
7337558 | Terlizzi et al. | Mar 2008 | B2 |
7418793 | Dominguez et al. | Sep 2008 | B2 |
20020017036 | Berger et al. | Feb 2002 | A1 |
20040139629 | Wiener | Jul 2004 | A1 |
Number | Date | Country |
---|---|---|
1308103 | May 2003 | EP |
9199728412 | Feb 1997 | JP |
0182732 | Nov 2001 | WO |
2004008899 | Jan 2004 | WO |
Entry |
---|
International Search Report dated Mar. 31, 2006. |
European Search Report dated Nov. 15, 2011. |
Number | Date | Country | |
---|---|---|---|
20100050481 A1 | Mar 2010 | US |
Number | Date | Country | |
---|---|---|---|
60651495 | Jun 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11142674 | Jun 2005 | US |
Child | 12613644 | US |