Footwear with dynamic arch system

Abstract
The present invention is footwear having a convex shaped outsole with opposing wedge shaped configurations in the bottom of the front sole section and the back sole section which provide rotation of the front sole section and the back sole section in opposite directions when weight is applied. The present invention is also footwear convex shaped in the longitudinal direction with a split sole having opposing wedge shaped configurations in the bottom of the front sole section and the back sole section that provide rotation of the front sole section and the back sole section in opposite directions when weight is applied. The invention further includes footwear having at least one pair of wedges on the outsole which provide footwear having improved arch support. The invention is also footwear with a flexible, elastic, member between the front sole section and the back sole section of the sole.
Description
FIELD OF THE INVENTION

The present invention relates to footwear, including sneakers, shoes, socks, and hosiery, and more specifically to footwear configured to improve support of the user's foot and foot arch(es). The present invention also relates to devices used to increase foot comfort when footwear is worn. The present invention further relates to footwear configured to improve and assist with walking and/or running.


BACKGROUND OF THE INVENTION

Conventional footwear (e.g., shoes and sneakers) comprises a sole and an upper secured to the sole on a lower portion of the upper. The top of the upper includes an opening, typically near the back part of the upper, where the foot enters the cavity formed by the upper and the sole. The entire structure functions to support the foot. The sole is the portion between the foot and the ground. The sole is intended to provide traction, support and cushioning for the user. Many soles have a multi-part construction including an outsole, a midsole, and an insole. The insole is located on the upper most portion of the sole, typically with an upper surface exposed inside the footwear where the user's foot contacts the sole. The outsole is located on the bottom most portion of the sole of the footwear. The underside of the outsole contacts the surface on which the user walks or runs (the bottom of the sole contacts the ground and provides traction against the surface on which the user walks) and is designed for durability and traction. The midsole is located between the insole and the outsole and it is commonly designed to absorb the forces commonly encountered when walking or running in the footwear. One or more parts of the sole, including each the insole, midsole, and outsole, may include padding/cushioning and/or be made of materials that create cushioning for comfort and for shock absorption properties.


For most footwear the sole also includes a passive medial arch support. The passive medial arch support is a raised part/portion of the sole positioned in the location where the medial arch of the user's foot rests on the insole. In most footwear, the passive medial arch support is located on the medial side (inside) of the footwear in a lateral direction and about midway between the front and the back of the footwear in a longitudinal direction. Passive medial arch supports are typically convex in at least two directions to complement and conform to the shape of the user's medial foot arch. To achieve the shape of the passive medial arch support, the sole of the footwear can be shaped to form the passive medial arch support and/or the footwear can include padding/cushioning as part of the sole (typically the insole) to create the passive medial arch support. The flexibility of the passive arch support cushion and its ability to compress when the foot's medial arch contacts the passive arch support cushion allows, to some extent, for use by people with different arch heights, widths and shapes, although not every user's medial arch is comfortably supported by the standard passive arch supports inside footwear. Accordingly, it is not uncommon for users to add to the passive medial arch support inside footwear with inserts or to modify the passive arch support and/or the insole shape using orthotics for improved comfort.


With the foot inside the footwear, the foot rests on top of the insole and contacts at least some parts of the inside of the upper. For footwear having a passive medial arch support, the medial arch of the user's foot rests upon the passive medial arch support causing upward forces on the user's medial arch when weight is applied onto the footwear.


There are many different types of soles. Some footwear uses a very rigid sole intended to provide resistance to penetration, such as, for example, steel plated construction boots/shoes. Some footwear includes a less rigid sole which provides rigidity but with also provides some flexibility, such as, for example, in athletic footwear with spikes (e.g., soccer shoes, baseball spikes/cleats, football cleats, etc.). Still further there is footwear with a strong and durable sole which provides some flexibility but also provides a different appearance more appealing for formal use, the sole intended to last for an extended period of time, such as, for example, dress shoes. Footwear also exists with a light and flexible sole intended to provide comfort and improve balance, typically when exercising but also during daily use (walking), such as, for example, sneakers and running sneakers. Sneaker soles are typically made for motion during use and include padding to absorb impact forces associated with foot strike.


Some footwear has a split sole design with a front sole portion/section and a back sole portion/section, without a middle sole portion/section. In split sole footwear, the front sole portion/section and the back sole portion/section are connected to each other using the upper. Split sole footwear also often includes a heel pad and a toe pad made from a rough material, such as leather or suede, to offer traction. The middle section of the split sole footwear (sometimes both over and under the foot) is covered and protected only by the material used for the upper. Split sole footwear usually provides less arch support to the user (along the user's medial arch as well as the lateral arch) than full sole footwear and thus those arches of the foot may be vulnerable to injury during use. An advantage of split sole footwear is that it may provide more traction in certain environments, such as, for example, for rock climbing where the split sole allows for greater flexibility of the footwear which assists with contact with uneven or rocky terrain. As another example, hunters may use split sole footwear for quieter movement than full sole footwear. In addition, split sole shoes are considered aesthetically pleasing, especially in the dance industry, because they make the line of the foot appear more flattering. A split sole shoe is particularly useful for dancers who need to bend their foot and/or point their toes, such as, for example, in ballet. Such footwear, however, does not provide support for the foot, particularly in the midsection where there is no sole.


Still further, there is footwear designed to improve/assist the user with walking/running through the use of mechanical devices located in the footwear. For example, some footwear includes one or more springs within the sole, typically located in the heel region, to create lift during a push off phase (of the Gait Cycle) or when jumping. Other footwear includes encapsulated air pockets within the sole, also typically in the back portion of the sole to create increased cushioning. Mechanical devices such as springs or air pockets in the sole provide shock absorption properties that relieve some of the stress and fatigue of walking or running.


Some recent footwear marketed for running includes channels or grooves in the outsole to increase outsole flexibility between the forefoot section and the heel section of the sole, such as, for example in the Nike® Free 3.0 Flyknit. The segmented sole may benefit the user by strengthening the muscles in the foot. The outsole is made of lightweight material to try to give the feeling of running barefoot while still giving a cushioned support to the user's foot. Some segmented outsoles are also configured with a ratio of the heel-to-toe height smaller than in a traditional sneaker or running shoe to encourage forefoot strike as opposed to a heel strike when running.


Many runners, especially those who wear traditional running shoes, strike the ground heel first while running. Due to this reason, traditional running shoes usually have added height and cushion in the midsole and outsole of the heel portion of the shoe, causing a larger heel-to-toe height ratio. The added cushioning seeks to provide comfort to runners by reducing the impact of the heel strike phase on the foot and skeletal system. In heel striking, as understood in the context of the gait cycle (the conventional six phases/steps of the gait cycle are 1) heel strike, 2) foot flat, 3) mid-stance, 4) heel-off, 5) toe-off, and 6) swing) the collision of the heel on the ground generates a significant impact force on the skeletal system, whereas in forefoot striking, the collision of the forefoot with the ground causes less effect on the skeletal system.


Applicant has discovered that the existing footwear impedes the natural shock absorptive and cushioning capabilities of the human foot. Existing footwear with passive arch support(s) limits the foot's natural ability to achieve superior arch compression of the foot structure (including bones, muscles and ligaments) which provides shock absorption and cushioning for the user's foot and body. Similarly, the structure of existing footwear with passive arch support(s) limits the energy absorbing and dissipation characteristics of the foot. In addition, most existing footwear causes splaying of the foot along at least one of the medial arch, the lateral arch and the transverse arch, which causes discomfort for some including the feeling of a tight shoe or sneaker.


Throughout the gait cycle, the arches of the foot experience fluctuation of compressive forces due to the different placement of body weight forces at each stage and the reaction of the foot's biomechanics. Spacing and the shapes of the bones in the human foot enable the human foot to achieve two different types of compression of the bones depending on the position of the foot and the direction of the forces.


As used herein, the phrase “inferior compression” refers to the state of the human foot when compressive forces are applied along inside arch(es) of the foot causing the parts of the bones of the foot along the inside of the arch(es) to touch together. FIG. 12 shows a side view of the human foot depicting inferior compression along the medial arch with the bones touching along the inside of the arch and separated along the outside of the arch. Inferior compression of the medial foot arch typically occurs during the heel-off phase of the gait cycle when the foot is plantar flexed and the big toe is dorsiflexed causing a longitudinal stretching of the plantar fascia tissue shortening the distance between the calcaneus and metatarsals (arch base decreases) to elevate the medial longitudinal arch (arch height increases) as seen in FIGS. 13, 12, 2 and 2A. The plantar shortening that results from plantarflexion of the foot and dorsiflexion of the big toe is the essence of the “Windlass Mechanism” of the foot that helps with propulsion by creating a stable arch and hence a more rigid level for push off. Notably, with footwear having a passive medial arch support, the footwear limits the ability of the longitudinal arch base to shorten preventing inferior compression and thus decreasing the effect from the windlass mechanism of the foot. In some cases for footwear, when in a heel-off stage, the passive medial arch support in the footwear pushes against the plantar fascia forcing it in another direction (e.g., upwards towards the top of the user's foot) which can cause pain and discomfort.


As used herein, the phrase “superior compression” refers to the state of the human foot when compressive forces are applied along the outside arch(es) of the foot causing the parts of the bones of the foot along the outside of the arch(es) to touch together. FIGS. 13, 11, and 2 show a side view of the human foot in the flat foot phase depicting superior compression along the medial longitudinal arch with the bones touching along the outside of the arch and separated along the inside of the arch. Splaying occurs in an arch, such as, for example in the foot arch(es), when weight is applied on the outside of the arch causing the arch height to decrease and causing the arch base to increase (widen) as shown in FIG. 2 where y2<y<y1 and x2>x>x1. For the transverse arch of the foot, the forefoot flattens and the arch height decreases, causing widening of the forefoot as well as potential damage or irritation to the nerve under the ball of the foot. Splaying can also be caused by applying too much pressure to the foot, for example by wearing high heels or by being overweight. Injury or disease, such as diabetes, may also cause splaying by compromising bone and soft tissue integrity. Morton's neuroma is a painful condition that is often associated with splayfoot as it may be caused by irritation or damage to the intermetatarsal plantar nerve.


A passive medial arch support such as the arch pads commonly found inside footwear, provides a filler of arch concavity. It supports the medial longitudinal arch of the user during weight bearing (at the flat foot stage of the gait cycle) when walking and/or running keeping the foot arch structure in a middle position (between a state of inferior compression and a state of superior compression) and thus not rigid. The uncompressed position hinders normal foot biomechanics of arches splaying. Since ground forces dissipate through the passive arch support, force fluctuation is restricted, there are no arch compressive forces either inferior or superior and thus the natural arch neutralizing and shock absorption properties of the foot are diminished. Passive arch supports also have a long term deleterious effect on the foot; they passively hold the foot as if in a cast sometimes causing osteoporosis, muscle and ligaments atrophy, with a loss of ligament integrity which maintains the architectural structure of the foot. Consequently, when walking barefoot without a passive arch support after experiencing these deleterious effects, the foot effectively “Hyper-Splays” due to the loss of ligament integrity without achieving arch rigidity (Flat Foot) and is weak and unstable.


None of the existing footwear is capable of providing a user with a dynamic arch support system that increases the users' medial arch rigidity when the user pushes down on the insole (e.g., during the flat foot and mid-stance stages of the gait cycle), an arch support system that increases footwear comfort and also provides assistance with walking and/or running through propulsion. None of the existing footwear lessens the splaying of the user's foot along the medial longitudinal arch and/or the transverse arch for increased comfort. None of the existing footwear increases the rigidity of the arch support(s) when loading to help achieve an inferior compression of the user's foot (as opposed to superior arch compression which occurs during arch splaying) creating improved shock absorption and cushioning effects. None of the exiting footwear provides a convex shaped outsole with opposing wedge shaped configurations in the bottom of the forefoot sole section and the heel sole section which provide rotation of the forefoot sole section and the heel sole section in opposite directions when weight is applied.


None of the exiting footwear provides a convex shaped, split sole (in the longitudinal direction) with an outsole having opposing wedge shaped configurations in the bottom of the forefoot sole section and the heel sole section that provide rotation of the forefoot sole section and the heel sole section in opposite directions when weight is applied.


None of the exiting footwear provides a convex shaped outsole transversely across the width of the footwear in the forefoot section with opposing wedge shaped configurations which provide rotation of the medial side and the lateral side of the forefoot sole section in opposite directions when weight is applied.


None of the exiting footwear provides a convex shaped outsole transversely across the width of the footwear with a split sole and with opposing wedge shaped configurations in the forefoot sole section which provide rotation of the medial side and the lateral side of the forefoot sole section in opposite directions when weight is applied.


None of the exiting footwear provides a flexible, elastic, member between the forefoot sole section and the heel sole section configured to increase cushioning effects, store and dissipate energy thereby assisting with propulsion, and which increases foot comfort by reducing splaying. None of the existing footwear provides a split sole with a flexible, elastic, member between the forefoot sole section and the heel sole section configured to increase cushioning effects, store and dissipate energy thereby assisting with propulsion, and which increases foot comfort by reducing splaying.


None of the existing footwear provides a flexible, elastic, member transversely positioned in the forefoot sole to increase cushioning effects and comfort by reducing splaying. None of the exiting footwear provides a split sole with flexible, elastic, members positioned longitudinally and transversely in the forefoot sole section to increase cushioning effects and comfort by reducing splaying.


No existing footwear provides a dynamic arch support comprising an elastic member connected at opposing ends to rotatable wedges which, when force is applied on the wedges, causes the wedges to rotate and in some cases slide thereby bending the elastic member, increasing the energy stored in the elastic member, and creating arch support.


No existing footwear includes at least one pair of rotatable wedges positioned in a location in the footwear such that they are along at least one of the medial arch, the lateral arch, and the transverse arch of the user's foot when worn, wherein the wedges rotate and slide thereby reducing splaying and pronation of the user's foot.


None of existing footwear provides a mechanism to help the user's foot achieve inferior compression of the medial arch during the flat foot phase which relaxes the plantar fascia tissue due to a decrease in distance between the calcaneus and metatarsals.


None of the existing footwear provides a pad for attachment to a user's forefoot across the width of the foot using an adhesive on the top side of the pad, the bottom side of the pad having a pair of wedges positioned in opposite directions such that when the user wears the pad and weight is placed down on the pad, the sides of the foot and the pad rotate around the thicker portion of the wedges causing the transverse arch to arch, thereby reducing splaying and pronation of the user's foot.


None of the existing footwear provides a pad for attachment to a sock or hosiery item in the forefoot area across the width of the sock or hosiery item using adhesive located on the top side of the pad, the bottom side of the pad having a pair of wedges position in opposite directions such that when the user wears the pad and weight is placed down on the pad, the sides of the foot and the pad rotate around the thicker portion of the wedges causing the transverse arch to arch, thereby reducing splaying and pronation of the user's foot.


None of the existing footwear provides two pads for attachment to a sock or hosiery item, the first pad in the forefoot area across the width of the sock or hosiery item and the second in the heel area, using adhesive located on the top side of the pads, the bottom side of the first pad having a pair of wedges positioned in opposite directions such that when the user wears the pad and weight is placed down on the pad, the sides of the foot and the pad rotate around the thicker portion of the wedges causing the transverse arch to arch thereby reducing splaying and pronation of the user's foot, the second pad in the heel area the bottom side having one wedge positioned with the thicker portion closer to the middle (laterally) of the foot and the thinner portion located closer to the back of the foot such that when the user wears both the first pad and the second pad and weight is placed down on the pads, the front and back of the foot also rotate around the thicker portions of the wedges also causing the medical arch to arch.


SUMMARY OF THE INVENTION

Applicant has invented footwear with an improved arch support, footwear configured to improve comfort and to assist with walking and/or running that overcomes the foregoing and other shortcomings. Applicant has invented footwear using at least one pair of wedges on the outsole, midsole, and/or innersole which provide footwear having improved arch support, configured to improve comfort and to assist with walking and/or running. Applicant has also invented attachments to be used as part of footwear or on existing footwear, e.g., socks and hosiery, that include at least one pair of wedges which provide improved arch support and are configured to improve comfort and to assist with walking and/or running. While the invention will be described in connection with certain embodiments, it will be understood that the invention is not limited to those embodiments. To the contrary, the invention includes all alternatives, modifications and equivalents as may be included within the spirit and scope of the present invention.


One embodiment of the present invention includes an article of footwear comprising an upper and a sole structure secured to the upper having a front at the toe area and a back at the heel area, a medial side and a lateral side, a longitudinal length from the front to the back and a transverse width from the medial side to the lateral side. The sole structure according to the invention comprises an outsole with a generally convex shape along the longitudinal length of the footwear when the footwear is in a non-weight bearing position having a front end region and a back end region. The front end region is located along the entire front sole region of the sole with a connecting portion in the front of the midfoot sole region. The back end region is located along the entire rear sole region of the sole with a connecting portion in the back of the midfoot sole region. There is a raised portion of the sole between the front end region and the back end region in the midfoot sole region of the footwear. Accordingly, the front end region of the outsole is curved upward toward the upper from the innermost portion in the midfoot sole region to the front of the footwear and the back end region of the outsole is curved upward toward the upper from the innermost portion in the midfoot sole region to the back of the footwear. The outsole has a place of contact defined as at the innermost portion of the front end region of the outsole and a place of contact defined as the innermost portion of the back end region of the outsole. When the footwear is worn and weight is placed down onto the sole, the front end and the back end of the outsole each bend about the respective places of contact bending in opposite directions causing the outsole of the footwear to flatten in the forefoot sole region and the rear sole region.


Preferably, the footwear according to the invention has no passive medial arch support. Preferably, the raised portion of the sole between the front end region and the back end region has no outsole or a raised outsole. In other embodiments, the raised portion of the sole between the front end region and the back end region has no midsole and/or insole.


In the embodiment shown in FIG. 3C, a flexible and elastic member is positioned across the middle section 220 into the outsole 119 in the front end section and in the back end section. As seen in Position B, the rotation and flattening of the bottoms of the front end section and the back end section when weight is applied to the footwear causes the elastic member to bend/arch.


The flexible and elastic member may be, for example, a metal strip/rod or a plastic strip/rod connecting the front end section and the back end section. The metal or plastic strip/rod spans across the middle section. The metal or plastic strip/rod stores energy when bent and the energy is released when the metal or plastic strip/rod flexes back to its original form/position. The invention also includes embodiments where the metal strip is removable and replaceable with a metal strip having different elasticity so that the propulsive force created by the footwear can be modified. In another embodiment, instead of a metal strip between the front end section and the back end section, both the front end section and the back end section can include magnets having similar polarity such that the magnets cause the front end section and the back end section to repel each other when they bend and the magnets move toward each other. As for the metal strip, the invention includes embodiments where the magnets are removable and replaceable with magnets having different magnetic strength.


The invention also includes embodiments where the front end section and/or the back end section of the sole is removable and replaceable with a component having a different configuration (e.g., slope and/or height) to modify the amount of arch support created by the invention. Such embodiments include devices where the sole adjustments are made in the factory during manufacturing, post-manufacture in the factory as a customization, in stores, and/or post-purchase. The invention also includes embodiments where air and/or water can be added to or removed from the sole to change its shape/configuration, including alteration of the angle(s) of inclination of the front end section and/or the back end section. The invention further includes embodiments where the spacing between the front end section and the back end section of the sole can be adjusted for a greater or smaller spacing.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the general description of the invention given above and the detailed description of an embodiment given below, serve to explain the principles of the present invention. Similar components of the devices are similarly numbered for simplicity.



FIGS. 1 and 2 are schematics of the human foot in different views and positions with a partial showing of the bones in the foot.



FIG. 1 shows the general locations of the medial arch, the lateral arch, and the transverse arch in a foot and thus in footwear when footwear is worn. The medial arch is located along the inside of the foot (the medial side from the 1st metatarsal head to the heel) from front (toes) to back (heel) longitudinally along the foot. The lateral arch is located along the outside of the foot (opposite the medial side) longitudinally along the foot. The transverse arch is located across the foot in the forefoot area under the metatarsals and formed by the metatarsals from the medial side to the lateral side of the foot.



FIG. 2 shows the changes in the foot during movement (e.g., walking and different stages of the Gait cycle) including changes in the height (y) and length (x) of the medial arch and changes in the plantar fascia tissue. FIG. 2 shows the foot and the foot arches in 1) a neutral position (e.g., a non-weight bearing position) with a medial arch height y and a medial arch base x, 2) in a position during the heel-off stage with the windlass effect shown where the medial arch height (and the arch height in the bones (designated as dimension y1)) increases, the medial arch base length (and the arch base length in the bones (designated as dimension x1)) decreases, and the plantar fascia tissue tightens, and 3) in a weight bearing position during the mid-stance stage of the gait cycle where the medial arch height (and the arch height in the bones designated as y2) decreases as compared to a non-weight bearing position, the medial arch base length (and the arch base length in the bones designated as x2) increases as compared to a neutral position, and the plantar fascia tissue stretches as compared to a non-weight bearing position. FIG. 2 also shows schematics of the human foot and the bones of the foot in different positions depicting inferior compression along the medial arch with the bones touching along the inside of the arch and separated along the outside of the arch and depicting superior compression along the medial arch with the bones touching along the outside of the arch and separated along the inside of the arch



FIG. 2A illustrates a bottom plan view and a side view of a sole showing predetermined sections, regions or portions substantially corresponding to the anatomy of a human foot with the skeletal structure of the human foot.



FIGS. 3A-3C show several embodiments of the invention in the form of a shoe or sneaker comprising a modified outsole in bottom plan views and side views. FIGS. 3A-3C show the footwear worn and in each figure in two positions: 1) a non-weight bearing position A (the swing stage of the gait cycle) and 2) a weight bearing position B (the mid-stance stage of the gait cycle).



FIG. 3A shows the modified outsole configuration according to the invention with a pair of wedge shaped portions one near the back end of the front end section of the sole (shown only on the medial side of the foot) and the other near the front end of the back end section of the sole transversely across the width of the outsole.



FIG. 3B shows the modified outsole configuration according to the invention similar to the embodiment in FIG. 3A with a pair of wedge shaped portions, one near the back end of the front end section (this time shown transversely across the width of the outsole) and the other near the front end of the back end section transversely across the width of the outsole.



FIG. 3C shows the modified outsole configuration according to the invention similar to the embodiment in FIG. 3B with a pair of wedge shaped portions one near the back end of the front end section of the sole (transversely across the width of the outsole) and the other near the front end of the back end section of the sole transversely across the width of the outsole, along with an elastic member connected to (joining) each wedge shaped portion at the front end section and the back end section.



FIG. 4 shows an embodiment of the invention comprising a modified insole configured with the wedges allowing for the movement (dual rotation of the ends) of the insole within the footwear bottom plan views and side views.



FIG. 5 shows (in bottom plan views and side views) an embodiment of the invention comprising a sock configured with wedges on the underside of the sock the wedges shown in the same position as the wedges shown on the outsole in FIG. 3A. In the embodiment shown in FIG. 5, the sock can be made with the wedges integral to the sock or the wedges can be removably attached to the sock (or hosiery item).



FIG. 6A shows (in bottom plan views and side views) an embodiment of the invention comprising an adhesive pad that can be removably attached to the entire bottom of the user's foot and the underside of the big toe, the adhesive pad having wedge shaped pads positioned similar to the embodiments shown in FIGS. 3A and 5. When weight is applied to the adhesive pad, the user's foot rotates creating inferior compression of the foot's medial arch causing a reduction in splaying. In the embodiment shown in FIG. 6A, the adhesive pad can be made with the wedges integral to the adhesive pad or the wedges can be removably attached to the adhesive pad. FIG. 6B shows (in bottom plan views and side views) the pad on a sock/hosiery item it being understood the pad can be made integral to the sock/hosiery item or it could be made removable using adhesive or another temporary fastening mechanism.



FIGS. 7A-7G show different embodiments of footwear and footwear attachments according to the invention comprising wedges positioned under the front end section of the device (under the user's forefoot) to cause the user's foot to arch along the transverse arch when weight is applied thereby decreasing the length of the arch base. Each FIGS. 7A, 7B, 7C, 7D, 7F, and 7G include side views, bottom plan views and section views. FIG. 7E is a bottom plan view and section views of the embodiment shown in FIG. 7D. FIG. 7A shows an embodiment comprising an insole with wedges located on the underside of the insole, FIG. 7B shows an embodiment in the form of a sock with the wedges on the underside of the sock, FIG. 7C shows an embodiment in the form of an insert that can be inserted into footwear or alternatively can be removably adhered to the underside of a user's foot along the entire bottom of the foot and the big toe with wedges on the underside, FIGS. 7D and 7E show an embodiment in the form of an adhesive pad attachable solely to the forefoot area of the user's foot with wedges on the underside across the width of the adhesive pad. FIG. 7F shows the pad with wedges (shown in FIG. 7D) attached to a sock/hosiery item, FIG. 7G shows the pad with wedges shown in FIG. 7C attached to a sock/hosiery item.



FIGS. 8A-8D show embodiments of the invention in the form of one or more adhesive pad(s) or for the underside of the user's foot. FIGS. 8E-8H show embodiments of the invention in the form of the pad(s) for the underside of the user's foot attached to the underside of a sock/hosiery item. Each of the embodiments in FIGS. 8A-8H comprise three wedges to cause arching along two arches, namely the transverse and medial arch, or all three arches, namely the medial arch, the lateral arch, and the transverse arch. Each FIGS. 8A-8H include side views, bottom plan views and section views.



FIG. 9 includes schematics to show the benefit of the invention on foot padding. FIG. 9 shows the human foot and the contact locations for the foot along the longitudinal direction when weight is applied on a flat surface. It demonstrates that with the invention, once inferior arch compression is established, it brings about diffusions and direction change of weight force vectors such that a lesser force per unit area travels through a thicker padding (P+). Therefore, more pressure, more padding.



FIG. 10 shows the theory behind the present invention and how a dynamic arch works. The combination of sliding and rotating opposing wedges with a flexible and elastic member between them (external to the human foot or the arch(es) within the foot itself) changes the direction of the resultant forces on the wedges causing a more stable structure when the wedges rotate to a flat position. The forces cause the middle section connecting the two wedges to bend into an arch like shape storing potential energy in the middle section when an elastic member is used. The energy is released in a spring like fashion when the force is removed from at least one of the wedges which has a forward force vector assisting with forward propulsion and an upward vector force which augments body center of gravity shift. A stable arch system is created due to the resulting forces on the arch which become directed inward at the bases of the arch as opposed to distractive outward directed forces in a splaying arch.



FIGS. 11-12 further show how the principles of a dynamic arch work with the invention.



FIG. 11 shows the human foot with a neutral arch and in a condition with superior arch compression.



FIG. 12 shows inferior arch compression occurring in the foot during the heel-off phase without the invention and during mid-stance phase with the invention according to the embodiment shown in FIG. 3A with the wedges on the outsole along the medial arch.



FIGS. 13-16 show the various phases of the gait cycle and the condition of the foot during each phase. The figures include images showing the foot without the invention on top. On bottom, the figures show the effects of the invention on the foot during the phases of the gait cycle. In the flat-foot and midstance phases, with the invention, the foot achieves inferior arch compression without talus pronation instead of superior arch compression with talus pronation.





DETAILED DESCRIPTION OF THE INVENTION

Reference is being made in detail to presently preferred embodiments of the invention. Selective embodiments are provided by way of explanation of the invention, which is not intended to be limited thereto. In fact, those of ordinary skill in the art may appreciate upon reading the present specification and viewing the present drawings that various modifications and variations can be made.


The present invention is footwear with an improved arch support, footwear configured to improve comfort and to assist with walking and/or running. The invention includes footwear with a convex shaped outsole bottom along at least one of the arches (the medial arch, the lateral arch and the transverse arch of the footwear). The footwear according to the invention uses at least one pair of wedges on the outsole, or an outsole shaped and configured in such a manner, which provides for improved arch support, improved comfort, and assists with walking and/or running. The footwear according to the invention also includes midsoles and insoles with the wedge configuration(s) as well as adhesive pads and socks/hosiery with the wedges fixedly or removably attached thereto.


For a better understanding of the present invention, FIG. 2A illustrates a side view and a bottom plan view of a foot and sole showing predetermined regions or portions substantially corresponding to the anatomy of a human foot including three regions, a front sole region, a midfoot sole region and a rear sole region. The front sole region is the location where the user's toes are positioned including the front of the toes to the point where the phalanges connect to the metatarsal bones. The midfoot sole region is the location where the user's medial longitudinal arch is located including the metatarsal bones (also the location for passive arch supports in conventional footwear) and the several interconnecting bones that form the medial arch including the cuboid, the navicular and the talus. The midfoot sole region is further defined by what would be considered the base locations of the medial longitudinal arch, that is, the section between the places where the user's foot, when outside the footwear, would contact a flat surface. Typically, a human foot makes contact at the joints between each of the phalanges and corresponding metatarsal bones and at the heel. The rear sole region is defined as the location behind where the user's heel bone, when outside the footwear, would contact a flat surface, and thus includes a portion of the location of the heel bone. It is understood that the human foot also includes interconnecting muscles, ligaments, and other tissue which are not shown for clarity. The front sole region, midfoot sole region and a rear sole region shown in FIG. 2A represent general areas of footwear that will vary in size and proportion depending upon the user.


In the embodiment shown in FIG. 3A, the invention is an outsole with a generally convex shape (or angled) along the longitudinal length of the footwear when in a non-weight bearing position/condition (Position A). The footwear according to the invention further comprises a wedge shaped rear end section of the outsole and a wedge shaped front end section of the outsole. The footwear according to the invention further comprises a portion of the outsole in the midfoot sole region connected to the outsole in the front end section and a portion of the outsole in the midfoot sole region connected to the outsole in the back end section. The footwear according to the invention has a raised outsole in a part of the midfoot section. The invention also includes a split sole configuration where there is no outsole in at least a part of the midfoot sole region and/or the midsole and/or the insole.


The underside of the outsole in the front end section 210 of the footwear according to the invention is thus curved upward from the lowest location in the midfoot sole region of the footwear to the front of the footwear 120, including the portion in the front sole region. Likewise, the underside of the outsole in the rear end section 230 of the footwear according to the invention is curved upward from the lowest location in the midfoot sole region of the footwear to the rear of the footwear 124, including the portion in the rear sole region. The footwear thus has two places of contact for the outsole on the surface it is placed located in the midfoot sole region that are spaced apart from each other such that when the footwear is worn, the two places of contact will be inside the contact locations for the medial arch of a user's foot. The footwear is also configured such that when worn and weight is placed down onto the footwear and the outsole, the outsole bends about the two places of contact in opposite directions causing the outsole of the footwear to flatten in the rear sole region and in the front sole region. The footwear according to the invention preferably has no passive medial arch support that would otherwise limit the user's foot's ability to achieve inferior arch compression along the medial arch during a flat foot position. It is understood that the outsole of the footwear according to the invention in the front end section 210 of the footwear and/or in the back end section 230 of the footwear can be configured in other shapes with or without curves, such as, for example, a straight outsole sloped upward from the place of contact to the front of the sole and/or from the place of contact to the back of the sole.


The sole according to the invention is flexible preferably made from—plastic, rubber, metal, opposing magnets, leather, air pockets, etc.


As shown in FIG. 3A, a cross-sectional side view of footwear according to the invention with a foot shown inside, the invention's outsole configuration creates two locations 133 and 135 where the sole hinges and bends around when weight is applied. Because the contact locations for the foot (the locations forming the base of the medial foot of the arch) are located outside of the locations of the points of contact for the footwear 133 and 135, the front end section 210 and the back end section 230 of the footwear each rotate down in opposite directions. The initial points of contact on the outsole when the footwear is placed straight down onto the ground identifies those locations about which the rotation occurs, e.g., the apex of the wedge like shape. In FIGS. 3A-C, the locations of rotation are identified by numerals 133 and 135. These locations may be short and thin (e.g., a small line) or the locations may be small areas. For stability, the locations are preferably bigger than a single point of contact and consist of a small area on the outsole. According to the invention, for most footwear having a longitudinal length L from the toe to the heel, the point of contact 133 for the footwear is located at about ⅓ L from the back of the footwear. The point of contact 135 for the footwear is also located at about ⅓ L from the front of the footwear, although the invention includes larger distances including distances between about ⅓ L and ½ L.


When weight is placed on the footwear, as shown in Position B, the front end section of the sole 210 of the footwear comprising the sole in the forefoot sole region and a part of the outsole located in the front of the midfoot sole region connected to the sole in the forefoot region rotates around the place of contact 135 for the front wedge 134 in a direction t. The back end section of the footwear 230 comprising the sole in the rear sole region and a part of the outsole located in the rear of the midfoot region and connected to the sole in the rear sole region rotates around the place of contact 133 for the rear wedge 132 in a direction s. The direction of rotation t of the front end of the sole 210 is about opposite to the direction of rotation s of the back end of the sole 230. The invention includes the ability for the sole to rotate (each the front end section 210 and/or the back end section 230) in the transverse direction (e.g., a twisting like pronation of the foot).


The rotation of the front and back end sections of the sole 210 and 230 in opposite directions stabilizes the outsole 119 on the ground (or another surface on which the footwear is placed). The front end section 210 and back end section 230 rotation causes the middle section of the sole in between the two 220 (within the midfoot sole region) to arch. When the footwear is worn, the weight of the user comes down on the contact locations for the medial arch which are outside of the places of contact 133 and 135. The footwear consequently shortens the base of the user's medial foot arch, raising the medial arch of the user's foot, thereby increasing the rigidity along the medial arch with inferior arch compression. The user's foot is placed into the condition it would normally be in during the heel-off windlass stage of the gait cycle (but without toe dorsiflexion and its consequence of tighter plantar fascia) with an increased arch height and decreased arch base length, and the plantar fascia tissue shortens (and it therefore loosens) instead of the foot being placed into the mid-stance stage where the user's foot is splayed with a decreased arch height and increased arch base length and with the plantar fascia tissue lengthened (stretched longitudinally). The user's foot is pushed into a state where the bones of the foot experience inferior arch compression (the same state as during the windlass effect during the heel-off stage of the gait cycle) instead of superior compression. Particularly for user's with tight footwear (shoes), with the invention, in this position, the user's foot fits more comfortably inside the footwear because it does not “spread out” (splay) as much as without the invention.


Most preferably, although not necessary, when weight is placed on the footwear causing rotation of the front end section 210 and the back end section 230, causing the shape of the underside of the outsole to change from a convex configuration to an about flat configuration (with the underside of the front end section and the underside of the back end section flat), either one or both of the front end section 210 of the outsole and the back end section 230 of the outsole also slide on the surface they contact each towards the middle of the footwear (towards each other). The combination of sliding and rotating of the front end section 210 and back end section 230 of the sole increases the bending force on the middle section 220 of the sole which in turn increases the arching action of the footwear in the middle section 220 and thus the medial arch of the user's foot. A stronger and more stable arch system is created due to the resulting forces on the base of the arch which become directed inward at the bases of the arch (at the outsole) as depicted in FIG. 10.


The sliding of the outsole 119 along the contacting surface at the places of contact 133 and 135 may occur for typical outsole materials of construction (e.g., rubber) without the need for modification. Alternatively, in another embodiment of the invention, the sliding of the outsole 119 along the contacting surface at the places of contact 133 and 135 could be improved by constructing parts of the underside of the outsole with a smooth plastic or similar material over the entire outsole or parts of it including the places of contact 133 and 135.


In the embodiment shown in FIG. 3A, the middle section 220 of the sole 114 between the places of contact 133 and 135 is shown with an insole 115, a midsole 117, and an outsole 119. Preferably, one or more of the insole 115, a midsole 117, and outsole 119 are made from an elastic material in the middle section of the sole 220 extending at least over/past the places of contact 133 and 135 in the front end section 210 and the back end section 230. In FIG. 3A, the midsole 117 is an elastic material (e.g., rubber) which bends (arches) when the footwear is placed into Position B. Alternatively, one or more plastic or metallic plates/rods could be included in the sole 114, positioned on the underside of the outsole 119, inside the outsole 119, inside the midsole 117, and/or inside the insole 115.


In the embodiment shown in FIG. 3A, the outsole 119 is configured with front end section 210 and a back end section 230 each having a wedge shaped configuration 132 and 134. The front end section 210 of the outsole 119 is located in the forefoot sole region and a part is in the midfoot sole region (as described in FIG. 2A). The back end section 230 of the outsole 119 is located in the rear sole region and a part is in the midfoot sole region (as described in FIG. 2A). In this embodiment shown in FIG. 3A, the front end section 210 of the outsole 119 is only wedged on the medial side of the footwear. Such a configuration provides for dynamic arch support primarily along the medial arch of the user's foot.


In the alternative embodiments shown in FIGS. 3B and 3C, the outsole 119 configuration is similar to the embodiment shown in FIG. 3A configured with a front end section 210 and a back end section 230 each having a wedge shaped configuration 132 and 134. The front end section 210 of the outsole 119 is located in the forefoot sole region and a part is in the midfoot sole region. The back end section 230 of the outsole 119 is located in the rear sole region and a part is in the midfoot sole region. In this embodiment, the front end section 210 of the outsole 119 has a wedge shape across the width of the footwear in the transverse direction. Such a configuration provides for dynamic arch support along the user's medial foot arch and, more so than the embodiment shown in FIG. 3A, also along the transverse arch of the user's foot. In the embodiment shown in FIG. 3B, there is no outsole 119 in the middle section 220 of the sole 114.


In the embodiment shown in FIG. 3C, a flexible and elastic member 140 is positioned across the middle section 220 into the outsole 119 in the front end section 210 and in the back end section 230. As seen in Position B, the flattening of the bottoms of the front end 210 and the back end section 230 when weight is applied to the footwear 110 causes the elastic member 140 to bend/arch.


The elastic member 140 and/or the sole 114 in the case of an elastic sole, stores energy when bent and the energy is released when the weight is removed and the elastic member flexes back to its original form/position. When a flexible, resilient, elastic member, such as, for example, a metal strap or a plastic strap, are used, the footwear according to the invention therefore stores and releases energy during the various stages of the Gait cycle effectively assisting with walking and/or running. The energy stored is released between the mid-stance and the heel off stages of the Gait cycle causing the heel of the foot to spring up when the back end section 230 of the footwear comes up off of the ground and the stored energy is released. The user thus experiences a spring like effect causing a propulsion of the user's foot. The amount of force received is a function of the degree of inclination (convexity) of the bottom of the outsole, the elasticity of the sole (and/or elastic member), and the amount of weight (force) applied.


In the embodiment shown in FIG. 3C, metal strip 800 includes lines or gradations to see or measure the spacing between the points of contact 133 and 135. The invention includes embodiments where the user can adjust the spacing between the front end section 210 and the back end section 230 by hand, or using a wrench or a pump. Alternatively, the entire front end section 210 of the sole and/or the entire back end section 230 of the sole can be removed and replaced with a different sized component as desired for comfort and/or for a specific activity (e.g., walking, running, etc.). In yet another embodiment, as shown in FIG. 3C, magnets with similar polarity can be positioned within both the front end section 210 and the back end section 230 to increase the propulsive force for the footwear according to the invention.


It is understood that the same dynamic arch effect can be achieved with a modified insole (or insert) for footwear instead of the outsole. As shown in the embodiment in FIG. 4, the insole can be configured with the wedged like configuration allowing for the movement (rotation) of the front end section 210 and the back end section 230 of the insole within the footwear. The wedge shaped configuration on the underside of the insole 115 which is made of an elastic material allows the front end section 210 and the back end section 230 to rotate and slide causing the front end section 210 and back end section 230 of the insole 115 to flatten down against the midsole of the footwear. The middle section 220 of the insole bends/arches upward as shown in position B causing inferior arch compression of the user's foot and therefore a stable medial arch of the user.


The present invention is not limited to just shoes and sneakers and insoles but also includes other forms of footwear including socks and hosiery configured with fixed or removable wedges and pads. The invention includes inserts for footwear or inserts for socks, as well as adhesive pads that can be removably adhered to the user's skin or to socks and hosiery. FIG. 5 shows one example embodiment of the invention in sock form 310 form with wedges 132 and 134 on the underside of the sock 310. In Position A, in a non-weight bearing position, the places of contact 133 and 135 contact the inside of the shoe or sneaker with the front (at the toes) and back (at the heel) raised. When weight is applied down, as shown in position B, the front and back of the user's foot rotate about the places of contact 133 and 135 causing the user's foot to experience a modified windlass type effect without extension (dorsiflexion) of the toe and therefore relaxation rather than tightening of the plantar fascia. Splaying is counteracted as a result of the inferior compression of the user's foot along the medial arch.



FIG. 6A shows an embodiment with wedge shaped pads 410 and 430 on a larger adhesive pad 450 that can be removably placed onto the user's foot which will cause the desired rotation of the front and back of the user's foot when weight is applied. When the user's foot is in Position B, a weight bearing position, in the high heel shoe, as shown in FIG. 6A, the medial arch of the user's foot lifts up and becomes rigid due to inferior compression causing a reduction in splaying as compared to Position B without any pads 410 and 430.



FIG. 6B shows yet another embodiment of the invention comprising an adhesive pad 450 with wedges 410 and 430. FIG. 6B shows the adhesive pad 450 on a sock/hosiery item it being understood the adhesive pad 450 can be made integral to the sock/hosiery item or it could be made removable using adhesive or another temporary fastening mechanism such as double sided tape, hook and loop fasteners, and the like.


The invention also includes embodiments of footwear with wedge shaped pads positioned along the traverse arch of the user's foot. FIGS. 7A-7G show embodiments of footwear according to the invention with the wedge shaped components positioned under the user's forefoot to cause the user's foot to arch along the transverse arch when weight is applied decreasing the transverse arch base length rather than an increase with splaying.



FIG. 7A shows an embodiment in the form of an insole 515, FIG. 7B shows an embodiment in the form of a sock 610, FIG. 7C shows an embodiment in the form of an adhesive pad 650 for the underside of the user's foot (in the form of a stick on pad that adheres to the foot), FIGS. 7D and 7E show an embodiment in the form of an adhesive pad 650 attachable solely to the forefoot area of the user's foot with wedges on the underside across the width of the adhesive pad. FIG. 7F shows the pad with wedges (shown in FIGS. 7D and 7E) attached to a sock/hosiery item 310, FIG. 7G shows the pad with wedges shown in FIG. 7C attached to a sock/hosiery item 310. In each of the embodiments shown in FIGS. 7A-7G, the wedge like components 532 and 536 are positioned on opposing sides of the footwear (and foot) transversely in the front end section of the footwear (and on the foot). When weight is placed on the footwear, as shown in Position B in the Figures, both the medial side and the lateral side of the footwear (and foot) rotate around the places of contact 533 and 537 in directions Z2 and Z1 respectively. The direction of rotation of the medial side of the footwear is about opposite the direction of rotation of the lateral side of the footwear. The invention includes embodiments with some rotation for each the medial side and/or the lateral side also in the longitudinal direction.


The rotations of the footwear causes the sole of the user's foot (and the footwear between the places of contact 533 and 537, such as, for example, for the embodiments shown in FIG. 7A-7G) to arch,? raising the portion of the device (and the user's foot above) between the places of contact 533 and 537. Splaying is reduced along the transverse arch of the user's foot increasing comfort in the footwear.


In the embodiments shown in FIGS. 7D, 7E and 7F, the adhesive pad 650 for the underside of a foot shown has a front at a toe area and a back at a rear of the forefoot area, a medial and lateral side, a longitudinal length from the front to the back and a transverse width from the medial side to the lateral side. The adhesive pad comprises an upper surface 599 removably attachable to a sole of a user's foot using adhesive. The upper surface 599 is formed to a non-planar, flexible convcave curve (or curvature) that starts medial to the center and spans to an edge on the medial side along the transverse width. The upper surface 599 is also formed to a non-planar, flexible concave curve that starts lateral to the center and spans to an edge on the lateral side along the transverse width. The upper surface 599 is also formed to a non-planar, flexible, concave curve or curvature from front to back at the medial side along the longitudinal length. The upper surface 599 is also formed to a non-planar, flexible, concave curve from front to back at the lateral side along the longitudinal length. The bottom surface 598 (opposite the upper surface 599) contacts the inside of footwear or the ground and includes a first portion located medial to a center of the adhesive pad, the first portion sloped upwards with a flexible partial planar surface (that starts as planar and then curves to be non-planar at about half way along it's span (about center of the transverse width)) towards the (concave curved) upper surface 599 along the transverse width from a) a place of contact located on the bottom surface 598 to the medial side of said adhesive pad to b) an edge on the medial side. The bottom surface 598 also includes a second portion located lateral to a center of the adhesive pad, said first portion sloped upwards with a flexible partial planar surface (that starts as planar and then curves to be non-planar at about half way along it's span) towards the (concave curved) upper surface 599 along the transverse width from a) a place of contact located on the bottom surface to the lateral side of said adhesive pad to b) an edge on the lateral side. The bottom surface 598 between said first portion and said second portion of the bottom surface is raised above the places of contact. The planar surface area of the bottom surface 598 along the transverse width at both the medial and lateral sides is formed to have a between about 12 to 20 degree angle in relation to the ground plane when the adhesive pad is worn and initially makes contact with the ground plane. When the adhesive pad is worn and weight is placed down onto the adhesive pad, the medial and lateral side each bend about said places of contact and rotate in opposite directions.


The adhesive pad may be made from a semi-compressible material with shape memory, such as silicone. The adhesive pad could be made with a high friction coating on the upper surface and a lower friction coating on the bottom surface such that the adhesive pad can be adhered to the bottom of the foot surface outside of a shoe and then slipped into a shoe with the adhesive pad worn.


In FIGS. 7D-7F the bottom surface 598 of the wedges, along the longitudinal direction, on both the lateral and medial side of the adhesive pad 650, is molded primarily to a non-planar convex curved shape that is similar or matches the curvature on the corresponding upper surface 599 above those portions of the bottom surface 598. FIG. 7E shows this curvature in the bottom view of and the section views. The two wedges (532 and 536) each have cup-like shapes on each side of the adhesive pad 650, the upper surface 599 of the cup-like area being concave. The bottom surfaces 598 of the two wedges (532 and 536) are configured differently in the longitudinal and lateral directions. In the longitudinal direction, as shown in sections b-b and c-c in FIG. 7E, the bottom surface 598 is convex shaped with a similar (or same) curvature as the corresponding upper surface 599. In the lateral direction, the half closest to the outside edge of the adhesive pad 650 is also convex shaped with a similar (or same) curvature as the corresponding upper surface 599 whereas the half closest to the inside of the adhesive pad 650 curved differently than the upper surface 599 to create the wedge-like shape on the bottom of the wedges as shown in Section a-a.


It is further understood that the invention is not limited to embodiments of footwear having the wedge shaped configuration along just one of the medial arch, the lateral arch, or the transverse arch, but rather also includes combinations thereof. For example, FIGS. 8A and 8B show embodiments of the invention in the form of an adhesive foot cushion (pad) attachable to the underside of the user's foot comprising three wedge shaped areas that cause arching along either two arches, namely the medial arch and transverse arch (the embodiment in FIG. 8A), or all three arches of the user's foot namely the medial arch, the lateral arch, and the transverse arch (the embodiment shown in FIG. 8B). While FIG. 8A comprises three wedge shaped areas that cause arching along only two of the foot's arches, namely the transverse arch and medial arch, FIG. 8B comprises three wedge shaped areas that cause arching along all three of the foot's arches, namely the transverse, medial and lateral arch. A high heel shoe is shown in FIGS. 8A and 8B, it being understood that the invention is not limited to use with high heel shoes but rather includes use with all other forms of footwear.



FIGS. 8C and 8D show embodiments of the invention in the form of two adhesive foot cushions (pads) attachable to the underside of the user's foot, the forefoot area portion comprising two wedge shaped areas and the back (heel) portion comprising one wedge shaped area. Like the embodiments shown in FIGS. 8A and 8B, when weight is applied, the device causes arching along the foot arches, namely the transverse and medial arch as shown in FIG. 8C, or the three foot arches, namely the transverse, medial and lateral arches as shown in FIG. 8D.



FIGS. 8E-8H show the components of the invention shown in FIGS. 8A-8D, respectively, attached to the underside of a hosiery or sock item.


For each of the embodiments shown in FIGS. 8A-8H, the wedge-like shaped parts 532 and 536 of the foot cushion 750 are positioned on opposing sides of the footwear transversely in the front end section. When weight is placed on the footwear, as shown in Position B, both the medial side and the lateral side of the footwear rotate around the places of contact 533 and 537 in directions Z2 and Z1 respectively. The direction of rotation of the medial side of the footwear Z2 is about opposite the direction of rotation of the lateral side of the footwear Z1. These embodiments in FIGS. 8A-8H allow the foot cushion 750 to rotate in the forefoot region as well as at the medial side (FIGS. 8A, 8C, 8E, and 8G) or with both the medial and the lateral side (FIGS. 8B, 8D, 8F, and 8H) IN THE LONGITUDINAL DIRECTION. The differences in the configuration of wedge 536 in each FIGS. 8A and 8B, 8C and 8D, 8E and 8F, and 8G and 8H), including the extension of the place of contact 537 around more of the perimeter of the underside of the wedge 536 and the extension of the accompanying “peak”-like slope around more of the perimeter of the underside of the wedge (as more clearly shown in the portions shown in Position A and in Section a-a) allows the foot cushion 750 to rotate along the transverse arch and the lateral arch in the longitudinal direction. The rotations of the footwear causes the sole of the user's foot (and the footwear where there is a part of the footwear between the places of contact 533 and 537) to arch, raising the portion of the device (and the user's foot above) between the places of contact 533 and 537, 533 and 535, and for FIGS. 8B, 8D, 8F, and 8H, 537 and 535. Splaying is reduced along the transverse arch of the user's foot increasing comfort in the footwear.


In combination with the wedge shaped configuration 534 located at the back end of the footwear, the wedge like configurations 532 and/or 536 on the underside of the footwear cause bending/arching along the medial arch or the medial and lateral arch of the user when weight is applied as shown in position B. With the invention, arch splaying is eliminated as a result of the inferior compression of the user's foot along the medial arch, the lateral arch, and the transverse arch.


For the embodiments shown in FIGS. 8C and 8D, there are two adhesive pads 750 designed to be worn together for the underside of a foot, the first adhesive pad 750 having a front at a toe area and a back at the rear of the forefoot area, and a second adhesive pad 750 with a back at the back of the heel of the user's foot when worn and a front closer to the medial arch of the user's foot when worn. Each adhesive pad 750 has a medial and lateral side, a longitudinal length from the front to the back and a transverse width from the medial side to the lateral side. Each adhesive pad 750 has an upper surface 599 removably attachable to a sole of a user's foot using an adhesive or the like. The first adhesive pad 750 for the forefoot area of the user's foot has an upper surface 599 formed to a non-planar, flexible concave curvature that starts medial to the center and spans to an edge on the medial side along the transverse width. The upper surface 599 is also formed to a non-planar, flexible concave curvature that starts lateral to the center and spans to an edge on the lateral side along the transverse width. The upper surface 599 is also formed to a non-planar, flexible, concave curvature from front to back at the medial side along the longitudinal length. The upper surface 599 is also formed to a non-planar, flexible, concave curvature from front to back area at the lateral side along the longitudinal length. Effectively, the upper surface 599 is undulating and has two concave curves at the lateral and medial side and middle part undulating in a concave curve, thus the two concave curves at lateral and medial side are connected by a convex curve between them, hence the upper surface undulates—down then up then down, then up again. The bottom surface 598 of the first adhesive pad 750 is for contact with the inside of footwear or the ground. A first portion of the bottom surface 750 is located medial to a center of the adhesive pad, the first portion sloped upwards with a flexible partial planar surface (that starts as planar and then curves to be non-planar at about half way along it's span) towards the (concave curved) upper surface along the transverse width from a) a place of contact located on the bottom surface to the medial side of said adhesive pad to b) an edge on the medial side. A second portion of the bottom surface is located lateral to a center of the adhesive pad, said second portion sloped upwards with a flexible partial planar surface (that starts as planar and then curves to be non-planar at about half way along it's span) towards the (concave curved) upper surface along the transverse width from a) a place of contact located on the bottom surface to the lateral side of said adhesive pad to b) an edge on the lateral side. The bottom surface 598, between the first portion and the second portion, is raised above said places of contact. The planar surface area of the bottom surface 598 along the transverse width at both the medial and lateral sides is formed to have a between about 12 to 20 degree angle in relation to the ground plane when the adhesive pad is worn and initially makes contact with the ground plane. When the adhesive pad 750 is worn and weight is placed down onto the adhesive pad 750, the medial and lateral side each bend about the places of contact and rotate in opposite directions.


The description of the bottom surface of described above for FIGS. 7D-F applies here for the bottom surface 599 of the first adhesive pad (for the forefoot area) in FIGS. 8A-H.


The second adhesive pad 750 (the heel area) has a bottom surface sloped upwards toward the concave curved upper surface of the adhesive pad along the longitudinal length from the place of contact located a) at the front of the second adhesive pad (on the bottom surface) to b) the back of the adhesive pad 750.


For the footwear according to the invention comprising two separate adhesive pads, when the first and second adhesive pads are worn together and weight is placed down onto the adhesive pads, both the medial side and the lateral side of the footwear rotate around the places of contact 533 and 537 in directions Z2 and Z1 respectively. The direction of rotation of the medial side of the footwear Z2 is about opposite the direction of rotation of the lateral side of the footwear Z1. The rotations of the footwear causes the sole of the user's foot (and the footwear where there is a part of the footwear between the places of contact 533 and 537) to arch, raising the portion of the device (and the user's foot above) between the places of contact 533 and 537. Splaying is reduced along the transverse arch of the user's foot increasing comfort in the footwear. In addition, the front end of the first adhesive pad 750 and the back end of the second adhesive pad rotate in opposite directions (in the longitudinal direction) along the medial axis of the foot or the both the medial and lateral axis.


It is noted that for any of the foregoing embodiments with one or more adhesive pads, the adhesive pads can be attached to a hosiery item (including a sock) as opposed to adhering the pad directly to the foot skin of the user. The pad(s) also could be fixedly attached (using adhesive or other fastening devices) to the outside bottom part of the hosiery item wherein the fabric of the hosiery item makes contact with the foot skin as opposed to any adhesive on the pad(s) making contact with the user's skin. In such an embodiment, adhesive may or may not be included on the top of the fabric layer (inside) to hold the hosiery item in position on the user's foot. The adhesive pad(s) also could be fixedly attached to the inside of the hosiery item, wherein the upper surface of the pad(s) will make direct contact with the foot skin but may (or may not) include adhesive. Finally, the present invention includes hosiery items with pockets in which the pad(s) of the invention may be placed in or integrally fixed in the positions hereinbefore identified, some of those embodiments also including adhesive inside the hosiery to attach the user's foot to the hosiery item. For such an embodiment, a slit or series of openings in the fabric of the hosiery item may be used that run along the perimeter of the pad/pads so one can access the inside surface of the sock/hosiery item and position the adhesive pad properly).



FIGS. 13-16 show how the invention works during the various stages of the Gait cycle.



FIG. 9 includes schematics to show the benefit of the invention on foot padding. FIG. 9 shows the human foot and the contact locations for the foot along the longitudinal direction when weight is applied on a flat surface. The padding beneath the foot is compressed at the points of contact and the more pressure applied to the insole, the more the padding compresses and decreases in thickness. The forces are concentrated at the points of contact. On the other hand, when using the invention, the weight forces are redirected and distributed over a larger area causing less compression transversing a thicker padding under the user's foot. As shown in FIG. 9, the invention helps to reduce the amount of the foot's plantar thinning of skin and natural soft tissue padding under pressure. The decreased foots soft tissue natural padding thinning preserves its inherent hydraulic for dissipation properties. Hydraulic force dissipation is a major shock absorption mechanism: ground force shock dissipation occurs in a biological system when the foot “shock absorption” mechanism of arch deformation is supplemented by force dissipation within muscles and other soft tissues of the foot and leg acting as a fluid envelope surrounding bone. Without this hydraulic force dissipation complex bones can break easily. Tired muscle loses its hydraulic properties which can lead to stress fractures.


The size, shape and physical dimensions of the human foot vary from one person to another. Accordingly, there is no single distance between the wedge shaped portions according to the invention that works effectively for everyone. The invention thus includes footwear with spacing between the wedge shaped portions (and the places of contact) other than just for the embodiments shown in the figures and herein disclosed.


Accordingly, the invention also includes the process for measuring the bottom of one's foot and/or using molds or other similar methods to measure the bottom of a foot to determine the placement/location of wedge shaped portions (and places of contact) on footwear for the purpose of fabricating footwear according to the invention. Preferably, the places of contact for opposing wedges would be positioned inside the points of contact for the foot on either side of the medial arch, the lateral arch or the transverse arch. The process for making a sock, an insole, an outsole, an orthotic insert, and the like according to such process is part of the invention.


The present invention is unique in that when the footwear is in the flat foot phase of the Gait cycle, once the stable arch is established in a state of inferior compression with a shorter base, adding further pressure does not cause a splaying of the arch. To the contrary, adding more pressure will stabilize the arch further since now the force vectors are inward at the base of the arch. The arch base will not increase in length once inferior arch compression is achieved. Inward directed force vectors are established and resist splaying distraction force vectors. The opposite happens. Increased forces on the arch reinforce and enhance inward directed force vectors and stabilize arch further. A windlass arch and a splaying arch are mutually exclusive. A person cannot have shorter and longer plantar fascia at the same time. A user cannot have lower and higher arch height at the same time.


Another benefit of the invention is the reduction in talus pronation. The conventional teaching is that talus pronation occurs at the flat foot phase of the Gait cycle to stabilize the medial longitudinal arch. Once the talus and therefore the hind-foot pronates the arch is stable. The clinical observation of a) talus pronation followed by b) rigid arch, are indisputable. Applicant has discovered, however, that talus pronation is not the cause for a rigid foot arch. Rather, a rigid foot arch is a consequence of the splaying of the foot at the flat foot phase due to weight pressure on the arch. Arch stability is brought about by superior arch compression, not pronation which is consequential reaction to weight forces bringing it and the calcaneus into stable positions.


It is a clinical fact that the talus pronates at the flat foot phase when the splaying mechanism is active, but does not pronate at a heel-off phase when the Windlass mechanisms is activated, and the medial longitudinal arches are rigid in both states. Arch rigidity at the flat-foot phase is brought about by the splaying mechanism which generates superior arch compression with talus pronation and the rigid arch at heel-off phase is brought about by the Windlass mechanism which generates inferior compression without talus pronation. It logically follows that when there is inferior compression, as with the Windlass Arch, something does not allow for talus pronation. Applicant has discovered that the sub-talar joint has a “locking” mechanism that is activated only in a state of inferior arch compression (e.g., during a Windlass state). In the flat foot Gait phase when the splaying mechanism is activated force vector goes through the longitudinal axis of the talus in effect “unlocking” the sub-talus joint and allowing for pronation around the SAC force axis. During the swing phase when there are no arch compressive forces, the sub-talus joint is free and loose and talus falls into its default position which is neutral.


Accordingly, the footwear according to the present invention has numerous advantages including the following:


1) it creates a dynamic arch support—the invention assists and enhances foot biomechanics by a timely adaptation of foot arches from a semi-rigid neutral arch to rigid arch state and vice versa exactly when needed during all walking and running phase, allowing rigid arches unique properties of force neutralization and “shock absorption”. The inventions provides a dynamic arch support as opposed to a passive arch support.


2) it provides “shock absorption” by an alternative mechanism of a “compressed spring” like effect (rather than a “stretched spring” like effect which occurs during splaying) on foot arch under weight (load) at the flat foot phase walking and running gait, therefore acting as a “shock absorber” dissipating and blunting ground forces.


3) it provides force vector realignment. It manipulates foots arches structure in such a way that it changes direction of forces (vectors) acting on foots arches. It also redirects ground forces to foot arch from heel and forefoot, therefore increasing surface area and decreasing force per unit area.


4) it brings about potential energy (PE) storage within foot's arch by an alternative mechanism. PE is stored in the foot arch deformation. “Natural” foot by a “Stretching” spring action of the splaying arch superior arch compression, at the flat foot phase of walking and running, and according to the invention by a “Compressing” spring action of the Windlass like arch inferior arch compression.


5) it assists the foot and therefore body forward propulsion. When weight is withdrawn at heel off, the splaying arch of flat foot phase releases its stored PE. Arch base decreases and arch height increases. The arch reverts to its original “neutral” state and losses its superior arch compression. Kinetic Energy (KE) is dissipated in foot's horizontal plane. This energy is wasted without any beneficial effect toward forward propulsion since force vectors at arch base are inward. In contrast inferior arch compression in the Windlass like arch according to the invention aid forward propulsion. On weight withdrawal at heel off, when the posterior wedge is released and anterior wedge is still grounded, the PE stored in arch (inferior arch compression) (or rod) is instantly released as KE whose vector forces the heel up, assisting propulsion.


6) with increased pressure, the invention increases padding. With regular shoes, higher the pressure causes thinning of foot cushioning. With the invention, force vectors are redirected in such a way that with increase pressure (force) there is an increase in the thickness and surface area the force has to go through.


7) for the invention with a rod, the rod provides an added advantage of additional energy storage in the rod. When the wedges are connected by some means (metal, rubber, magnetic, etc.), the rod stores potential energy in the rod. Deformation is in addition to the stored energy in foot's arch deformation. This stored Potential Energy can be harness toward more powerful forward propulsion or captures (ex: battery). Opposing force Magnets (+,+) can act as a Virtual Rod storing PE.


8) the invention relaxes the Plantar Fascia (9B) With the invention, the Windlass like arch at flat foot phase of walking and running the base of the Medial longitudinal arch decreases (therefore relaxing Plantar Fascia as opposed to Splaying of the foot at the FF Phase in “Natural” foot at the FF Phase where the Plantar Fascia (PF) is stretched). In contrast, a passive arch support “kinks” the plantar fascia in a manner of passively pushing up on a bowstring, especially when the Windlass effect tightens it. This is a causes of pain and discomfort.


9) it causes a “SkinnyFoot” effect. With the invention, when weight is applied, the Windlass like arch shortens the base of the arches of the foot in flat foot phase, therefore allowing for narrower, slimmer, coronal (transverse), and/or sagital (front to back), area with increased load. This essentially brings about a smaller foot profile exactly when needed at the flat foot and the push-off phases of walking and running, and allows for tighter, slimmer, shoes (“Skinny Foot”). As opposed to normal splaying of the arches under load, which causes a larger foot profile and therefore tighter shoes.


10) it eliminates the need for passive arch supports. Passive arch supports are problematic. With the invention, there is no physical contact and therefore pressure on foot's arch concavity while it provides a timely dynamic arch support exactly when needed in the Gait cycle. Passive arch support provides a filler of arch concavity; it functions as an arch stabilizes during weight bearing at the flat-foot phase of walking and running. Keeping the arch structure passively stable but NOT rigid (it remains Semi-Rigid) hinders “normal” foots biomechanics of arches splaying, its transformation from a semi-rigid to a rigid arch, which would have facilitated rigid arch unique property of neutralizing opposing ground force. Since ground forces dissipate through the passive arch support, arch plasticity is restricted and fluctuation hindered, there are no arch compressive forces either inferior (concave) or superior (convex) which would have formed a distinct rigid arch, therefore foot arch cannot exhibit solid arches force neutralizing properties and Shock absorption is diminished. Passive arch supports also have a long term deleterious effect on the foot; they passively holds the foot as if in a cast, osteoporosis, muscle and ligaments atrophy sets in, with loss of the “rubbery glue” which keeps foot arch internal integrity. Subsequently, on bare foot walking without the PAS, the foot “Hyper-Splays” usually without achieving arch rigidity (Flat Foot) and is weak and unstable. Passive arch support “Kinks” plantar fascia passively, pushing up on the bowstring plantar fascia, especially, when the tight due to the Windlass. This causes pain and discomfort. Passive arch support press on the stretched plantar fascia during flat-foot and Windlass at push-off therefore cause “Kinky” Plantar Fascia which can cause pain.


11) it provides for a functional restoration of foot arch in pathologic states and diseases.

    • a. Dropped Arch—Elevate a Supple Dropped Arch and restores its functional rigidity and ‘Shock absorption” capacity exactly when needed in the gait cycle.
    • b. Heel Spur—Relax Plantar Fascia therefore taking pressure off heel spurs.
    • c. Plantar Fasciitis—Relaxes Plantar Fascia therefore relieving tension and pressure.
    • d. Morton's Neuroma—Decreases pressure on Morton's Neuroma by rounding Transverse Arch and increased shoe space via the “Skinny Foot” effect.
    • e. Calluses—Force vector shift allows for redistribution of pressure points with increase padding on increase pressure and increase surface area at pressure points therefore decreases pressure point irritation and reactive callus formation.
    • f. Bunions—Force vector shift allows for redistribution of pressure points with increase padding on increase pressure and increase surface area. Transverse Arch rounding and “Skinny Foot” effect also relieve pressure off the bunions (1st Metatarsal and 5th Metatarsal-Taylor).
    • g. Hallux Rigidus and Arthritis MP joint Big Toe—Relaxes plantar Fascia and shifts pressure to the arch from metatarsal head therefore decreasing pressure and pull on the MP joint.


12) it helps a diabetic foot. Naturopathic foot-force vector shift causes redistribution of pressure points with increase padding on increase pressure, it redirects pressure from forefoot to dynamic arch support wedges and foot arches with increase surface area and allows Transverse and Lateral Arches rounding facilitating the “Skinny Foot” effect. These factors dissipate ground forces, distribute pressure points over a greater area and decrease foot functional volume in a shoe therefore lower or eliminate Pressure Ulcers.


13) it prevents osteoporosis—Oscillate created by the ground-reaction forces, “vibrates” foot, leg, pelvis and spine bones, stimulating them to increase in density. In addition, active muscular contraction in conjunction with passive ligaments stretching and shrinking, adds to these stimulus effects during walking, running and exercising. By contrast the impact blunting, shock absorbing shoe soles in “Regular” shoes and sneakers are “anti-vibration” denying increase bone density stimulus.


14) it avoids fluctuation and therefore conserves energy and increase power-Windlass like inferior arch compression is in effect in both the flat-foot phase (dynamic arch support mechanism) and push-off phase (Windlass mechanism) this allows for foot and leg muscle to rest conserve energy for an improved more efficient and powerful walking and running. In contrast during “Natural” walking and running fluctuation from superior arch compression at the flat-foot phase (Splaying mechanism) to inferior arch compression at push-off phase (Windlass mechanism) occurs. This Fluctuation mechanism requires energy, tires foot and leg muscles and accounts for a less efficient and less powerful walking and running.


15) it creates a Windlass like inferior arch compression, “Locks” sub-talar joint therefore preventing pronation or supination (true also for the Windlass Mechanism). The invention's inferior arch compression (similar to Windlass inferior Arch compression) “Locks” sub-talar joint while forming a rigid arch which does not allow for pronation (P), or supination (S) of hind foot relatively to fore-foot. Proof of this phenomena is clinical observation of the Windlass Mechanism during toe off and push-off phases whereas a rigid longitudinal arch with inferior compression forces is formed with the hind-foot and fore-foot in a solid “Neural” alignment without any pronation or supination.


16) it corrects foot pronation and supination anomalies and Pathology. Under load at the flat-foot phase the invention causes inferior arch compression, “locks” sub-talar joint in “Neutral” preventing and therefore correcting pathological dynamic pronation or supination.


17) it diverges plantar directed forces medially, toward big toe, achieving mechanical advantage by a longer lever arm at push off and toe off phases. Under load at flat foot phase in “Natural” gait pressure is distributed throughout the foot but mainly concentrated on the splayed medial, lateral and transverse arches. At toe off and push off forces are concentrated toward fore-foot and especially metatarsal heads. Diversion of force vectors toward medial longitudinal arch and 1st metatarsal brings about a longer lever with a mechanical advantage during walking and running.


18) it prevents heel valgus—Under load at the flat-foot phase the sub-talar joint is locked which not only prevents pronation but also heel valgus.


19) it prevents knee valgus and external rotation, therefore protecting knee from injuries. Since under load at flat foot phase the Windlass like mechanism with its inferior arch compression, “locks” sub-talar joint, prevents pronation and heel vagus, the compensatory knee valgus and external rotation does not come about. With the leg in “Neutral” the cruciates are “wound-in” and knee tight.


20) it brings about earlier “Locking” of Ankle. By preventing talus pronation and inferior arch compression shorting and “Rounding” medial longitudinal arch during flat-foot brings about earlier presentation of talar doom wider anterior articulate surface and therefore a stable ankle joint.


21) the invention can compensate for knee weakness. Earlier ankle locking allows for earlier full extension and passive locking of knee at heel strike which can compensating for knee weakness due quadriceps muscle atrophy.


22) it brings about a more efficient muscular Dynamic. Consistency of dynamic arch support and Windlass inferior arch compression, “locked” sub-talar joint. Elimination of talus pronation, and the increase in foot lever length in addition to the ankle earlier “locking” make for a stable more dynamically and efficient lower extremity therefore muscle tier less and can go a longer distance.


23) conserves legs Hydraulics and prevents stress fractures: Preservation of foots plantar soft tissue integrity keeps its hydraulic protection in addition to its spring like effect of “shock absorption” of foot's arch. Ground force shock dissipation occurred in a biological system when foot “shock absorption” mechanism of arch deformation is supplemented by force dissipation within muscles and other soft tissues of the foot and leg acting as a fluid envelope surrounding bone. Without this hydraulic force dissipation complex bones can breaks easily. Tired muscle looses their hydraulic properties which can lead to stress fractures.

Claims
  • 1. A flexible adhesive pad for the underside of the forefoot area of a user's foot having a front and a back, a medial side and lateral side, a longitudinal length from the front to the back and a transverse width from the medial side to the lateral side, wherein, when placed on a users foot, the front is positioned near the users toes and the back is positioned near the back of the user's forefoot, the adhesive pad comprising: an top surface comprising: adhesive, said upper surface removably attachable to a sole of the user's foot;a non-planar, concave, curvature that starts medial to the center and spans to an edge on the medial side along the transverse width;a non-planar, concave, curvature that starts lateral to the center and spans to an edge on the lateral side along the transverse width;a non-planar, concave, curvature from front to back at the medial side along the longitudinal length; anda non-planar, concave, curvature from front to back at the lateral side along the longitudinal length; anda bottom surface for contact with the inside of footwear or the ground comprising: a first portion located medial to a center of the adhesive pad, said first portion sloped upwards with a partial planar surface and a partial non-planar surface beginning about halfway along it's span towards the top surface along the transverse width from a) a place of contact located on the bottom surface of said first portion to b) an edge on the lateral side;a second portion located lateral to a center of the adhesive pad, said second portion sloped upwards with a partial planar surface and a partial non-planar surface beginning about half way along it's span towards the top surface along the transverse width from a) a place of contact located on the bottom surface of said second portion to b) an edge on the lateral side; andwherein said bottom surface between said first portion and said second portion is raised above a plane formed by said places of contact.
  • 2. The adhesive pad according to claim 1, wherein said planar surfaces on said bottom surface are sloped between a 12 and 20 degree angle relative to a plane across said points of contact.
  • 3. The adhesive pad according to claim 1, wherein said adhesive pad is comprised of a semi-compressible material having shape memory characteristics.
  • 4. The adhesive pad according to claim 3, wherein said adhesive pad is made of silicone.
  • 5. The adhesive pad according to claim 4, wherein said adhesive pad comprises a high friction coating on the upper surface and a lower friction coating on the bottom surface, wherein said adhesive pad can be removably attached to the bottom of a user's foot and then slipped into an article of footwear with the adhesive pad remaining attached to the user's foot.
  • 6. The adhesive pad according to claim 5, wherein said non-planar surface of said first portion of said bottom surface, is configured convex with substantially the same curvature as the corresponding top surface located above said first portion; and wherein said non-planar surface of said second portion of said bottom surface is configured convex with substantially the same curvature as the corresponding top surface located above said second portion.
  • 7. Hosiery for covering a user' foot and ankle comprising: a stretchable tubular shaped fabric having an inside surface and an outside surface and a flexible pad having an upper and a lower surface, a front and a back, a medial side and lateral side, a longitudinal length from the front to the back and a transverse width from the medial side to the lateral side, wherein, when placed on a user's foot, the front is positioned near the user's toes and the back is positioned near the back of the user's forefoot, the top surface of the pad comprising:a non-planar, concave, curvature that starts medial to the center and spans to an edge on the medial side along the transverse width;a non-planar, concave, curvature that starts lateral to the center and spans to an edge on the lateral side along the transverse width;a non-planar, concave, curvature from front to back at the medial side along the longitudinal length;a non-planar, concave, curvature from front to back at the lateral side along the longitudinal length; and
  • 8. The hosiery according to claim 7, wherein said planar surfaces on said bottom surface are sloped between a 12 and 20 degree angle relative to a plane across said points of contact.
  • 9. The hosiery according to claim 7, wherein said pad is comprised of a semi-compressible material having shape memory characteristics.
  • 10. The hosiery according to claim 9, wherein said pad is made of silicone.
  • 11. The hosiery according to claim 10, wherein said pad comprises a low friction coating on the bottom surface.
  • 12. The hosiery according to claim 10, wherein said non-planar surface of said first portion of said bottom surface is configured convex with substantially the same curvature as the corresponding top surface located above said first portion; and wherein said non-planar surface of said second portion of said bottom surface is configured convex with substantially the same curvature as the corresponding top surface located above said second portion.
  • 13. A two piece adhesive pad system for the underside of a users foot comprising a first pad removably attachable to a forefoot portion of the user's foot and a second pad removably attachable to a heel area of the user's foot; said first pad having an upper surface and a bottom surface, a front and a back, a medial side and lateral side, a longitudinal length from the front to the back and a transverse width from the medial side to the lateral side, wherein, when placed on a users foot, the front is positioned near the users toes and the back is positioned near the back of the user's forefoot, the first pad comprising:said upper surface comprising:adhesive, said upper surface removably attachable to a sole of the user's foot;a non-planar, flexible concave curve that starts medial to the center and spans to an edge on the medial side along the transverse width;a non-planar, flexible concave curve that starts lateral to the center and spans to an edge on the lateral side along the transverse width;a non-planar, flexible, concave curve from front to back area at the medial side along the longitudinal length; anda non-planar, flexible, concave curve from front to back area at the lateral side along the longitudinal length;a bottom surface for contact with the inside of footwear or the ground comprising:a first portion located medial to a center of the adhesive pad, said first portion sloped upwards with a partial planar surface and a partial non-planar surface beginning about halfway along it's span towards the top surface along the transverse width from a) a place of contact located on the bottom surface of said first portion to b) an edge on the lateral side;a second portion located lateral to a center of the adhesive pad, said second portion sloped upwards with a partial planar surface and a partial non-planar surface beginning about half way along it's span towards the top surface along the transverse width from a) a place of contact located on the bottom surface of said second portion to b) an edge on the lateral side; andwherein said bottom surface between said first portion and said second portion is raised above a plane formed by said places of contact;
  • 14. The adhesive pad system according to claim 13, wherein said adhesive pads are comprised of a semi-compressible material having shape memory characteristics.
  • 15. The adhesive pad system according to claim 14, wherein said adhesive pads are made of silicone.
  • 16. The adhesive pad system according to claim 15, wherein said adhesive pads further comprise a higher friction coating on the upper surfaces than on the bottom surfaces, wherein said adhesive pads can be removably attached to the bottom of a user's foot and then slipped into an article of footwear with the adhesive pads remaining attached to the user's foot.
  • 17. The adhesive pad system according to claim 13, said bottom surface of said first pad comprising a bottom surface comprising: a first portion located medial to a center of the first pad, the first portion sloped upwards with a flexible, partial planar, surface that starts as planar and then curves to be non-planar at about halfway along it's span towards the concave curved upper surface along the transverse width from a) a place of contact located on the bottom surface to the medial side of said first pad to b) an edge on the medial side; anda second portion located lateral to a center of the first pad, said second portion sloped upwards with a flexible, partial planar, surface that starts as planar and then curves to be non-planar at about half way along it's span towards the concave curved upper surface along the transverse width from a) a place of contact located on the bottom surface to the lateral side of said first pad to b) an edge on the lateral side;wherein the bottom surface between said first portion and said second portion is raised above the places of contact.
  • 18. The adhesive pad according to claim 17, wherein said first portion of said bottom surface located medial to a center of the first pad, is configured convex in substantially the same shape as the corresponding upper surface located above with a non-planar, flexible, convex, curvature from front to back area at the medial side along the longitudinal length; and wherein said second portion of said bottom surface located lateral to a center of the first pad, is configured convex in substantially the same shape as the corresponding upper surface located above with a non-planar, flexible, convex, curvature from front to back at the lateral side along the longitudinal length.
CROSS REFERENCE

This application is a continuation-in-part of and claims the benefit of U.S. application Ser. No. 15/070,886, filed on Mar. 15, 2016, which is a divisional of and claims the benefit of U.S. application Ser. No. 14/922,332, filed on Oct. 26, 2015, which is a continuation-in-part of and claims the benefit of U.S. application Ser. No. 14/621,069, filed on Feb. 12, 2015, which is a divisional of and claims the benefit of U.S. application Ser. No. 14/458,548, filed on Aug. 13, 2014, which is a continuation of, and claims the benefit of, U.S. application Ser. No. 14/340,151 filed on Jul. 24, 2014, each which is expressly hereby incorporated by reference in its entirety by reference thereto.

US Referenced Citations (168)
Number Name Date Kind
975576 Sexton Nov 1910 A
1542460 Legge Jun 1925 A
1671713 Glass May 1928 A
1698003 Rieke Jan 1929 A
1698635 Joyce Jan 1929 A
1974161 Riley Sep 1934 A
2095488 Cobb Oct 1937 A
2111666 Hubbard Mar 1938 A
2184209 Burger Dec 1939 A
2212414 Burger Aug 1940 A
2390416 Bettmann Dec 1945 A
2411901 Silver Dec 1946 A
2717462 Goin Sep 1955 A
2779110 Howell Jan 1957 A
2884717 Goldberg May 1959 A
3693269 Guarrera Sep 1972 A
3922800 Miller Dec 1975 A
4120102 Kenigson Oct 1978 A
4232457 Mosher Nov 1980 A
4259792 Halberstadt Apr 1981 A
4333472 Tager Jun 1982 A
4372058 Stubblefield Feb 1983 A
4372059 Ambrose Feb 1983 A
4492046 Kosova Jan 1985 A
4494320 Davis Jan 1985 A
4494321 Lawlor Jan 1985 A
4507879 Dassler Apr 1985 A
4541184 Leighton Sep 1985 A
4550510 Stubblefield Nov 1985 A
4571852 Lamarche et al. Feb 1986 A
4653206 Tanel Mar 1987 A
4697361 Ganter Oct 1987 A
4741114 Stubblefield May 1988 A
4843737 Vorderer Jul 1989 A
RE33066 Stubblefield Sep 1989 E
4879821 Graham et al. Nov 1989 A
4897937 Misevich Feb 1990 A
4910884 Lindh et al. Mar 1990 A
4941273 Gross Jul 1990 A
4942677 Flemming Jul 1990 A
RE33648 Brown Jul 1991 E
5079856 Truelsen Jan 1992 A
5170572 Kantro Dec 1992 A
5195257 Holcomb Mar 1993 A
5279051 Whatley Jan 1994 A
5319866 Foley et al. Jun 1994 A
5345701 Smith Sep 1994 A
5367790 Gamow et al. Nov 1994 A
5373650 Dananberg et al. Dec 1994 A
5435079 Gallegos Jul 1995 A
5437110 Goldston et al. Aug 1995 A
5469639 Sessa Nov 1995 A
5509218 Arcan Apr 1996 A
5621985 Frost Apr 1997 A
5625963 Miller et al. May 1997 A
5628128 Miller et al. May 1997 A
5655315 Mershon Aug 1997 A
5701686 Herr et al. Dec 1997 A
5729916 Vorobiev et al. Mar 1998 A
5771606 Litchfield et al. Jun 1998 A
5797199 Miller et al. Aug 1998 A
5822886 Luthi et al. Oct 1998 A
5896679 Baldwin Apr 1999 A
5916071 Lee Jun 1999 A
5918385 Sessa Jul 1999 A
5924219 Healy et al. Jul 1999 A
6009636 Wallerstein Jan 2000 A
6029374 Herr et al. Feb 2000 A
6065229 Wahrheit May 2000 A
6098319 Epstein Aug 2000 A
6120473 Oliverio Sep 2000 A
6199302 Kayano Mar 2001 B1
6269554 Silvestrini Aug 2001 B1
6393735 Berggren May 2002 B1
6502330 David Jan 2003 B1
6550160 Miller, II Apr 2003 B2
6557271 Weaver, III May 2003 B1
6609314 Dubner Aug 2003 B1
6610897 Cavanagh Aug 2003 B2
6640465 Burgess Nov 2003 B1
6745499 Christensen et al. Jun 2004 B2
6763613 Brown Jul 2004 B2
6860034 Schmid Mar 2005 B2
7246454 Kramer Jul 2007 B2
7272900 Epstein Sep 2007 B1
7603794 Oh Oct 2009 B2
7621057 Julian et al. Nov 2009 B1
7779557 Teteriatnikov et al. Aug 2010 B2
7788824 Hann Sep 2010 B2
7793437 Chapman et al. Sep 2010 B2
7832119 Gilmore Nov 2010 B2
7849612 Epstein Dec 2010 B2
8069583 Simchuk Dec 2011 B1
8112905 Bemis et al. Feb 2012 B2
8186081 Wilson, III et al. May 2012 B2
8216162 Bushby Jul 2012 B2
8225534 Mueller et al. Jul 2012 B2
8272149 Cooper et al. Sep 2012 B2
D677455 Pizzuti Mar 2013 S
8434244 Litchfield et al. May 2013 B2
8495825 Goldston et al. Jul 2013 B2
8522454 Schindler et al. Sep 2013 B2
8522457 Scholz et al. Sep 2013 B2
8567097 Edy et al. Oct 2013 B2
8578630 Diepenbrock Nov 2013 B2
8601722 Frye Dec 2013 B2
8677651 Cross Mar 2014 B2
8707586 Adair et al. Apr 2014 B2
8800174 Banach Aug 2014 B2
8984770 Piontkowski Mar 2015 B1
9095190 Kohatsu et al. Aug 2015 B2
9167864 Piontkowski Oct 2015 B1
9204687 Piontkowski Dec 2015 B1
9392842 Piontkowski Jul 2016 B2
9857788 Piontkowski Jan 2018 B2
9872534 Piontkowski Jan 2018 B2
20010027616 Silvestrini Oct 2001 A1
20010049888 Krafsur et al. Dec 2001 A1
20020078591 Morrone Jun 2002 A1
20020157279 Matsuura Oct 2002 A1
20040025377 Brannon Feb 2004 A1
20040118020 Hlavac Jun 2004 A1
20040237165 Holden Dec 2004 A1
20040261291 Paek Dec 2004 A1
20050126040 LeVert et al. Jun 2005 A1
20050198864 Bobbett Sep 2005 A1
20050241187 Johnson Nov 2005 A1
20050268488 Hann Dec 2005 A1
20050278980 Berend et al. Dec 2005 A1
20060026865 Grisoni et al. Feb 2006 A1
20060053664 Tager Mar 2006 A1
20060059726 Song et al. Mar 2006 A1
20060137228 Kubo Jun 2006 A1
20070107264 Meschter et al. May 2007 A1
20070107265 Mueller May 2007 A1
20070180732 Oh Aug 2007 A1
20070193065 Nishiwaki et al. Aug 2007 A1
20080060229 Epstein Mar 2008 A1
20080098621 Tzeng et al. May 2008 A1
20080307678 Nguyen Dec 2008 A1
20090007455 Montgomery Jan 2009 A1
20090090028 Moramarco Apr 2009 A1
20090165333 Litchfield et al. Jul 2009 A1
20090307925 Pfister Dec 2009 A1
20100050472 Tzeng et al. Mar 2010 A1
20100212189 Ebel Aug 2010 A1
20100251571 Woodard Oct 2010 A1
20100263232 Smirman Oct 2010 A1
20110010964 Hardy et al. Jan 2011 A1
20110023324 Dananberg Feb 2011 A1
20110214313 James Sep 2011 A1
20120005921 Diepenbrock Jan 2012 A1
20120036739 Amos Feb 2012 A1
20120042539 Miner Feb 2012 A1
20120047770 Dean et al. Mar 2012 A1
20120227284 Adair et al. Sep 2012 A1
20120317835 Raysse et al. Dec 2012 A1
20130000152 Cooper et al. Jan 2013 A1
20130199056 Li Aug 2013 A1
20140047740 Tucker et al. Feb 2014 A1
20140059883 Adeagbo et al. Mar 2014 A1
20140259786 Heard Sep 2014 A1
20140366401 Cavaliere Dec 2014 A1
20160015124 Grell Jan 2016 A1
20160073731 Piontkowski Mar 2016 A1
20160174653 Goodman Jun 2016 A1
20160198800 O'Neill Jul 2016 A1
20170251750 Devoe Sep 2017 A1
Foreign Referenced Citations (2)
Number Date Country
1545255 Sep 2013 EP
2358225 May 2014 EP
Non-Patent Literature Citations (2)
Entry
International Search Report dated Dec. 22, 2015 from PCT/US2015/41791.
International Search Report dated Dec. 28, 2016 from PCT/US2016/58894.
Related Publications (1)
Number Date Country
20180220737 A1 Aug 2018 US
Divisions (2)
Number Date Country
Parent 14922332 Oct 2015 US
Child 15070886 US
Parent 14458548 Aug 2014 US
Child 14621069 US
Continuations (1)
Number Date Country
Parent 14340151 Jul 2014 US
Child 14458548 US
Continuation in Parts (2)
Number Date Country
Parent 15070886 Mar 2016 US
Child 15925575 US
Parent 14621069 Feb 2015 US
Child 14922332 US