Footwear structure and method of forming the same

Information

  • Patent Grant
  • 6701643
  • Patent Number
    6,701,643
  • Date Filed
    Tuesday, December 3, 2002
    22 years ago
  • Date Issued
    Tuesday, March 9, 2004
    20 years ago
Abstract
A footwear structure including an upper and a separate midsole having interlocking shank portions. The upper has an upward extending arc in the shank area which defines a shank interlock portion therein. The midsole has a corresponding arc which defines a shank interlock portion on a bottom surface thereof which mates with the arc in the upper for resisting motion of the midsole relative to the outsole in the case where the midsole is unsecured within the structure to allow for removal of the midsole. The structure may include an outsole having a shank interlock area that mates with the shank interlock of the midsole, with or without an upper disposed between the midsole and the outsole. The shank interlock areas may include a continuous arc or an abruptly changing arc, and the midsole may be removable or non-removable from the structure. A rigid shank insert may be provided between the midsole and outsole, and the midsole may include a variety of layers. The upper may include stretch zones and non-stretch zones to allow a single upper to be used with differently sized midsoles.
Description




FIELD OF THE INVENTION




The present invention relates in general to footwear structures and, more particularly, it relates to footwear structures having an interlock between an outsole and a midsole and improvements to footwear structure components.




BACKGROUND OF THE INVENTION




The ideal footwear design would incorporate the following essential features and characteristics: comfort, cushioning, shock absorption, stability, flexibility, support, good fit, and would also be lightweight. These features are achieved in, and are dependent upon, the structural and functional design elements of the footwear, which enhance the wearer's ability to perform various activities without pain or inconvenience.




To date, prior art footwear constructions have failed to successfully combine the essential features of an ideal design. Prior attempts to create the ideal footwear design have been unsuccessful largely because prior structures have emphasized one of the above-noted features to the detriment of others. Furthermore, prior attempts to construct an ideal footwear design have failed to consider the importance of other key features such as industrialized construction, style and fashion.




Prior art footwear constructions that provide cushioning generally have three or four separate parts. First, such conventional footwear designs are provided with an outsole. The outsole is made of a durable material that extends across the lower surface of the shoe and contacts the ground during use to provide traction. The outsole may also have integrally molded full or partial sidewalls extending upwardly around its periphery. Second, a midsole is permanently joined to the outsole on its interior upper surface and any abutting outsole interior sidewall surfaces to provide a cushioning layer within the footwear structure. In some cases the midsole and outsole material are formed as one component of similar or dissimilar materials. Third, an upper, usually formed of leather, synthetics or other materials, is joined to the top surface of the midsole and any abutting interior sidewall surfaces of the outsole and midsole which extend upwardly around the periphery of the upper. Fourth, in many prior art constructions, a thin cushioning insole is further provided for disposal between the top surface of the midsole and the wearer's foot.




The conventional footwear cushioning components and their positioning within the footwear structures of prior art constructions have several undesirable characteristics. For example, it is well known in the art that the cushioning properties of the materials used in footwear midsole and insole designs are substantially reduced after the footwear has been used for a period of time. In some instances, a substantial reduction in cushioning can occur in a relatively short period of time. The footwear midsole and insole components are typically made of various foam and rubber materials which are subjected to repeated application of impact forces and stress which cause compression set, degradation, and fatigue resulting in reduced resiliency and failed cushioning properties. The typical foam midsole and insole cushioning materials are various formulations of sheet stock or molded eva, polyethylene, and polyurethane. The typical rubber materials are latex and neoprene.




The midsoles in prior art footwear constructions have several undesirable characteristics. For example, the consumer at the point of purchase is unable to make an alternative choice in the cushioning characteristics of the midsole without selecting separate footwear designs. Also, the wearer is unable to replace the midsole component after it has degraded and lost its ability to provide adequate cushioning and support. In addition, the attachment of the midsole to other components in the footwear structure such as the top surface of the outsole, abutting outsole side wall interior surfaces, and to the formed upper negate the ability of the midsole component to adequately compress, deform, and rebound while providing maximum cushioning.




Another undesirable feature of prior art designs is that the ability of the footwear structure to provide maximum cushioning of the foot structures at the appropriate instant in the gait cycle is negated in prior footwear constructions by the positioning of semi-rigid and rigid structural elements in close proximity to the wearer's foot. The semi-rigid and rigid structural elements are typically positioned below the wearer's foot on the top surface of the midsole or slightly recessed into the top surface of the midsole. The typical semi-rigid and rigid structural elements are: shanks, shank stiffeners, lasting insoles, stabilizers, and fasteners. The shanks, shank stiffeners, lasting insoles, stabilizers, and fasteners are usually made of metals, fiber composites, thermoplastics, and fibrous paperboard. All of these semi-rigid and rigid structural elements negate the performance and cushioning ability of the midsole, and therefore negatively impact user comfort.




In some footwear constructions a lasting margin structure is formed by the combination of gathered upper materials and the adhesives used to attach the upper to the lasting insole or top surface of the midsole. This lasting margin structure extends around and projects inward from the periphery of the lasting insole or midsole to a distance of approximately 15.0 mm to 25.0 mm creating a semi-rigid border within the footwear structure. This formed structure also negates the performance and cushioning ability of the midsole, to the detriment of user comfort.




Furthermore, prior art midsoles have external surfaces, especially along the side portions thereof, which are exposed to environmental conditions such as heat, cold, water, ultraviolet rays, abrasion from rocks, sand, soil, punctures from sharp pointed objects, and cuts from sharp edged objects. The environmental conditions contribute to the failure of midsole component cushioning in two main ways: degradation of the midsole cushioning materials, and destruction of the means by which the midsole cushioning component is attached to the footwear structure. Another undesirable feature of prior art designs is that the thin cushioning insole which is positioned between the top surface of the lasting insole or midsole and the wearer's foot is typically too thin to provide optimal cushioning.




In an attempt to overcome some of the above-described deficiencies of prior art designs, some prior art constructions have incorporated custom or removable midsole inserts. These structures, however, remain encumbered by undesirable characteristics. One such structure is described in U.S. Pat. No. 4,881,328 (hereinafter “the '328 patent”) to Lin Yung-Mao. The '328 patent describes a structure with an outsole and a peripheral midsole. A midsole insert is disposed over the peripheral midsole with cushioning elements extending downward adjacent the outsole. Unfortunately, the midsole insert and cushion elements must conform to a matching lift height of the peripheral midsole member. The peripheral midsole member also provides the only method of retaining midsole insert and structural support for the peripheral area of the shoe. The upper must be attached to the top surface of the peripheral midsole member, and the bottom surface of the peripheral member is attached to the upper surface of the outsole. The midsole insert must have an outwardly projecting lip to cover the upper that is attached at the peripheral member. Thus, the method of construction is complex and inefficient, and does not provide for maximum full perimeter cushioning since the rigid peripheral member is in close proximity to the user's foot. The structure also has no means of providing for a midsole insert for a raised heel design typically found in dress, casual shoe, and boot constructions, and fails to provide air circulation within the structure.




Thus, a need exists in the art for an improved footwear structure that provides full perimeter maximum cushioning of the foot structures, support and stability for the foot structures, allows the positioning of semi-rigid and rigid structural elements away from the wearer's foot, and can provide maximum cushioning without the restrictions caused by attachment of the midsole to other components in the footwear structure. Further, a need exists for a removable or non-removable midsole that: can be selected according to the wearer's cushioning preference, can be selected according to the wearer's weight, can be selected according to various performance feature options, can provide air circulation within the footwear's interior environment, can be replaced after a substantial reduction and degradation of midsole cushioning occurs and can protect the midsole cushioning element from damage due to environmental conditions. A need also exists for a structure that allows for manufacturing efficiencies by facilitating use of differently sized midsoles with a single upper construction.




SUMMARY OF THE INVENTION




The footwear structure of the present invention is organized about the concept of providing an outsole and/or an upper having a shank interlock portion which mates with a corresponding shank interlock portion in a separate midsole. In one embodiment, the outsole and/or upper has an upward extending arc (either a continuous arc or an abruptly changing arc) in the shank area which defines the shank interlock portion therein. The midsole has a corresponding arc that defines the shank interlock portion on a bottom surface thereof which mates with the shank interlock in the outsole and/or upper.




Advantageously, the midsole may be permanently secured in the structure, or it may be left unsecured within the structure to allow for removal and replacement. In the case where the cushionability of the midsole degrades over time, the midsole may be removed and replaced to restore the overall comfort of the shoe. In addition, a semi-rigid or rigid shank insert, or a stabilizing material, may be provided between the midsole and the outsole, thereby removing rigid structural components from close proximity to a user's foot. Other advantageous features for providing air flow within the shoe, heel and forefoot cushioning, and manufacturability are also provided. For example, a stretch upper may be provided to allow use of a single upper with a variety of midsole configurations. Moreover, the midsole may be provided in multiple layers in embodiments that are useful with or without mating shank interlock areas.




In particular, a footwear structure according to one embodiment of the present invention includes a midsole, and an upper having a bottom portion positioned below the midsole. The bottom portion of the upper has a shank interlock portion interlocking with a corresponding shank interlock portion in the midsole. Interlocking of the shank interlock portions of the upper and the midsole resists motion of the midsole relative to the upper. The structure may also include an outsole with a shank interlock portion that mates with the shank interlock portions in the midsole and the upper, the bottom portion of the upper being disposed between the midsole and the outsole. The shank interlock portions may include a continuous arc or an abruptly changing arc.




The upper may be provided in a number of embodiments. The upper may be a molded upper integrally formed with the outsole, or may include a plurality of closure straps. The upper may also include a stretch zone that stretches to allow interlocking of the shank interlock portion of the upper with corresponding shank interlock portions of a plurality of differently sized ones of the midsoles. The upper may also include a removable bootie portion that is removable from a second portion, and the midsole may be disposed within the bootie. The upper may also include a molded receptacle, and a portion of the midsole may be disposed within the molded receptacle.




The midsole may be permanently affixed in the structure, or may be removable therefrom. The top surface of the midsole may be contoured to define a footbed generally conforming to the bottom of a person's foot, and may include an upwardly extending perimeter wall. The midsole may include a plurality of layers, with at least a first one of the layers being less firm than a second one of the layers. In one embodiment, the firmness of the midsole layers may decrease from a top layer of the midsole to a bottom layer of the midsole. A shank component and/or reinforcing layer may be disposed between the midsole and the outsole, and may include a shank interlock portion that mates with the shank interlock portions of the midsole, the upper, and the outsole. In another embodiment, the upper may not be disposed between the midsole and the outsole, e.g. the upper may be disposed on top of the midsole. In this embodiment a shank component and/or reinforcing layer may be disposed between the upper and the midsole with shank interlock portions of the shank, midsole, and outsole, in mating relationship. The shank component may extend along the full length of the midsole or any portion thereof, and may include perimeter, cupping walls for stabilizing the midsole.




One method of forming a footwear structure consistent with the invention includes: providing a last including a foot volume portion and a midsole volume portion, and having a shank interlock area; placing an upper on the last; securing an outsole to the upper, the outsole having a shank interlock portion mating with a shank interlock portion in the upper; removing the last from the upper to thereby leave a cavity in the upper, the cavity including a foot volume portion and a midsole volume portion in the upper; and inserting a midsole in the midsole volume portion of the cavity, the midsole having a shank interlock portion mating with the shank interlock portion in the upper.











BRIEF DESCRIPTION OF THE DRAWING




For a better understanding of the present invention, together with other objects, features and advantages, reference should be made to the following description of exemplary embodiments which should be read in conjunction with the following figures wherein like numerals represent like parts:





FIG. 1

is an isometric partial sectional view of a footwear structure according to the invention as fitted with a midsole therefor, with portions broken away to show interior structure;





FIG. 2

is a top isometric view of an exemplary embodiment of a midsole according to the invention;





FIG. 3

is a bottom isometric view of the midsole shown in

FIG. 2.

;





FIGS. 4A-4C

are transverse sectional views of the heel area, shank area and forefoot area of an exemplary midsole consistent with the invention;





FIGS. 5A-5B

are transverse sectional views of a heel area and shank area of another exemplary midsole consistent with the invention;





FIG. 6

is a longitudinal sectional view of an exemplary midsole consistent with the invention;





FIG. 7

is a longitudinal sectional view of another exemplary midsole consistent with the invention;





FIG. 8

is a longitudinal sectional view of an exemplary midsole consistent with the invention with an outer wall defining an inner cavity;





FIG. 9

is a longitudinal sectional view of a portion of a structure consistent with the invention wherein the midsole includes upper and lower portions;





FIG. 10

is a longitudinal sectional view of a portion of a structure consistent with the invention wherein the midsole includes top and bottom portions;





FIG. 11

is a longitudinal sectional view of a portion of another exemplary structure consistent with the invention wherein an upper is disposed between top and bottom portions of a midsole consistent with the invention;





FIG. 12

is a longitudinal sectional view of an exemplary midsole consistent with the invention wherein the midsole includes a bottom portion and an insert;





FIG. 13

is a longitudinal sectional view of a midsole consistent with the invention wherein the midsole includes a bottom portion and heel and forefoot inserts;





FIG. 14

is a longitudinal sectional view of a midsole consistent with the invention wherein the midsole comprises multiple layers;





FIG. 15

is a longitudinal sectional view of another midsole consistent with the invention wherein the midsole includes multiple layers;





FIG. 16

is a longitudinal sectional view of yet another multi-layered midsole consistent with the invention;





FIG. 17

is a longitudinal sectional view of a midsole consistent with the invention wherein a top layer includes an orthotic;





FIG. 18

is a longitudinal sectional view of yet another multi-layered midsole configuration consistent with the invention wherein an inner layer is a shock diffusion layer;





FIG. 19

is a longitudinal sectional view of the shock diffusion layer illustrated in

FIG. 18

;





FIG. 20

is a longitudinal sectional view of a midsole consistent with the invention wherein a layer of the midsole is provided in the form of a stabilizing component;





FIG. 21

is a transverse sectional view of the midsole illustrated in

FIG. 20

taken at the heel area;





FIG. 22

is a perspective view of a portion of the fins and ribs for a shank-stabilizing component as illustrated, for example, in

FIG. 20

;





FIG. 23

is a longitudinal sectional view of a midsole consistent with the invention wherein multiple layers include shank interlock portions;





FIG. 24

is a longitudinal sectional view of yet another multi-layered configuration consistent with the invention;





FIG. 25

is a longitudinal sectional view of a midsole consistent with the invention wherein top and bottom layers have substantially equal thickness at the forefoot and heel areas;





FIG. 26

is a longitudinal section taken substantially along line


26





26


of

FIG. 1

;





FIG. 26A

is a side view of an exemplary last useful in connection with an exemplary method of constructing a footwear structure consistent with the invention;





FIG. 27

is a longitudinal sectional view of a portion of a structure consistent with the invention wherein an outsole is provided in first and second distinct parts;





FIG. 28

is a longitudinal sectional view of a structure consistent with the invention with a skate chassis affixed thereto;





FIG. 29

is a longitudinal section taken substantially along line


26





26


of FIG.


1


and showing a rigid shank insert disposed between a midsole and an outsole according to the present invention;





FIG. 29A

is a longitudinal sectional view of a portion of a structure consistent with the invention and wherein the structure includes a stabilizing layer and a shank component;





FIG. 30

illustrates a side view of a midsole consistent with the invention with an exemplary shank component consistent with the invention wherein the shank component includes perimeter cupping walls for the midsole;





FIG. 31

is a perspective view of the exemplary shank component illustrated in

FIG. 30

;





FIG. 32

is a side view of another exemplary shank component consistent with the invention wherein the shank component includes a heel cutout portion;





FIG. 33

is a longitudinal sectional view of a portion of a footwear structure consistent with the invention including a shank component having a heel counter portion;





FIG. 34

is a longitudinal sectional view of a portion of a structure consistent with the invention wherein the shank component is disposed at the bottom of the structure between first and second outsole components;





FIG. 35

is a side view of a midsole consistent with the invention combined with a shank component consistent with the invention wherein the shank component is full length and includes flex notches in a forefoot area thereof;





FIG. 36

is a side view of an exemplary midsole and shank component combination consistent with the invention wherein the shank component includes sidewall portions of differing heights at the medial and lateral sides of the midsole;





FIG. 36A

is a perspective view of the shank component illustrated in

FIG. 36

;





FIG. 36B

is a partial bottom view of the midsole and shank component combination illustrated in

FIG. 36

;





FIG. 37

illustrates an exemplary heel counter consistent with the invention;





FIG. 38

illustrates another exemplary heel counter consistent with the invention;





FIG. 39

is a side view of a portion of a sandal construction consistent with the invention;





FIG. 40

is a side view of another exemplary sandal configuration consistent with the invention;





FIG. 41

is a side view of yet another sandal construction consistent with the present invention;





FIG. 42

is a longitudinal sectional view of an exemplary sandal configuration consistent with the invention;





FIG. 43

is a longitudinal sectional view of another sandal construction consistent with the present invention wherein a shank component is disposed beneath the midsole;





FIG. 44

is a longitudinal sectional view of a portion of a sandal construction consistent with the present invention wherein a shank component is disposed on the outsole;





FIG. 45

is a longitudinal sectional view of an exemplary structure consistent with the invention wherein a shank portion is disposed between a midsole and an outsole;





FIG. 46

is a longitudinal sectional view of an exemplary structure consistent with the present invention including a removable bootie portion with a midsole disposed therein;





FIG. 47

is a longitudinal sectional view of an exemplary construction consistent with the invention wherein a removable bootie is disposed on top of the midsole;





FIG. 47A

is a longitudinal sectional view of an exemplary construction consistent with the invention wherein an upper is disposed on top of a midsole with a portion of the midsole being exposed to the exterior of the construction.





FIG. 48

is a longitudinal sectional view of an exemplary construction consistent with the invention wherein the shank interlock portion of the midsole and outsole include abrupt changes;





FIG. 49

is a side view of an exemplary construction consistent with the invention including a molded receptacle for forming an abrupt change in the shank interlock area;





FIG. 50

is a longitudinal sectional view of an exemplary construction consistent with the invention wherein a molded shell for forming a shank interlock is combined with an outsole portion;





FIG. 51

is a longitudinal sectional view of a construction consistent with the invention wherein the molded shell portion is provided only in the heel area;





FIG. 52

is a partial sectional view illustrating the stitching of a non-molded upper to the molded shell portion illustrated in


51


;





FIG. 53

is a longitudinal sectional view illustrating an exemplary embodiment wherein an upper is formed with a lasting insole having an abrupt shank interlock area;





FIG. 54

is a bottom plan view of a sheet from which a lasting insole as illustrated in

FIG. 53

may be constructed;





FIG. 55

is a perspective view of an exemplary lasting insole including an abrupt change consistent with the invention;





FIG. 56

is a perspective view of another exemplary embodiment of a lasting insole having an abrupt change consistent with the present invention;





FIG. 57

is a perspective plan view of an upper including an exemplary lasting insole having an abrupt change consistent with the invention;





FIG. 58

is a longitudinal sectional view of a portion of an exemplary construction consistent with the invention including abrupt shank interlock portions and including a shank component disposed between a midsole and an upper;





FIG. 59

is a longitudinal sectional view of a portion of a structure consistent with the invention including abruptly changing shank interlock portions and a shank component disposed between an outsole and an upper;





FIG. 60

is a longitudinal sectional view of an exemplary embodiment consistent with the invention wherein the interlock portions include an interlock step;





FIG. 61

is a longitudinal sectional view of a portion of a structure consistent with the invention wherein an interlock step is provided between an upper and a midsole;





FIG. 62

is a longitudinal sectional view of a portion of a structure consistent with the invention including a stretch upper, a shank component, and midsole consistent with the invention;





FIG. 63

is a transverse sectional view of the embodiment illustrated in

FIG. 62

taken at the heel area;





FIG. 64

is a side view of a stretch upper consistent with the invention including outsole treads defining anchor zones and stretch zones;





FIG. 65

is a bottom view of the exemplary embodiment illustrated in

FIG. 64

;





FIG. 66

is a side view of another exemplary embodiment consistent with the invention wherein a stretch upper is combined with a midfoot support;





FIG. 67

is a side view of the midfoot support illustrated in

FIG. 66

;





FIG. 68

is a side view of a portion of an exemplary construction consistent with the invention including anchor zones, stretch zones and straps for facilitating closure of the upper;





FIG. 69

is a side view of an exemplary construction consistent with the invention wherein anchor zones are provided by securing non-stretch material to portions of the upper;





FIG. 70

is a side view of a portion of a structure consistent with the invention wherein anchor zones are defined in thin strips in areas of the upper;





FIG. 71

is a bottom view of the exemplary embodiment illustrated in

FIG. 70

;





FIG. 72

is a side view of a portion of an exemplary construction consistent with the invention including expansion joints disposed between areas of non-stretch material and expansion treads on the outsole;





FIG. 72A

illustrates an exemplary construction of an expansion joint consistent with the invention;





FIG. 73

illustrates an exemplary construction of an expansion tread consistent with the invention;





FIG. 74

is a side view of a stretch upper consistent with the invention including an anchor zone formed on the entire bottom surface of the upper;





FIG. 75

is a side view of a portion of a structure consistent with the invention including a stretch outsole;





FIG. 76

is a bottom view of the exemplary outsole illustrated in

FIG. 75

;





FIG. 77

is a bottom view of an alternative stretch outsole consistent with the present invention; and





FIG. 78

is a longitudinal sectional view of an exemplary construction consistent with the invention wherein an anchor zone is defined by a non-stretch shank component in the interlock area of an upper including an abruptly changing shank.











DETAILED DESCRIPTION




Referring first to

FIG. 1

, an isometric view of an exemplary shoe construction according to the invention is shown. An exemplary midsole consistent with the invention is indicated generally at


10


. Midsole


10


is shown as combined with an outsole


14


and an upper


30


to form a footwear structure


12


according to the invention. While the upper


30


of the illustrated footwear structure


12


is shown in only outline form, it is to be understood that the invention can be employed in many types of athletic and non-athletic footwear structures such as walking shoes, running shoes, aerobic shoes, casual shoes, boots, ice skates, in-line skates, ski boots, specialty footwear, orthopedic or prescription footwear, etc. Those skilled in the art will recognize that any upper construction could be used with corresponding changes in the outsole design depending on the desired application. Also, a separate upper may not be provided in the case of a molded construction wherein the outsole and the exterior surface of the structure are formed as a unitary member. In such a molded construction, the upper would be integral with the outsole. The invention thus has application in any circumstance where a removable or non-removable midsole with varying cushioning characteristics is desired or useful. Several advantages are also achieved relative to the adaptation of biomechanically and anatomically designed and engineered performance and comfort features.




Outsole


14


generally forms the wearing surface of the shoe or footwear structure. Outsole


14


may be constructed of a relatively durable, resilient material such as rubber, and may have an exterior surface that is provided with a suitable tread surface


16


. Depending on the intended purpose of the structure, the outsole may be formed of a rigid or semi-rigid material, as used, for example, in ski boots, ice skates or in-line skates. The term “outsole” shall refer generally to the structural component that includes the bottom exterior surface


101


of the footwear structure. The outsole may be a unitary member having upwardly extending walls that define the upper, e.g. as in a rubber boot, molded in-line skate, ski boot, etc., or the outsole may have a separate upper


30


secured thereto for forming a portion of the exterior surface of the structure. Also, the bottom surface


101


may include a tread surface


16


, or may have another element attached thereto, e.g. a skate blade, rollers etc. For example, a skate blade or skate chassis may have peripheral walls that would also attach to the outsole or upper.




Advantageously, a shank interlock portion


24


may be formed in the outsole for forming a mating interlock with the midsole, as will be described in detail below. The top interior surface


18


of the outsole in the shank interlock portion arcs upwardly in the shank area from the forefoot area


21


and arcs downwardly from the middle of the shank area to the heel area


22


. In the illustrated embodiment, the arc of the top surface


18


in the shank interlock portion is continuous. It is possible, however, to form the arched shank interlock in a discontinuous fashion by providing discrete portions having top surfaces that form an arched plane on the top surface


18


. It is also possible to form the shank interlock portion in a non-uniform or abrupt arched shape, and to provide an arch in the top surface that extends laterally across the shank interlock portion. From a manufacturing standpoint, however, it is advantageous that the top interior surface


18


in the arched shank interlock portion of the outsole be in the form of a gradual and continuous arc from the forefoot area toward the heel, as shown. Those skilled in the art will recognize that the length of the shank interlock portion may vary with the particular size, function, style, etc. of the structure.




On the bottom exterior surface


101


of the outsole in the illustrated embodiment, the interlock section separates and defines the forefoot area


21


and the heel area


22


. In the case where a flat bottomed structure with no defined heel is desired, the bottom surface


101


of the outsole in the shank interlock area


24


may be flat, i.e. following dashed line


102


, or partially flat, e.g. with a “fiddle shank”, instead of concave as shown. In an embodiment wherein all or part of the bottom surface is flat, the arched shank interlock


24


would remain in the top surface


18


of the outsole.




In the illustrated embodiment, the peripheral wall or member


20


projects upwardly from the top surface


18


and extends completely around the periphery of outsole


14


. While the illustrated peripheral member


20


is endless, this need not necessarily be the case. Member


20


can for example take the form of several sections spaced around the periphery of the shoe, or the member could have varying and undulating heights as it wraps around the periphery of the shoe. It could also be formed as a separate component and secured, e.g. by adhesive, to the upper surface


18


of the outsole. The peripheral wall may also be omitted from the construction. As discussed above, the peripheral wall


20


could extend upwardly to define an integral upper and the entire exterior surface of the structure. The exterior surface of the outsole would thus include a base portion, e.g. including a tread, skate chassis, etc., and a portion defining the upper. This would occur, for example, in molded construction such as a ski boot, molded skate, etc.




In a non-molded construction, however, the structure


12


further comprises a separate upper


30


that is secured to the outsole to form the exterior surface of the structure and at least a portion of the foot cavity in combination with the outsole. While the illustrated upper is shown only in the outline form, those skilled in the art can readily choose an appropriate upper depending on intended use and/or aesthetics. The upper can be fashioned of leather, cloth, synthetic materials or a combination of these. The upper may also include separate molded textile, molded foam, or molded plastic components, which are joined together. In addition, although the illustrated upper


30


is shown as only a single layer of material, those skilled in the art will recognize that multiple materials could be combined in the upper to provide water proofing, moisture management, wicking, quick drying, temperature regulation, warmth, support, physical protection for the foot, etc., as exist, for example, in GORE-TEX expanded polytetrafluoroethylene material or SYMPATEX vapor-permeable membrane waterproof boot-type constructions.




The multiple layers of the upper may be secured to one another or may be configured as removable elements, e.g. in a removable bootie-type construction. Also, various features may be added to the upper and/or outsole for aesthetic appeal. For example, the upper and/or portions thereof, e.g., removable bootie portions, may include windows or holes therethrough, perforations, or could be constructed of mesh or net-like material. A window or windows may be provided in the upper or outsole, for example, to allow viewing of the midsole. In an exemplary embodiment, upper


30


has an exterior surface


36


with a bottom exterior surface


32


and an interior surface


34


with a bottom interior surface


38


. The bottom exterior surface


32


may be attached to the outsole top surface


18


by a known adhesive or by molding the outsole directly to the upper by direct injection. Exterior upper surface


36


adjacent the sidewall surface


33


is also attached to interior sidewall surface


33


(

FIG. 26

) of peripheral member


20


. It is possible, however, that the bottom of the upper could be removed or cut out. In this case, the upper may be secured to the outsole by attaching exterior surface


36


to the interior sidewall surface


33


, or by attaching the interior surface


34


to the exterior sidewall surface


35


. In the illustrated embodiment, however, the interior surface


34


, including interior bottom surface


38


, at least partially forms the central receptacle or cavity


26


that is dimensioned for receiving midsole


10


and a user's foot of a particular size.




Midsole


10


may include a midsole bottom surface


40


having a plurality of integrally formed channels


42


surrounding a plurality of integrally formed cushion pads


44


. A plurality of thru holes


46


may extend upward from the channels


42


to the midsole top surface


58


primarily in the forefoot area


50


of the midsole. The holes


46


could also be formed throughout the entire length of the midsole or any portion thereof. As shown in

FIG. 26

, midsole


10


may be dimensioned to occupy substantially the entire receptacle


26


.




In the illustrated embodiment, when insert


10


is inserted into receptacle


26


, the midsole bottom


40


is in contact with upper bottom interior surface


38


and the midsole sidewall


54


is positioned adjacent the interior upper surface


34


. The shank area interlock portion


52


(

FIG. 2

) of the insert


10


contacts the interior upper surface


38


and mates with the corresponding shank interlock portion


24


of the outsole. In the case where the upper is formed without a bottom surface (not shown), the bottom surface of the midsole would directly contact the upper interior surface


18


of the outsole.




In the illustrated embodiment, however, the midsole is disposed above the outsole so that the bottom surface


40


in the shank interlock area


52


of the midsole interlocks with the arched top interior surface


18


in the shank interlock area


24


of the outsole. In the case where another structure, e.g. a shank component, reinforcing layer, or bottom surface of an upper, is disposed between the midsole and the outsole, the midsole remains disposed above the outsole so that the shank interlock portions thereof mate or interlock, even though no direct contact may be made between the midsole and the outsole. Also, where the interior surface


18


in the arched shank interlock portion of the outsole is formed in a discontinuous manner, bottom surface


40


in the arched shank interlock portion of the midsole may have a corresponding portion which interlocks with the discontinuity in the surface


18


in the outsole. This could provide additional interlocking between the outsole and midsole, but would increase the cost of manufacture for the structure.




In an embodiment wherein the outsole is formed with peripheral sidewalls


20


that extend above the height of the midsole e.g., in a molded shoe or boot design, the midsole bottom surface could be directly disposed against the outsole upper surface or some intervening layer could be placed between the outsole and the midsole. Also, the midsole sidewall


54


would be disposed adjacent the outsole peripheral sidewall.




A covering material


62


, which may be formed of a polyester/nylon material, leather, or a variety of other materials, or combinations thereof, known to those skilled in the art, may be joined by gluing or molding to the upper midsole surface


58


to provide a buffer between the midsole and a user's foot. For example, the covering material or materials may provide anti-microbial, temperature regulation, and/or moisture management (e.g., including wicking, quick drying, or low water absorption features) features. Advantageously, therefore, the structure does not require any additional insole or sock liner placed on top of the midsole to be suitable for wearing, although such items may be provided. As shown, the covering material


62


may extend in both longitudinal and latitudinal directions to the midsole sidewall


54


without interruption. The covering material may also extend from the top surface to the bottom of the midsole sidewall surface or the material may fully wrap and extend all around the entire midsole component. Those skilled in the art will recognize that additional functional layers, e.g., for shock absorption or shock diffusion, may also be provided at the midsole top surface in close proximity to the foot.




Referring now to

FIGS. 2 & 3

, midsole


10


may have a bottom surface


40


and an anatomically contoured or custom contoured top surface


58


. The bottom surface


40


may be provided with a plurality of integrally formed channels


42


surrounding a plurality of integrally formed cushion pads


44


. In the illustrated embodiment, a plurality of thru holes


46


may extend from the channels


42


to the midsole top surface


58


primarily in the forefoot area


50


. Corresponding holes


63


may pass through the covering material


62


.




In the illustrated embodiment, cushioning pads


44


take the form of geometric raised shapes surrounded by the channels


42


. The combination of cushioning pads


44


, channels


42


, and thru holes


46


provides independent multi-point cushioning and ambient airflow circulation. This is because cushioning pads


44


will compress independently of each other, and at the same time force the ambient air that is located in the air channels


42


that surround the cushioning pads


44


to move within and around the channels


42


and up through the thru holes


46


. The plurality of cushioning pads


44


are generally of the same depth.




An outwardly projecting bead may be advantageously located at the bottom of a removable midsole of this invention as an additional means of removably securing the midsole within the upper structure. The bead may extend partially or fully around the perimeter of the midsole. The bead interlocks with a corresponding inwardly projecting mating surface in the interior sidewall portion of an upper, outer midsole, or an outsole to form an interlocking which helps to keep the midsole in its proper position. The midsole may be readily engaged and disengaged within the footwear structure with this bead interlock feature. It may be advantageous for example to provide this interlocking feature in the toe area of an open toed sandal structure which has a removable midsole. This feature could also be included in any application where an additional means of removably securing the removable midsole to an upper, outer midsole, or outsole structure is desired. The bead interlock is advantageously formed with a radius on each mating surface although a variety of shapes suitable for interlocking may be used.




A plurality of flex notches


48


are located on both the lateral and medial sides of insert


10


in the forefoot area


50


intersecting the midsole bottom


40


and the peripheral wall


54


. Flex grooves of varying depths and/or shapes may also be placed in locations on the bottom of the midsole. Deep flex grooves may be positioned behind outside of the range where a wearer's metatarsal heads are likely to fall to provide flexibility while supporting the metatarsal heads. Channels


42


separate the flex notches and extend in the peripheral wall


54


. Channels


42


could also continue through the peripheral wall and extend into and through the top surface of the midsole. Thus, the channels


42


could pass fully or partially around the midsole to provide up to 360 degrees of air circulation.




In the shank interlock area


52


, portions


41


,


43


,


45


, of the formed air channels


42


continue running in a longitudinal direction toward and may intersect a domed cylindrical heel cavity


56


formed in the bottom surface


40


of the midsole. The heel cavity


56


allows the molded midsole to compress and move the ambient air within the cavity to flow thru the channels


42


and thru holes


46


when the foot structure bears weight upon the heel area


60


. Thus, improved airflow through the midsole is achieved. Further, the heel cavity provides additional cushioning ability because the geometry provides a collapsing/rebounding dome type structure.




Since the midsole bottom surface


40


is, in the illustrated exemplary embodiment, in direct contact with the bottom interior surface


38


of the upper, the midsole bottom surface


40


is provided with a radiused edge


110


at the transition between the heel


60


and the shank interlock portion


52


and a radiused edge


111


at the transition between the forefoot area


50


and the shank interlock portion


52


. A radiused or beveled edge


112


may be formed at the transition between the bottom surface


40


and the peripheral wall


54


. The radiused edges on the bottom surface


40


prolong the life of the structure by minimizing the possibility that the midsole will tear the upper during use.





FIGS. 4A-4C

illustrate cross-sectional views of an exemplary midsole consistent with the invention. As shown in

FIG. 4A

, the heel area


60




a


may include a flat or contoured top portion


92




a


and radiused sidewall portions


54




a


. The forefoot area


50




a


may include radiused flat or contoured top


400


and bottom


40




a


surfaces, as illustrated in

FIG. 4C

, and the shank area


52




a


may include a radiused bottom surface


40




a


and a top surface


402


including a medial sidewall


404


that extends upwardly higher than a lateral sidewall


406


to provide arch support. Exemplary alternative embodiments of a heel


60




b


and shank


52




b


areas are illustrated in

FIGS. 5A and 5B

, wherein the midsole perimeter walls


53


of the heel in FIG.


5


A and the shank in

FIG. 5B

provide cupping of the wearer's foot, and the bottom side surfaces of the walls


54




b


are inwardly radiused.




Those skilled in the art will recognize that the thickness and shape of the midsole may vary greatly and be modified to accommodate desired function and style. For example, the heel may have a bevel or may be radiused to lessen the impact of the ground reaction forces on the footwear structure during heel strike. The degree of bevel or size of the radius may vary greatly depending on the desired function and style. For example, the heel may include a variety of regular or irregular geometric shapes on the bottom thereof, which may mate with a similar shape in an adjacent element, e.g. an upper, midsole, shank component, reinforcing layer, etc. Also, it is to be understood that the relative thickness of the midsole in the forefoot and heel areas may vary depending on the intended application of the structure. For example, the forefoot area may have greater thickness than the heel area where increased cushioning is desired at the forefoot. Also, the forefoot and heel areas may be of similar thickness.




As shown particularly in

FIG. 2

, the top or upper surface


58


of the midsole may have a smooth contour which generally matches the bottom contours of a human foot, thereby providing comfort and stability for a user. Thus, the top surface of the midsole may have a slight concavity in the forefoot area


50


. From the forefoot area to the heel area


60


, the perimeter


90


of the midsole gradually increases relative to the center


92


in order to provide support and stability to a wearer's foot. The perimeter


90


may, however, extend above the center


92


of the midsole around all or part of periphery of the midsole in a continuous or discontinuous fashion. For example, in the exemplary embodiment illustrated in

FIG. 6

, the perimeter wall


602


of the midsole


600


extends around the entire periphery to provide full cupping of a wearer's foot. The height of the perimeter wall may vary. The perimeter wall cups the foot and provides a better fit thereby reducing foot movement in the footwear which reduces heat in the footwear as movement creates friction which creates heat. The perimeter wall may extend upward and form an integral heel counter in the heel area of the midsole and/or an integral toe cap in the toe area of the midsole. A separate heel counter component and toe cap component may also be removably or non-removably secured to the midsole. The midsole perimeter cupping walls may be formed of a distinctly different material than the rest of the midsole. For example, the perimeter cupping walls could be formed of a relatively soft cushioning material or a conformable material that adapts to the contours of the wearers foot or a firmer material that provides stability and support to the foot.




To provide flexibility in the forefoot area


604


of an embodiment such as that illustrated in

FIG. 6

, flex notches


606


may be provided in the forefoot area as shown. Another alternative is illustrated in

FIG. 7

, wherein the perimeter wall


704


extends fully around the midsole


700


, but is lower in the forefoot area


702


to provide flex. In one embodiment, the wall


704


may be higher on the medial side of the midsole, as indicated by dashed line


706


, to provide arch support. A wide variety of additional perimeter wall variations are possible.




Advantageously, the midsole top surface can be designed to generally follow standard foot contours, or custom designed or contoured for a specific user. The midsole according to the present invention can, therefore, eliminate the need for a separate orthotic insert since contours that would be provided by an orthotic may be formed into the midsole.




In one embodiment, the midsole tapers in thickness from about 0.375″ at the toe to about 0.75″ at the ball to provide toe spring. The midsole is about 1.25″ in thickness at the center of the heel area to provide heel lift. The perimeter


90


extends about 0.75″ above the center


92


of the heel area, and the cushioning pads


44


and channels


42


are about 0.125″ in depth relative to the bottom surface. The thru holes are about 0.0625″ in diameter. Obviously, however, the dimensions set forth above are for but one embodiment of a structure consistent with the invention and may be changed based on desired comfort level, intended use, cost concerns, etc.




A midsole consistent with the invention may thus be provided in a variety of configurations. For example, in

FIG. 8

, there is illustrated an exemplary embodiment wherein the midsole


806


includes an exterior wall


800


that defines an internal cavity


802


. The external wall


800


may be formed in one piece by blow molding or rotational molding. The external wall may also be formed by joining multiple separate parts. The multiple separate parts may be thermoformed, injection molded, etc. The external wall may also be formed by securing two or more wall pieces together, e.g. by RF heat sealing or welding of urethane or other films. The footbed surface


801


may be provided with anatomical contours and/or cupping walls. Flex grooves


804


may be molded into the forefoot area


808


at the bottom of the midsole, as shown, to allow flexing of the forefoot. Air channels may be molded into the bottom and around the sidewall. Advantageously, the interior cavity


802


defined by the walls may be inflated with a fluid such as a gel, or a gas. Multiple chambers may be provided within the internal cavity, and each of the chambers may be separately inflated. The resulting structure would be lightweight and could be inflated to provide a wide range of cushioning characteristics.




The midsole may also be formed in multiple separate parts. In

FIG. 9

for example, there is shown an exemplary embodiment wherein the midsole


904


includes an outer shell portion


900


and an inner portion


902


. The outer shell and/or inner portion may be removable from each other or the structure, or either may be fixed in the structure. Both the outer shell and inner portion include shank interlock areas


908


,


906


, respectively, to allow interlocking of the inner portion and outer portion and to allow interlocking of the outer shell with other elements in a footwear structure, e.g. the outsole


910


, upper, shank component, etc. The inner portion may be received entirely within the outer portion or may extend upwardly from the sidewalls of the outer portion and have portions that rest on the top surface of the outer portion. The inner portion may also extend beyond the bottom of the outer portion through an opening or openings in the bottom portion. Anatomical contours may be provided on the footbed surface of the inner portion and/or on the footbed surface of the outer portion.




Advantageously, the outer shell portion


900


may be formed of a relatively firm material compared to the inner portion. The inner portion


902


may be homogenously formed from a cushioning material, or may configured as a fluid, gas, or gel filled bladder or series of bladders. The inner portion


902


may also be configured to include conventional orthopedic or prescription components, or a conventional cooling or warming pack, e.g. for therapeutic applications or cold or warm weather applications. The inner portion may include other components such as electronic components, survival information or components, keys, etc. Areas of differing firmness may also be provided in the inner portion for particular functions such as anti-pronation, anti-supination, etc. Conventional orthopedic or prescription components, or a conventional cooling or warming pack, e.g. for therapeutic applications or cold or warm weather applications, electronic components, survival information or components, keys, etc. may be included within any midsole of this invention. Some of the ways that these items may be incorporated into the midsoles may be in the form of separate or molded-in compartments or inserts, or integrated within midsole layers.




Another exemplary configuration is illustrated in

FIG. 10

, wherein the midsole


1004


includes separate upper


1000


and lower


1002


portions. As shown, the upper portion may be disposed on top of the lower portion with mating shank interlock areas. The upper and/or lower portions may be removable from the structure, or either may be permanently secured thereto. Elements of the footwear structure may be disposed between the upper and lower portions. In

FIG. 11

, for example, an upper


1100


(molded or non-molded) may extend between upper


1102


and lower


1104


midsole portions, with shank interlock areas of the upper midsole portion, the upper, and the lower midsole portion in mating/interlocking orientation. In the illustrated embodiment, no shank interlock is provided in the outsole


1106


, although it could be provided if a defined heel was desired in the outsole. As with the embodiment illustrated in

FIG. 10

, the upper and lower portions may be formed of different materials to provide cushioning or support as desired.




As illustrated in

FIGS. 12-13

, a midsole consistent with the invention may also include a base portion that defines the bottom of the midsole and at least a portion of the top surface of the midsole and a non-interlocking insert portion that does not include a shank interlock that mates with the shank interlock in the base portion. In

FIG. 12

, for example, the non-interlocking insert


1200


may be removably or non-removably disposed in an associated receptacle


1202


in the base portion


1204


defined by the upwardly extending side walls


1206


of the base portion. The insert may be removably secured to the receptacle by for example VELCRO brand hook and loop fasteners. Other midsole layers consistent with the invention may also be secured to adjacent layers in this manner.




In

FIG. 13

, multiple non-interlocking inserts, e.g., a forefoot insert


1300


and a heel insert


1302


, are received in separate associated receptacles


1304


,


1306


in the base portion


1308


. Differences in the materials between the base portion and the inserts can provide desired cushioning and/or support features. Also, those skilled in the art will recognize, that any number of non-interlocking inserts may be provided in the midsole, and the inserts may be positioned at any location, e.g., heel, shank, and forefoot areas, or combination of locations.




Yet another advantageous feature of a midsole consistent with the present invention is that it may be constructed with layers of varying rigidity/cushioning characteristics. Each layer may be formed homogeneously from a rigid, semi-rigid, or cushioning material or may be constructed from fluid, such as a gel, or gas-filled bladders. The layers may also include insulating materials. In

FIG. 14

, for example, there is illustrated an exemplary embodiment


1400


wherein a rigid or semi-rigid layer


1402


is disposed on a top surface


1404


of a relatively softer or cushioning layer to define at least a portion of the midsole footbed. As shown, the rigid layer


1402


may extend along a portion of the top surface, e.g., about three-quarters of the length of the midsole from the heel to a point


1406


at approximately the ball of the foot, or along the entire length of the top surface as indicated by dashed line


1408


.




As with all the exemplary illustrated embodiments provided herein, the shape and dimension of the midsole


1400


illustrated in

FIG. 14

is provided only by way of illustration, and not of limitation. For example, the illustrated midsole can be provided with a variety of contours, with non-interlocking inserts, flex notches, flex grooves, air channels, etc. with an abrupt heel as indicated by dashed line


1410


and described in more detail below. In addition, it will be recognized by those skilled in the art that various features of a midsole consistent with the invention have utility outside of removable or interlocking embodiments, and may be incorporated into midsoles having conventional bottom surfaces, as indicated, for example, by dashed line


1412


.




In

FIG. 15

, there is illustrated another exemplary midsole embodiment


1500


wherein the midsole includes a bottom cushioning layer


1502


, a middle semi-rigid or rigid shock diffusion layer


1504


disposed on the top of the bottom layer, and a cushioning layer


1506


disposed on top of the semi-rigid shock diffusion layer. Anatomical footbed contours, perimeter cupping walls, and/or one or more top covering layers


1508


may be provided on top of the top layer, as is the case with any midsole embodiment consistent with the invention. The semi-rigid layer


1504


may extend along a portion of the length of the midsole, or along the entire length of the midsole, as indicated by dashed line


1510


. The individual layers may be permanently secured to one another, or may be removable from one another to allow tuning of the midsole cushioning/support characteristics through selection of the properties and/or dimensions of the individual layers.




Advantageously, layering of the midsole also allows for selection of the features of the individual layers to achieve desired functional or stylistic characteristics. Also, midsole layering may be used to vary the midsole size. For example, a midsole for a “D” width structure may be converted to a midsole for an “E” width structure by removing a ⅛″ thick layer or ⅛″ of material from a layer. The removal of thickness from the midsole increases the foot volume portion of the cavity in the upper. Alternatively, adding material thickness to a layer or adding a layer of thickness decreases the foot volume portion of the cavity in the upper that creates a smaller size. For example, adding a ⅛″ layer may convert a midsole with a “D” width structure to a midsole for a “C” width structure. Length and width adjustments may also be achieved by removing layers of material to change the perimeter wall height and thickness. Removing material from the inside foot interfacing portion of the perimeter wall increases the foot volume cavity in the upper and adding material to the foot interfacing portion of the perimeter wall decreases the foot volume cavity in the upper. This feature is advantageous in the construction of footwear structures wherein midsoles of varying size are desired, e.g., in connection with a stretch upper configuration described herein below, or in a shoe or boot of a particular size.




Another exemplary layered embodiment is illustrated in

FIG. 16

, wherein a midsole


1600


is provided with a top semi-rigid or rigid layer


1602


, a middle layer


1604


that is less rigid than the top layer, and a bottom cushioning layer


1606


that is less rigid than the middle layer. The top rigid layer


1602


may extend only partially along the midsole or could extend along the entire length as indicated by dashed line


1608


. By providing the layers as removable separate layers, the cushioning features of the layers may be modified or interchanged as desired. For example, the top layer could be provided as a cushioning layer, and the bottom layer could be provided as a rigid layer. Alternatively, the top layer


1700


may be provided in the form of an orthotic and the middle layer


1702


may include a cupping wall


1704


in which the orthotic is received and stabilized, as illustrated for example in FIG.


17


. The middle layer


1702


may be provided in the form of relatively soft cushioning materials or semi-rigid or rigid materials. In the illustrated embodiment, the orthotic extends along only a portion of the midsole, but it could be configured in a full-length embodiment. Of course, the individual layers may also be secured together, e.g. using an adhesive, to prevent removal and/or replacement





FIG. 18

illustrates another exemplary embodiment


1800


of a layered midsole wherein the middle layer includes a shock diffusion plate. In this embodiment, the top


1802


and bottom


1804


layers may be relatively soft cushioning layers, whereas the middle layer


1806


is a relatively rigid/semi-rigid plate for providing reduced pressure under a foot, i.e., shock diffusion. As shown in

FIG. 19

, the plate


1806


may include a first planar portion


1900


extending about three-quarters of the length of the midsole


1800


from the heel to the forefoot and a forefoot portion


1902


including a plurality of pressure distribution bars


1904


. The forefoot portion


1902


may be constructed as a separate portion that is joined to the planar portion at a lap joint


1906


. The pressure distribution bars


1904


are joined together, and may extend laterally across the entire forefoot area. Advantageously, the pressure distribution bars allow the flexing of the forefoot while providing a rigid/semi-rigid layer for shock diffusion. Full or partial perimeter side cupping walls and stabilizing fins (not shown) may also be provided on the plate for stabilizing the layers thereabove.




As shown, separate relatively soft shock absorption plates


1808


,


1810


may also be provided on the bottom of the bottom portion in the forefoot and heel areas. The plates may be constructed from a variety of materials including foam, or fluid (e.g. gel) or gas filled chambers. In one embodiment, the heel plate


1810


may be configured to provide increased shock absorption at the lateral heel strike area while allowing full support and anti-pronation characteristics at the medial heel strike area. In the illustrated embodiment, the plates are shown having consistent thickness throughout their length. It is to be understood, however, that the thickness of the plates may vary depending on the desired shock absorption and support characteristics. The separate heel plates


1808


,


1810


may also be replaced by a full-length plate as indicated by the dashed line


1812


, and may be contained within the midsole.




Turning to

FIGS. 20-22

, a middle midsole layer may also be provided in the form of a rigid/semi-rigid stabilizing component


2000


. As shown in FIG.


20


and in cross-sectional view in

FIG. 21

, the stabilizing component may have a heel and shank portion with perimeter walls


2002


extending upward against the top layer


2004


and downward against the midsole bottom layer


2206


. In an alternative embodiment, the fins may extend only upward in one area and only downward in another area. The stabilizing component


2000


may also include a forefoot portion


2008


having stabilizing fins


2010


that extend upward against the top layer


2004


and downward against the bottom layer


2006


. Fins


2010


on opposite sides of the midsole may be interconnected by bars


2200


that extend across the forefoot to provide stability between the bars and fins, as illustrated particularly in FIG.


22


. The bars could also extend across any portion of the stabilizing component depending on the intended function. The bars may be positioned on the top and/or bottom surface of the stabilizing components. The height and thickness of the bars may vary greatly depending on the application. The thickness and heights of the entire stabilizing component can be adjusted to suit a particular application/function. In another embodiment just the bars extending across the part may be incorporated in the stabilizing component. The area between the fins and bars allows flexibility. The flexibility in this area may be further increased by the addition of flex grooves in the stabilizing component. Advantageously, the stabilizing component allows flexibility of the forefoot area while providing stabilization of the top layer


2004


relative to the bottom layer


2006


.




Each midsole layer may be integrally formed as a unitary structure or may include multiple separate components. Also, one or more of the separate midsole layers may also be provided with shank interlock portions to provide interlocking layers relative to other layers. In

FIG. 23

, for example, there is illustrated a midsole


2300


including a top cushioning layer


2302


having a shank interlock area, a shock diffusion plate


2304


, e.g. constructed as illustrated in

FIG. 19

, including a shank interlock area, and a bottom cushioning layer


2306


that is softer than the top layer. The shank interlock areas of the top, middle, and bottom layers interlock to resist relative motion therebetween.





FIG. 24

illustrates another exemplary midsole embodiment


2400


including multiple interlocking layers. As with the other embodiments illustrated herein, the layers of the midsole


2400


may be increasingly rigid from the top or footbed surface of the midsole to the bottom of the midsole. Also, any number of layers may be provided. In the illustrated embodiment, a first full-length soft cushioning layer


2402


may be provided at the bottom of the midsole, a second more rigid layer


2404


including a shank interlock may be disposed on the first layer, a third layer


2406


having a shank interlock area and being more rigid than the second layer is disposed on the second layer, and a fourth full-length or partial length (e.g. ¾ length) rigid/semi-rigid layer


2408


being firmer than the third layer may be provided at the top surface. Top covering or cushioning layers, as described above, may be provided on the top midsole layer. The shank interlock areas of the layers may interlock, as shown, to resist relative movement.




In yet another exemplary embodiment


2502


illustrated in

FIG. 25

, a middle full or partial length semi-rigid or rigid shock diffusion element/layer


2500


may be disposed between top


2506


and bottom


2504


cushioning elements. As shown, all the layers may include interlock portions. Also, the middle layer may separate the top


2506


and bottom


2504


layers so that the thickness X


1


of the top layer and the thickness X


2


of the bottom layer in the forefoot area are substantially equal, and the thickness Y


1


of the top layer and the thickness Y


2


of the bottom layer in the heel area are substantially equal.




Those skilled in the art will recognize a variety of advantages to a midsole embodiment consistent with the invention. In a removable midsole configuration, a structure consistent with the invention provides extra depth to accommodate various features used in prescription and orthopedic footwear, e.g. to fit in arch supports or orthotics. Also, the midsole may be molded to provide a custom footbed or orthotic. For example, a posted heel may be provided. Also, a midsole consistent with the invention, particularly a multilayered midsole facilitates canting and shimming to meet desired functionality. Shims can include shank interlock areas for resisting motion of the shims relative to the structure. A midsole consistent with the invention may also be configured to include a receptacle and inserts which may be removed to treat foot disorders and/or relieve pressure.




In addition to the prescription and orthopedic footwear mentioned above midsole canting and shimming features may be used in many different footwear applications such as ski boots, snowboard boots, inline skates, etc. any application where this type of tuning/adjustability is desired for improved fitting, improved function, and/or corrective treatment/positioning of the foot.




Referring now to

FIG. 26

, an elevational section taken substantially along line


3





3


of

FIG. 1

is shown.

FIG. 26

particularly illustrates the shank interlock portion


52


of midsole insert


10


and the mating interlock portion


24


of outsole


14


. Although the length of the shank interlock area may vary depending on the design application, in the illustrated embodiment, both the bottom surface


40


in the shank interlock portion


52


of the midsole and the top interior surface


18


in the mating shank interlock portion


24


of the outsole project upwardly with an arc-like geometry running longitudinally from the end of the forefoot portion at point


24




a


to the beginning of the heel portion at point


24




b


. Within this area, the upper surface


18


of the outsole and the bottom surface


40


of the midsole extend upward from the forefoot at about point


24




a


to approximately the middle of the shank area at point


25


, and then downward to the heel to about point


24




b


. This structural design allows for a positive interlock between shank interlock areas of the midsole insert


10


and the outsole


14


that resists motion of the midsole relative to the outsole


14


when the structure is in use. Advantageously, therefore, the midsole need not be permanently secured within the structure, thereby allowing removal and replacement.




Furthermore, in the case where an upper is secured to the outsole in the structure, the unique arched geometry of the interlock areas allows use of an upper


30


having a corresponding arched shank area


100


in its bottom surface


32


. Advantageously, the gradual arch of the upper bottom surface


32


allows for traditional methods of lasting, e.g. slip lasting or cement lasting, for construction of the upper. Preferably, however, slip lasting is used to stitch a bottom portion of the upper to a separate top portion.




With reference to

FIG. 26A

, for example, a last


2600


including a foot volume portion


2602


and a midsole volume portion


2604


having an arched shank interlock area, e.g. separated by dashed line


2606


, may be used to form an upper having an arched shank interlock. Of course, where other elements such as a sock liner, bootie, shank component, or reinforcing layer are provided in the construction the last will also include volumes to account for such elements. The upper is disposed on the last


2600


, and an outsole having an arched shank interlock is positioned on the upper with the interlock areas of the outsole and last in mating relationship. The last


2600


is then removed to leave a cavity in the upper having a foot volume portion and a midsole volume portion. The midsole may be positioned in the midsole volume portion of the cavity. Those skilled in the art will recognize that a last


2600


consistent with the invention may also be used to build a molded structure consistent with the invention wherein the upper and outsole are integrally formed as a unitary component of the structure. Without the gradual arching of the shank interlock areas of the midsole and outsole, abrupt changes would be required in the bottom surface of the upper. Abruptly changing interlock portions may be constructed in a manner to be described below. Such abrupt changes, however, generally require use of either molded components or inefficient, non-traditional methods of lasting, which complicate the manufacturing process and increase the manufacturing cost. Thus, to maintain a favorable cost of manufacture it may be beneficial for the shape of the interlock areas of the midsole and outsole to change in a gradual manner with radiused transitions at the forefoot and heel. (In an embodiment having an abrupt shank interlock the midsole volume portion of the last has an abrupt shank interlock area used to form an upper having an arched shank interlock.




In one embodiment, the distance d between the plane of points


24




a


and


24




b


to point


25


is about 0.625″ where the total length of the outsole is about 11.5″. It is to be understood, however, that the distance d can vary greatly with the shoe size and the intended application. Thus, any arching shank interlock portions formed in the top surface of the outsole and bottom surface of the midsole will suffice as long as a mating interlock between the midsole and the outsole is achieved which resists motion of the midsole relative to the outsole when the structure is in use. A footwear structure consistent with the invention may also be constructed with an outsole provided in separate or modular sections. For example, the outsole may include separate full or partial width forefoot, heel, and shank area components that are secured to an upper. In the embodiment illustrated in

FIG. 27

, for example, the outsole includes a heel component


2700


and a forefoot component


2702


secured to the upper


2704


. In this embodiment, the upper and the midsole


2706


have shank interlock portions which interlock to resist motion of the midsole relative to the outsole, whereas there is no shank interlock portion in the outsole. In another embodiment the midsole may consist of a heel portion only. The midsole heel portion may be removably or non-removably disposed above an upper or outsole structure having shank interlock portions consist with this invention. The interlock is formed between the heel breast surface of the midsole and the heel breast surface of the upper or outsole shank interlock portion. The separate heel portion may be disposed beneath a separate removable footbed component such as a sockliner or orthotic.




Also, in the case of an upper having a shank interlock it is not necessary to provide a shank interlock in the outsole. In an embodiment such as a skate, as shown, for example, in

FIG. 28

, the outsole may have a base component


2800


and separate or integral skate chassis


2802


. In this embodiment, an upper


2804


may be provided, and the upper


2804


, the midsole


2806


, and the outsole base portion


2800


may have interlocking shank interlock portions. In the illustrated embodiment, it may not be necessary to provide a shank interlock portion in the outsole. Instead the outsole base portion


2800


could be flat, as indicated by dashed line


2808


and interlocking may occur between the molded upper


2804


and the midsole


2806


. The outsole base portion may also be separated into multiple parts or have multiple attachment points to the upper


2804


.




In order to provide full and comfortable support of the wearer's foot


80


, particularly in the midfoot or shank area, a shank component


66


may be provided in any embodiment consistent with the invention, as shown for example in FIG.


29


. The shank component may be constructed of traditional rigid or semi-rigid materials, e.g. metal or plastic. The shank component


66


may be formed with a top surface


65


that follows the contour of the bottom surface


40


of the midsole and a bottom surface


67


that follows the contour of the top surface


18


of the outsole. Although in the illustrated embodiment the midsole and outsole are uniformly contoured, it is to be understood that the midsole bottom surface and outsole top surface may be formed with a wide variety of contoured shapes, e.g., radiused, beveled, etc., the shank component, upper, and/or outsole may follow those contours.




Referring back to

FIG. 3

, shank component


66


may have a projecting perimeter wall in the heel and shank areas to about the point


24




a


that mates with and rests against a recessed lip


57


in the sidewall


54


of the midsole. The thickness of the shank component and any projecting perimeter walls may vary greatly depending on the intended application. The shank component may also include raised ribs, walls, and lattice-like raised wall structural portions that add strength and rigidity to the component. The raised structural details may vary greatly in height and wall thickness depending on the intended application.




In any construction consistent with the invention, a reinforcing layer


2900


may also be provided, as shown for example in

FIG. 29A

wherein a molded construction is illustrated. As shown, the outsole


2902


includes a bottom tread portion


2904


and an integral upper portion


2906


. The upper portion


2906


may, for example, be defined by the portion of the integral construction extending above the top surface


2908


of the midsole


2910


. The reinforcing layer


2900


is a rigid or semi-rigid element that adds structural integrity to the construction, and may be full or partial length. The reinforcing layer may also have full or partial perimeter cupping walls. In an industrial footwear construction, the reinforcing layer or the shank component may be constructed from steel or other puncture resistant material. In the illustrated embodiment, the reinforcing layer


2900


is positioned between the midsole and the outsole, but beneath the shank component


66


. In alternative embodiments, the reinforcing layer may be positioned above the shank component, or the reinforcing layer and/or the shank component may be recessed into the midsole or outsole. The shank component may also be embedded within the reinforcing layer.




The shank component perimeter wall provides stability and helps to keep the wearer's foot centered over the footbed. As shown in

FIGS. 30 and 31

, for example, the perimeter wall


3000


of a shank


3006


may also extend upward in the heel area to provide cupping for the midsole


3002


in the heel and shank interlock areas, while extending to the end of the midsole


3002


, as indicated by dashed line


3008


, or ending at a point


3004


at approximately the ball of the foot.

FIG. 32

illustrates an exemplary shank embodiment


3200


, wherein the shank provides cupping for the midsole


3302


, but includes an opening


3204


in the heel area to allow for heel cushioning, particularly to allow the midsole to absorb shock during heel strike. As with any shank component described herein, the component may be fixed within the structure, e.g. to the upper, or may have portions which are left unattached. In the embodiment illustrated in

FIG. 32

, the shank


3200


is combined with a midsole


3202


having perimeter cupping walls


3206


extending upward relative to a midsole top or footbed surface


3208


. The perimeter walls of the shank may extend above, below, or be approximately flush with the perimeter wall height of the midsole cupping walls.





FIG. 33

illustrates an exemplary shank embodiment


3300


including a heel counter portion


3302


. As shown, the shank is disposed between the outsole


3304


and an upper


3306


and extends upwardly to at least the heel area relative to a person's foot, and potentially the ankle area or higher, and then downwardly to the beginning of the forefoot area at point


3308


. The shank component may be full or partial length. A full-length shank may include an integral heel counter, toe cupping wall, full toe cap, and/or stabilizing fins. The shank component having an integral heel counter and/or integral toe cap may be positioned against a midsole having an integrally formed or removably secured heel counter and/or integrally formed or removably secured toe cap. The heel counter portion


3302


may include windows


3310


formed therein for weight reduction, as shown. Also, a shank with a heel counter portion may be positioned inside a boot construction either fully or partially between a boot lining portion of the boot upper and an outer portion of the boot upper or an outsole. The shank component


3300


may also be used as an external component in any application where significant support is desirable, or as a supportive back piece in a snowboard boot construction. The shank component/supportive back piece may be affixed to the external surface of the upper or it may not be affixed to allow the upper to move independently of the component or it may be removably secured to the upper.




It will be understood by those skilled in the art that the exemplary shank embodiments illustrated herein may be combined with a variety of midsole, outsole, and upper variations, and may be positioned in a variety of locations within the footwear structure, e.g., against the midsole, outsole, or intervening components. A reinforcing layer may also be provided with the shank component in any embodiment, or may be provided in a construction without a shank component. Also, as shown in

FIG. 34

, the shank component


3400


may be positioned between an upper


3402


and separate sections


3404


,


3406


of an outsole, whereby a portion of the shank component is left exposed at the bottom of the structure. The shank component may also have perimeter cupping walls positioned against the exterior surface of the upper that are left exposed.




The dimensions of the shank component and the height and configuration of the perimeter walls may vary depending on desired use and associated support characteristics. In

FIG. 35

, for example, there is illustrated an exemplary shank


3500


having perimeter cupping walls


3502


for receiving the midsole


3504


. In the illustrated embodiment, the walls extend upward from the heel area and over the shank interlock area


3506


of the shank. In the forefoot area, flex notches


3510


are provided between stabilizing fins


3508


to allow flexibility of the shank component at the forefoot. Other exemplary shank configurations are illustrated in

FIGS. 36-36B

. As shown in

FIGS. 36 and 36A

, for example, the shank


3600


includes a lateral sidewall


3602


and a medial sidewall


3604


that extends higher than the lateral sidewall and further toward the heel to provide arch support for the midsole


3606


and support against pronation. Alternatively, the lateral sidewall may be higher than the medial sidewall to provide anti-supination support. The lateral sidewall may also extend further toward the heel and forefoot than the medial sidewall to provide anti-supination support. The shank component may be configured with heel and forefoot ends that are angularly positioned relative to the midsole, as shown in

FIG. 36B

, or with ends that directly transverse the midsole, as indicated by dashed lines


3800


,


3802


. To facilitate heel strike shock absorption of the midsole it is advantageous to angle the heel of the shank component so that the heel strike zone is greater/“favored” towards the lateral side of the heel. The lateral sidewall is advantageously positioned further forward than the medial sidewall as described above. Also, in any embodiment the shank may extend fully or partially along the length and width of the midsole. Again, a shank component consistent with the invention may be positioned in a variety of locations within a footwear structure. The shank may be removable or non-removable from the structure. In one embodiment, for example, the shank component may be attached to the bottom of the midsole by an adhesive or other means to extend from the rear of the midsole to about the ball of the foot. Alternatively, the shank could extend longitudinally and laterally along the entire length and width of the structure, or any portion thereof. Also, the shank component could be secured to, or disposed against, an inner or outer midsole portion, the top surface of the outsole, to the bottom exterior surface of the upper, or a recess in either the outsole or midsole. The shank could also be formed as an integral part of either the outsole or midsole, rather than as a separate component, and could be embedded within the outsole or midsole.




Advantageously, the structure of the shank component allows the shank component to be disposed within the structure without affecting the interlock between structural components, e.g. between the midsole and the outsole. The semi-rigid shank component need not, therefore, be positioned in close proximity to the user's foot as in the prior art where such components would be positioned above a conventional midsole. By providing a shank component that may be positioned beneath the midsole, the present invention provides a structure with significantly improved comfort compared to prior art structures which incorporate shank components, regardless of whether the midsole is removable from the structure.




With reference now to

FIGS. 37 and 38

, there are shown exemplary embodiments of heel counters consistent with the invention. The counter may be fully disposed between layers of a non-molded upper or partially exposed on the bottom of the upper, but may have perimeter walls disposed between upper layers with a bottom of the counter being exposed at the bottom of the upper. The counter may also be incorporated on the exterior surface of an upper or portion thereof, e.g. as an external counter, a removable liner or bootie, or between a lining and an outer upper portion. The counter may also extend to the ball of the foot and may be angled to facilitate shock absorption during heel strike. The counter may also include an opening in the heel to facilitate shock absorption during heel strike.




As shown in

FIG. 37

, an exemplary heel counter


3700


may include a perimeter wall portion


3702


and a bottom portion


3704


that is configured to mate with an arched shank interlock portion of a midsole, outsole, and/or upper. In the heel area, the perimeter wall extends upward to provide support and stability to a wearer's heel and/or ankle. The perimeter wall may also extend over the shank area


3706


of the counter to provide additional stability and support. The perimeter wall may also have different lateral or medial wall heights, e.g. the medial or lateral wall height could be higher to provide anti-pronation, arch support, or anti-supination. In alternative embodiments, the solid bottom


3704


may be omitted from the counter, and/or the counter could extend only from rear of the heel to the heel breast, ending at dashed line


3708


.




As shown in

FIG. 38

, an opening


3803


may be provided in the bottom of a counter


3801


for providing reduced weight. The opening may extend to a bridge portion


3804


that extends across the counter for support. Alternatively, the bridge may be removed, e.g., at dashed lines


3806


. The counter may include more than one bridge portion that extends across the counter for support.




A wide variety of footwear types may be constructed consistent with the invention, e.g. athletic shoes, casual shoes and boots, dress shoes and boots, industrial boots, ski boots, skates, inline skates, sandals, clogs, prescription wear, orthopedic wear, specialty footwear, etc. For example,

FIGS. 39-47

illustrate exemplary sandal constructions consistent with the invention. In the embodiment illustrated in

FIG. 39

, a molded outsole shell


3900


is provided with an arched shank interlock portion that interlocks with a corresponding arched shank interlock portion in a midsole


3902


. A molded tread surface may be provided in the bottom of the outsole, as shown in

FIGS. 40-42

, but is not necessary. The molded outsole may include integral, upwardly-extending sandal anchor straps


3904


for securing non-molded straps


3906


adapted for holding the sandal on a wearer's foot. In this construction, the non-molded straps would comprise the upper of the sandal construction. As with the constructions described above, however, a fully molded embodiment may be constructed. In a fully molded construction the straps


3904


would extend around the wearer's foot to secure the construction thereto, i.e., no separate non-molded straps


3906


would be required.




Alternatively, the sandal straps can be provided as separate molded or non-molded components that are secured to the outsole, as shown, for example in

FIGS. 40 and 41

. As shown in

FIG. 40

, the straps


4004


may be secured to the interior of the outsole side wall


4002


, or to the interior bottom and/or interior side wall of the outsole, as shown. The separate straps


4100


may also be secured to the exterior of the outsole sidewall


4102


, as shown in FIG.


41


. In any embodiment, the straps may be recessed into the outsole.




Another exemplary sandal embodiment


4200


is illustrated in FIG.


42


. In the illustrated embodiment, interlocking arched shank portions are provided in the molded outsole


4202


, the upper


4204


, and the midsole


4206


, as described above. The upper


4204


has a bottom portion


4208


disposed between the midsole bottom surface


4210


and the top surface


4212


of the outsole. Alternatively, the upper or a portion thereof may be secured to the outsole at a point below the midsole top surface or footbed surface. In either case, the upper


4204


includes integral sandal straps


4214


for securing the construction to the wearer's foot or for providing an anchor point for additional separate straps.




As with any construction consistent with the invention, a semi-rigid or rigid shank component


4300


and/or a reinforcing layer may be provided in the sandal construction, either between the midsole


4302


and the upper


4304


, as illustrated in

FIG. 43

, for example, or between the upper


4302


and the outsole


4306


, as illustrated, for example in FIG.


44


. In a construction as illustrated in

FIG. 45

, a shank portion


4500


may be disposed between the midsole


4502


and the outsole


4504


. As described above, the shank component includes perimeter cupping walls and an arched shank interlock portion which mates with the arched shank interlock portions in the upper, midsole, and/or outsole.




As indicated above, the upper in a structure consistent with the invention may include a removable bootie-type structure. The upper may also be entirely removable. The removable upper, bootie, or liner may be disposable and replaceable. The removable upper, bootie, liner, and structure may also be reusable, cleanable and autoclavable for sterilization. For example, in

FIG. 46

, there is illustrated an exemplary clog-type construction


4600


wherein a midsole


4602


is disposed within a removable upper or bootie


4604


, and the midsole


4602


, upper


4604


, a shank component


4606


, and an outsole


4608


have interlocking shank interlock portions. In the illustrated embodiment, the upper with the midsole disposed therein may be entirely removable from the structure, and the midsole may be removable from the upper. Alternatively, as shown in the exemplary sandal-type construction illustrated in

FIG. 47

, a removable upper or bootie


4700


may be disposed on top of a midsole


4702


. In this embodiment, the upper


4700


would not include an arch shank interlock portion, and interlocking would be between the midsole


4702


, outsole


4704


, and any intervening components such as a shank


4706


and/or reinforcing layer. Also, the outsole may include a flat bottom as illustrated by dashed line


4708


.




In an alternative embodiment to the construction shown in

FIG. 47

, the upper or bootie is not removable and is affixed to the top surface of the midsole


4702


. In this embodiment the upper


4700


would not include an arch shank interlock portion, and interlocking would be between the midsole


4702


, outsole


4704


, and any intervening components such as a shank


4706


and/or reinforcing layer. The combined structure of the upper or bootie affixed to a midsole may be removably disposed above the outsole. A shank component may be included within the combined upper or bootie affixed to a midsole structure so that the wearer may walk about with this structure.




Many materials are known in the art that may be used for forming a midsole which is consistent with this invention and the materials are durable enough to be walked on. The midsole advantageously may have a tread portion formed on the bottom surface but it is not necessary depending on the intended function. An outsole with an arched shank interlocking portion may also be secured to the midsole bottom and form an interlock with the outsole


4704


and any intervening components such as a shank and/or reinforcing layer (forming an outsole-to-outsole interlock). It is understood however, that a shoe or boot (e.g. an “inner” shoe or boot) with an outsole having a shank interlock portion may be removably disposed above an upper, outsole, shank and/or reinforcing layer of a shoe or boot (e.g., an “outer” shoe or boot) having a corresponding arched shank interlock portion. A wide variety of inner shoe and inner boot designs may be combined with a wide variety of outer shoe and outer boot designs.




A variety of other interlocking structures are possible: for example the top portion of an interlocking structure may be an upper, midsole, outsole, (shoe or boot) consistent with this invention having a shank interlock portion. The top interlocking structures may be removably disposed above any lower interlocking structures such as an outsole, strap-on safety/non-slip structures (such as non-slip grips for ice with metal cleats/spikes, non-slip soles for wet slippery applications such as the floors of dairy and meat packing plants), swim fin structures, water-ski or water-ski binding structures, snowboard or snowboard binding structures, ski or ski boot structures, or any structure having a corresponding shank interlock portion. Interlocking of the shank interlock portions of an upper, midsole, or outsole resists motion of the upper, midsole, or outsole relative to the corresponding shank interlock structure. The shank interlock portions may include a continuous arc or an abruptly changing arc. The lower interlocking structures described above may have full or partial perimeter cupping walls which help to support, position, and stabilize the top interlocking structures. The perimeter cupping walls may be positioned against the top interlocking structure. The cupping walls of the lower structure may have surfaces with a corresponding mating relationship to the top interlocking structures. The lower interlocking structures may have a plurality of closure straps or other fastening means to removably secure the lower structure to the top portion interlocking structures.




With reference to

FIG. 47A

, the perimeter walls on the outsole


4710


may be omitted or minimized to expose portions of the midsole


4712


on the exterior of the construction as illustrated in FIG.


47


A. An upper


4714


may be removably or non-removably disposed on top of the midsole


4712


. A full or partial length shank component


4716


with midsole cupping sidewalls


4718


may be disposed between the midsole and outsole to stabilize the midsole relative to the outsole.




Despite the above-described advantages of constructions including gradually arching arched shank interlocks, advantageous features of the invention may be incorporated into constructions with arched shank interlocks having abrupt changes if some complication of the manufacturing process is tolerable.

FIGS. 48-59

, for example, illustrate exemplary constructions consistent with the invention wherein the arched shank interlocks include abrupt changes. In

FIG. 48

, for example, a molded outsole


4800


is provided with an abruptly changing arched shank interlock area


4802


including an abrupt change at point


4804


, i.e., at the heel/shank transition. Any midsole consistent with the invention, e.g. midsole


4806


, may be disposed above the outsole


4800


, as shown. An upper


4808


may be secured to any position on the outsole, e.g. to the sidewalls


4810


of the outsole, by a variety of known methods, e.g. stitching, cement, etc. Of course, in the case of a fully molded construction, a separate upper may not be used, and the outsole sidewalls may extend upwardly to form the entire exterior surface of the structure.




Alternatively, an abruptly changing interlock may be provided using a molded receptacle. As shown, for example in

FIG. 49

, a molded receptacle


4900


may define a volume for receiving at least a portion of the midsole


4902


. The molded receptacle includes an abruptly changing shank interlock area


4904


which mates with a corresponding abruptly changing shank interlock in the midsole


4902


. Where a non-molded upper is desired, the non-molded upper


4906


may be secured, e.g., stitched, to the receptacle at a seam


4908


.




As shown in

FIG. 50

, a molded receptacle


5000


with the non-molded upper


5002


secured thereto (if desired) may then be combined with an outsole


5004


having a corresponding and mating abruptly changing arched shank interlock area


5006


. The midsole


5008


may be disposed in the cavity at least partially defined by the molded receptacle


5000


, and can be secured in the construction or left freely removable therefrom with the shank interlock in the midsole mated with the shank interlock in the receptacle. Of course, shank and/or reinforcing layers, as described above, may be provided in connection with any embodiment including abruptly changing shank interlock areas. A construction as shown in

FIG. 50

may be used to fabricate a structure having an arched shank interlock portion. It would be more expensive and complex to construct the arched shank interlock structure with a molded receptacle than the method previously described by stitching an arched shank interlock structure with leathers, textiles, etc., however, there may be desirable functional advantages to the performance characteristics of a molded receptacle with an arched shank interlock portion which may not be achievable with the stitched materials if the increased costs will allow the use of the molded component. Any of the versions that have a molded component substantially in the arch area could be molded with either an arched or abrupt shank interlock.




Consistent with the present invention, the molded receptacle may be provided in a variety of dimensions. For example, the molded receptacle may be used without a non-molded upper, but with upwardly extending sidewalls for defining the entire foot-receiving cavity. Also, as illustrated in

FIGS. 51 and 52

, a molded receptacle


5100


may have cupping sidewalls


5102


for receiving only the heel portion


5104


of the midsole


5106


or, alternatively, for receiving the heel and shank portions. In this embodiment, a non-molded upper


5108


, which may include a partial lasting insole


5110


at the bottom thereof, may be stitched to molded receptacle


5100


, e.g., at seam


5200


.




An abruptly changing interlock embodiment may also be constructed using a slip lasted upper, as illustrated, for example, in FIG.


53


. In a slip lasted upper construction


5300


, a lasting insole


5302


may be constructed by forming a stitchable fibrous paperboard or other suitable stitchable material into a shape having a heel zone


5400


, a heel breast zone


5402


, and a forefoot zone


5404


, as shown in FIG.


54


. The material is creased/folded along lines


5500


and


5502


, as shown in

FIG. 55

, to form a distinct vertical heel breast


5504


for interlocking with the shank interlock portion in the outsole


5304


. Sheet reinforcing materials


5506


may be applied to the textile over the folded areas to hold the shape of the heel breast.




Alternatively, as shown in

FIG. 56

, a lasting insole


5600


may be formed using separate heel zone


5602


, heel breast zone


5604


, and forefoot zone


5606


pieces, which are joined by top


5608


and bottom


5610


corner reinforcement members. Any lasting insole embodiment may, however, have first


5702


and second


5704


reinforcing tabs on the heel breast, as shown in

FIG. 57. A

first leg


5706


,


5708


of the reinforcing tabs may be secured directly to the heel breast


5710


, while a second leg


5712


,


5714


is stitched directly to the upper


5716


.




Consistent with the other constructions disclosed herein, the interlock portion of the midsole, molded receptacle, outsole and upper may be considered to be interlocking or mating although other elements are disposed therebetween. For example, a semi-rigid or rigid shank


5800


may be inserted between the midsole


5802


and the molded receptacle


5804


, as shown in

FIG. 58

, or between the molded receptacle


5804


and the outsole


5900


, as shown in FIG.


59


. As discussed above, the rigid shank


5800


and/or a reinforcing layer may extend latitudinally and longitudinally across the entire midsole or any portion thereof, and may include upwardly extending walls


5806


to provide lateral support. The shank component shown in

FIG. 59

may also include a heel counter and/or an external supportive back piece.





FIGS. 60 and 61

illustrate exemplary embodiments wherein the abruptly changing interlock is provided in the form of an interlock step. In the embodiment illustrated in

FIG. 60

the interlock step


6000


is formed in the outsole


6002


, and in the embodiment illustrated in

FIG. 61

the interlock step


6100


is formed in a molded receptacle


6102


. In these configurations, the bottom surface


6006


of the midsole


6004


includes a correspondingly stepped shape for interlocking with the interlock step


6000


or


6100


in the outsole or receptacle. These configurations may also be provided with non-molded uppers. Also, a semi-rigid or rigid shank insert and/or a reinforcing layer may be provided between the midsole and the outsole in the exemplary embodiment illustrated in

FIG. 60

, or between the midsole and receptacle or receptacle and outsole in the exemplary embodiment illustrated in FIG.


61


.




The interlocking of structural components of a footwear structure consistent with the invention provides many significant advantages. For example, the interlocking allows components such as the midsole to be removable and replaceable since relative motion between the components is limited by the interlocking. The interlocking constructions also facilitate customization of the structure depending on user preference.




Another significant advantage of interlocking components consistent with the invention is that they facilitate construction of a single expandable footwear structure that accommodates multiple foot sizes. In particular, the shank interlock area of an upper may be provided with fixed dimensions while other portions of the upper may stretch for receiving midsoles of varying lengths and widths but including uniform shank interlock area dimensions. The shank interlock areas of the upper and midsole would consistently interlock regardless of the length and width of the midsole. Also, expandable uppers can be used in prescription and orthopedic footwear to accommodate foot disorders or disorders that effect the foot. Expandable uppers also provide excellent fit to a normal foot since they may expand to contract to an exact foot dimension.




Turning to

FIGS. 62 and 63

, for example, there is illustrated an exemplary embodiment including a stretch upper


6200


. The stretch upper may be constructed from a variety of highly elastic materials known to those skilled in the art, e.g. using LYCRA or SPANDEX brand stretch fabrics, or from a stretch mesh or net-like material. A shank component


6202


may be secured to the upper over the shank interlock area of the upper. By affixing the shank component over the shank interlock area, the dimensions of the shank interlock area are held constant, as determined by the dimensions of the shank component


6202


. The shank component thus establishes a non-stretch anchor zone


6204


in the shank interlock area of the stretch upper. Any portion of the shank that extends over the heel or forefoot areas may be left unattached to the upper to allow the upper to stretch.




A midsole


6206


having a shank interlock area of dimensions corresponding to the dimensions of the shank interlock area in the upper surface and sidewalls of the shank component


6202


may be inserted into the upper. To the extent that the width or length of the midsole


6206


exceeds the width or length of the upper, the upper will stretch lengthwise and widthwise, and the midsole


6206


will be received within the upper with the interlock areas of the upper, shank component, and midsole in an interlocking relationship consistent with the invention. Midsoles of varying lengths or widths may, therefore, be combined with a single upper construction. The midsoles used within the stretch construction may have an integrally formed or removably secured heel counter. It may also have an integrally formed or removably secured toe cap or the midsole may have a heel counter and a toe cap.




A number of variations including a stretch-type upper are possible. For example, the midsole may have a recessed notch in the bottom thereof for receiving the shank component. Also, each midsole size may include its own shank component that has a shank interlock area that interlocks with the shank interlock area of an upper. The shank component prevents lateral movement of the midsole. In this embodiment, the shank may be affixed over the shank interlock area of the upper, as described above, and may be provided with cupping walls for cupping the midsole and resisting side-to-side movement. In an embodiment wherein the shank includes a heel counter portion, the upper may be affixed to the shank in the heel counter area to define an anchor zone.




Turning now to

FIGS. 64 and 65

, there is shown another exemplary embodiment wherein the stretch upper


6400


includes outsole tread elements


6402


fixed to a bottom thereof in the heel and forefoot areas. Tread elements may be omitted from the shank interlock area


6404


of the upper, as shown. Advantageously, the locations where outsole tread elements


6402


are affixed to the upper define anchor zones where stretching or expansion of the stretch upper


6400


is prevented due to the affixation of the elements. The interstices


6406


between the tread elements, however, define stretch zones where the stretch upper may expand or contract to accommodate varying midsole dimensions. A shank component


6202


may be provided over the shank interlock area of the upper, as described above, to provide an anchor zone in the shank area. The shank may, however, be omitted to allow the shank area to function as stretch zone between the lugs at the beginning heel and forefoot areas.




An outsole component configured as a midfoot support


6600


may also be provided, as illustrated in FIG.


66


. As shown, the midfoot support


6600


may have a contour which mates with and interlocks with the shank interlock area of the upper


6602


. Cupping sidewalls


6604


may extend upwardly from the midfoot support and may be cemented to the shank interlock area to establish an anchor zone in the shank interlock area. Alternatively, the midfoot support


6700


may be constructed to provide continuous (not shown) or separate stitching flanges


6702


,


6704


,


6706


, as shown for example in

FIG. 67

, to which the upper is stitched. In the illustrated embodiment, therefore, the midfoot support


6700


forms the arch shank interlock for the upper. The midfoot support may be constructed, for example, from a rubber or foam material as one-piece, or may be provided in multiple pieces, e.g. a top layer of foam and a bottom rubber layer. A molded midfoot support component may include integral cupping sidewalls that provide support and a continuous flange for attachment to the upper.





FIG. 68

illustrates another exemplary embodiment


6800


wherein closure straps


6802


are anchored to non-stretch anchor zones for facilitating closure of the upper. The straps may be connected in a variety of configurations to anchor zones established by outsole tread elements


6804


or other molded or non-molded elements affixed to the upper. For example, anchor zones may be established by a heel back strap


6806


secured, e.g. by stitching or adhesive, to an anchor zone along the rear of the upper, or wrapped fully around the upper, by a toe cap


6808


secured to the toe area of the upper, or by individual components


6812


secured along the side of the upper above the tread elements. Areas of the stretch upper


6810


between the anchor zones are stretch zones where the upper may expand or contract. The closure straps


6802


may be secured to the anchor zones and are free to overlap the stretch zones so that positioning of the straps is not affected by expansion or contraction of the upper. The straps may also wrap around the upper and be anchored to the bottom of the upper to define anchor zones.




Anchor zones on a stretch upper may be configured in a variety of ways. As illustrated in

FIG. 69

, for example, anchor zones may be provided using non-stretch material


6900


which is secured on the bottom of the upper


6902


to the shank interlock area, the heel and forefoot areas, and locations between the ends of the shank interlock areas and the toe and heel. The non-stretch material may be secured only to the side of the upper, or may extend partially across the bottom or fully across the bottom and up the opposite side of the upper. Also, the non-stretch material may be a molded or non-molded material. For example, the non-stretch material in the shank interlock area may include a molded shank component having cupping sidewalls. The stretch zones, which wrap partially or fully around the upper as illustrated in FIG.


70


and

FIG. 71

, can also be at an angle on the upper or formed with an arc. For example, two or more stretch zones in the forefoot area may be radially spaced or could also be parallel. The shapes of the stretch zones and positioning of the stretch zones can vary greatly depending on the intended style and function.




Again locations between the anchor zones act as stretch zones where the upper may stretch to accommodate varying sized midsoles. The configuration and orientation of the anchor zones therefore depends on the desired level of expansion for the upper in view of the midsoles to be used with the upper. Also, items such as outsole tread elements may be secured to the anchor zones as desired. An outsole or component thereof having a perimeter wall extending onto the side of the upper may also be provided to establish an anchor zone, or may be secured to an existing anchor zone.




In

FIGS. 70 and 71

, there is illustrated another exemplary embodiment


7000


, wherein the anchor zones


7002


wrap around the stretch upper allowing relatively thin stretch zones


7004


. Closure straps


7006


may be secured to the anchor zones for closing the upper, which may include a tongue


7008


and a conventional lace closure. Straps


7010


may be provided in a midfoot anchor zone


7012


for wrapping around the rear portion and connecting to the midfoot anchor zone on the other side of the upper. Each strap may include one or more conventional fastening components and means of adjustment within its length to facilitate closure of the upper thereby. Alternatively, straps on a rear anchor zone


7014


could connect to the midfoot anchor zone


7012


on both sides of the upper. Those skilled in the art will recognize that as the quantity of non-stretch material used in a particular embodiment increases, it may be preferable to construct the embodiment by securing, e.g., stitching, strips of stretch material to the non-stretch anchor zone material. The exemplary embodiment illustrated in

FIG. 70

may be constructed in this manner.





FIG. 72

illustrates an exemplary embodiment, wherein the stretch upper


7100


includes stretch zones defined by expansion joints


7102


disposed between areas of non-stretch material. As illustrated for example in

FIG. 72A

, the expansion joints may include a molded (e.g., rubber, elastomer, plastic, tpu urethane) stretch portion


7200


extending in a serpentine or bellows-shaped path between stitching margins


7204


. The margins may be secured to non-stretch zones of the upper, and the stretch portion


7200


allows expansion/contraction through expansion or contraction of the serpentine configuration thereof. Alternatively, the stretch portion of the expansion joint may be constructed of an elasticized material such as LYCRA or SPANDEX brand stretch fabric. Closure straps


7106


may be anchored to the margins


7204


of the expansion joints


7102


or to the non-stretch anchor zones.




With continued reference to

FIG. 72

, expandable outsole treads


7108


may also be provided at locations on the bottom of the upper


7100


and wrapping up onto the sidewalls of the upper/expansion joints in areas corresponding to the locations of the stretch zones. An exemplary expandable outsole tread configuration is illustrated in FIG.


73


. As shown, an expandable outsole tread


7108


may include first


7300


and second


7302


lugs separated by an expansion web


7304


and having flanges


7306


for securing the tread to the bottom of the upper


7100


. The expansion web


7304


expands/contracts to allow relative motion between the lugs


7300


,


7302


. A wide variety of variations including expansion joints and/or expandable outsole treads are possible. For example the entire structure could be constructed using expansion joints and expandable outsole treads.




Turning now to

FIG. 74

, a stretch upper


7400


consistent with the invention may also be constructed with a full non-stretch bottom


7402


constructed from non-stretch material. In this embodiment, the entire bottom of the upper would be an anchor zone and the upper could stretch in areas other than at the bottom as indicated, for example, by dashed lines


7404


,


7406


. A full non-stretch bottom may also be constructed by securing an outsole, shank, or other member along the entire bottom of the upper


7400


. Closure straps may extend from or be anchored to the non-stretch bottom and wrap around the upper. A stretch upper


7500


may also be combined with a stretch outsole


7502


secured to the stretch upper, e.g. by stitching, cementing, or direct injection molding of perimeter walls


7504


, as shown in FIG.


75


. The stretch outsole may include stretch zones and anchor zones, as shown for example in

FIGS. 76 and 77

. The stretch zones can be constructed in any of the manners described above in connection with the stretch upper. The anchor zones may be constructed of rubber, for example, and may be connected to the stretch zones by stitching or cement. The stretch zones may also include a rubber material, and may include co-molded rubber materials, e.g., one with high stretch and one with durability. In the embodiment of

FIG. 76

, a circumferential stretch zone


7500


in a stretch outsole


7502


allows expansion in all directions. The stretch outsole


7502


may include partial outsole segments with portions of the stretch upper


7500


in between. The partial segments may be spaced all around the sole. In the embodiment illustrated in

FIG. 77

, a lengthwise stretch zone


7600


allows widthwise expansion, while transverse stretch zones


7602


allow lengthwise expansion. The stretch zones of the sole area may also be formed by molding expansion zones into the sole. The molded sole stretch zones may include bellows-shaped/serpentine expandable walls and may also include molded-in expandable outsole treads.




Of course, a stretch upper as described above may also be provided in a configuration having an abrupt shank interlock area. As shown in

FIG. 78

, for example, an anchor zone in an abrupt shank interlock area may be established using a non-stretch shank component


7800


in the shank interlock area


7802


. The shank component


7800


may have upwardly extending cupping walls


7804


that serve also as stitching flanges, and may also have stitching flanges


7806


at the forefoot and heel portions thereof. The construction shown in

FIG. 78

may also be used to fabricate a non-stretch upper version having a shank interlock portion. The shank interlock component may be formed having an arched or abrupt shank interlock portion. The length of shank component


7800


and the upwardly extending sidewalls could be very minimal in an abrupt shank interlock version.




The embodiments that have been described herein, however, are but some of the several which utilize this invention and are set forth here by way of illustration but not of limitation. For example, the structure described herein can be incorporated into a wide variety of footwear types and sizes. Any particular feature described herein may be combined with other features described herein to construct a structure consistent with the invention. Also, midsole consistent with this invention may include a molded internal skeleton-like structure that mimics the structure and function of the bones of the human foot, particularly the bones located in the metatarsus area of the foot that forms the instep. The molded internal skeleton-like structure may be formed as an injection molded plastic component or by other means. The skeleton-like structure provides, stability, support, shock absorption, and energy return to the midsole structure. Other elements of the midsole may include components that mimic muscles, tendons, and ligaments of the human foot. A midsole consistent with this invention may also include a resilient insert including a plurality of first chambers fluidly interconnected to each other, a plurality of second chambers fluidly connected to each other, and a connecting passage connecting the first chambers and the second chambers. A flexible bladder may be disposed above the resilient insert. The chambers, may contain ambient air, pressurized air or gas, gels, or fluids that flow through the connecting passage. A midsole consistent with this invention may also include an energy return component on the top surface and sidewalls. It is obvious that many other embodiments, which will be readily apparent to those skilled in the art, may be made without departing materially from the spirit and scope of this invention.



Claims
  • 1. A footwear structure comprising:an outsole comprising at least one stretch zone and at least first and second zones, said stretch zone being disposed between said first and second anchor zones for allowing widthwise expansion and contraction of said outsole corresponding to expansion and contraction of a user's foot during wear; an upper secured to a top surface of said outsole and at least partially defining a cavity, said upper comprising at least one upper stretch zone and at least first and second upper anchor zones, said upper stretch zone being disposed between said first and second upper anchor zones for allowing expansion of said upper during wear by a user; and a midsole at least partially disposed within said cavity, said midsole comprising a first region extending across the entire width of said midsole and having first level of rigidity and a second region extending across the entire width of said midsole and having a second level of rigidity, said first level of rigidity being different from said second level of rigidity.
  • 2. A footwear structure according to claim 1, wherein said stretch zone in said outsole comprises a molded stretch portion extending between first and second margins, said first margin being secured to said first anchor zone in said outsole and said second margin being secured to said second anchor zone in said outsole.
  • 3. A footwear structure according to claim 1, wherein at least a portion of said stretch zone in said outsole is disposed in a forefoot region of said outsole for allowing widthwise expansion of said forefoot region of said outsole during wear by a user.
  • 4. A footwear structure according to claim 1, wherein said stretch zone in said outsole extends circumferentially around said outsole.
  • 5. A footwear structure according to claim 1, wherein said first region comprises a heel region of said midsole and said second region comprises a forefoot region of said midsole.
  • 6. A footwear structure according to claim 1, wherein said midsole comprises a plurality of layers.
  • 7. A footwear structure according to claim 1, wherein said midsole is readily removable from said cavity.
  • 8. A footwear structure comprising:an outsole comprising at least one stretch zone and at least first and second anchor zones, said stretch zone being disposed between said first and second anchor zones for allowing widthwise expansion and contraction of said outsole corresponding to expansion and contraction of a user's foot during wear; an upper secured to a top surface of said outsole and at least partially defining a cavity; and a midsole at least partially disposed within said cavity.
  • 9. A footwear structure according to claim 8, wherein said outsole further comprises at least one lengthwise stretch zone being configured for allowing lengthwise expansion of said outsole.
  • 10. A footwear structure according to claim 8, wherein said stretch zone comprises a molded stretch portion extending between first and second margins, said first margin being secured to said first anchor zone and said second margin being secured to said second anchor zone.
  • 11. A footwear structure according to claim 8, wherein at least a portion of said stretch zone is disposed in a forefoot region of said outsole for allowing widthwise expansion of said forefoot region of said outsole during wear by a user.
  • 12. A footwear structure according to claim 8, wherein said stretch zone extends circumferentially around said outsole.
  • 13. A footwear structure according to claim 8, wherein said midsole comprises a first region having first level of rigidity and a second region having a second level of rigidity, said first level of rigidity being different from said second level of rigidity.
  • 14. A footwear structure according to claim 13, wherein said a first and second regions extend across the entire width of said midsole.
  • 15. A footwear structure according to claim 13, wherein said first region comprises a heel region of said midsole and said second region comprises a forefoot region of said midsole.
  • 16. A footwear structure according to claim 8, wherein said midsole comprises a plurality of layers.
  • 17. A footwear structure according to claim 8, wherein said midsole is readily removable from said cavity.
  • 18. A footwear structure according to claim 8, wherein said midsole comprises a heel counter portion extending upwardly relative to a footbed surface of said midsole at a heel end of said midsole.
  • 19. A footwear structure according to claim 8, wherein said upper comprises at least one upper stretch zone and at least first and second upper anchor zones, said upper stretch zone being disposed between said first and second upper anchor zones for allowing expansion of said upper during wear by a user.
  • 20. A footwear structure according to claim 8, wherein said upper comprises a waterproof material.
CROSS-REFERENCE TO RELATED APPLICATION

The present application is a divisional of U.S. application Ser. No. 09/609,620, filed Jul. 5, 2000, now U.S. Pat. No. 6,519,876, which is a continuation-in-part of U.S. application Ser. No. 09/073,292, filed May 6, 1998, now U.S. Pat. No. 6,092,305, the teachings of which are incorporated herein by reference.

US Referenced Citations (101)
Number Name Date Kind
4497 Vetter May 1846 A
597524 Molloy et al. Jan 1898 A
641642 Gunn Jan 1900 A
797966 Lange et al. Aug 1905 A
1148604 McBrearty Aug 1915 A
1974543 Reymond Sep 1934 A
2016070 Brokman Oct 1935 A
2317880 Bingham, Jr. Apr 1943 A
2317918 Knipe Apr 1943 A
2371322 Toothaker Mar 1945 A
2437065 Austin Mar 1948 A
2456102 Agostinelli Dec 1948 A
2719367 Bergmans Oct 1955 A
2887793 Starr May 1959 A
3026635 Slade Mar 1962 A
3389481 England Jun 1968 A
3404468 Rosen Oct 1968 A
3624930 Johnson et al. Dec 1971 A
3629961 Seif Dec 1971 A
3705463 Lown Dec 1972 A
3724105 Weight Apr 1973 A
3916539 Pankin et al. Nov 1975 A
3952430 Pankin et al. Apr 1976 A
4084333 Del Vecchio Apr 1978 A
4215493 Antonious Aug 1980 A
4262435 Block et al. Apr 1981 A
4270285 Antonious Jun 1981 A
4354319 Block et al. Oct 1982 A
4366629 Scherz Jan 1983 A
4451995 Antonious Jun 1984 A
4489509 Libit Dec 1984 A
4506460 Rudy Mar 1985 A
4516336 Nissenbaum May 1985 A
4541184 Leighton Sep 1985 A
4551930 Graham et al. Nov 1985 A
4554749 Ostrander Nov 1985 A
4559723 Hamy et al. Dec 1985 A
4562652 Hensler Jan 1986 A
4590123 Hashimoto et al. May 1986 A
4627178 Sullivan et al. Dec 1986 A
4654983 Graham et al. Apr 1987 A
4658516 Beck Apr 1987 A
4724624 Duclos Feb 1988 A
4733483 Lin Mar 1988 A
4739765 Sydor et al. Apr 1988 A
4742625 Sydor et al. May 1988 A
4835884 Bianchini et al. Jun 1989 A
4843741 Yung-Mao Jul 1989 A
4845863 Yung-Mao Jul 1989 A
4881328 Yung-Mao Nov 1989 A
4897938 Otsuka Feb 1990 A
4905382 Yung-Mao Mar 1990 A
4908962 Yung-Mao Mar 1990 A
4910887 Turner et al. Mar 1990 A
4967492 Rosen Nov 1990 A
5025573 Giese et al. Jun 1991 A
5060402 Rosen Oct 1991 A
5086572 Lee Feb 1992 A
5123181 Rosen Jun 1992 A
5203097 Blair Apr 1993 A
5337492 Anderie et al. Aug 1994 A
5367791 Gross et al. Nov 1994 A
5367792 Richard et al. Nov 1994 A
5384973 Lyden Jan 1995 A
5400526 Sessa Mar 1995 A
5408761 Gazzano Apr 1995 A
5423135 Poole et al. Jun 1995 A
5425186 Hoyt Jun 1995 A
5469639 Sessa Nov 1995 A
5529830 Dutta et al. Jun 1996 A
5555650 Longbottom et al. Sep 1996 A
5675914 Cintron Oct 1997 A
5727271 Romanato et al. Mar 1998 A
5729912 Gutkowski et al. Mar 1998 A
5765296 Ludemann et al. Jun 1998 A
5804011 Dutta et al. Sep 1998 A
5809665 Suenaga Sep 1998 A
5813146 Gutkowski et al. Sep 1998 A
5829171 Weber et al. Nov 1998 A
5879725 Potter Mar 1999 A
5893219 Smith et al. Apr 1999 A
5915820 Kraeuter et al. Jun 1999 A
5940990 Barret Aug 1999 A
5946825 Koh et al. Sep 1999 A
5948707 Crawley et al. Sep 1999 A
5996253 Spector Dec 1999 A
6014824 Gumbert Jan 2000 A
6023857 Vizy et al. Feb 2000 A
6029376 Cass Feb 2000 A
6050001 Ditrtrich Apr 2000 A
6065230 James May 2000 A
6092305 Troy et al. Jul 2000 A
6105279 Bouchoms Aug 2000 A
6115945 Ellis, III Sep 2000 A
6119373 Gebhard et al. Sep 2000 A
6122844 Nunez Sep 2000 A
6138385 Jungkind et al. Oct 2000 A
D433560 Pawlus Nov 2000 S
6205683 Clark et al. Mar 2001 B1
6519876 Geer et al. Feb 2003 B1
20020088145 Clark et al. Jul 2002 A1
Foreign Referenced Citations (5)
Number Date Country
3429284 Feb 1986 DE
1218101 May 1960 FR
2501480 Sep 1982 FR
WO9618317 Jun 1996 WO
WO0182733 Nov 2001 WO
Non-Patent Literature Citations (4)
Entry
Dakkak Brothers Company, Our Products: Microcellular Rubber Sheets, T.P.R.—Granules, EVA Compound, Rubber Compound [online], http://www.dakkakco.com/products1.html [retrieved on Jun. 7, 2001], pp. 1/3-3/3.
Acor Orthopaedic, Inc., Poron [online], http://www.acor.com/srp.htm, [retrieved on Jun. 5, 2001], pp. 1/3-3/3.
Bontex, Our Products [online], http://bontex.com/products.html, [retrieved Jun. 4, 2001], pp. 1/2-2/2.
Acor Orthopaedic, Inc., SRP [online], http://www.acor.com/srp.htm, [retrieved on Jun. 5, 2001], pp. 1/2-2/2.
Continuation in Parts (1)
Number Date Country
Parent 09/073292 May 1998 US
Child 09/609620 US