Each of the above applications is hereby incorporated by reference in its entirety.
The present disclosure generally relates to footwear, and more specifically with footwear having a layered engagement structure.
Although many different types of footwear have been available to consumers, footwear construction has remained relatively constant. Generally speaking, a different combination of characteristics is provided for indoor and outdoor footwear categories.
Indoor footwear include various types of socks, slippers, moccasins, slipper boots, and such types of softer and less durable footwear. Typically, characteristics of indoor footwear include some combination of comfort, warmth and appearance. In addition, it generally is desirable for indoor footwear to have a soft bottom, so as not to scuff, scratch, or otherwise damage, hardwood or similar indoor floor surfaces. As a result, most indoor footwear is manufactured entirely of soft fabrics and other soft materials.
Outdoor footwear, on the other hand, generally needs to be capable of accommodating harsher surfaces and environments. Outdoor footwear include, for example, a variety of dress footwear, casual footwear, tennis footwear, running footwear, work footwear, boots, sandals, thongs and sneakers. Typically, characteristics of outdoor footwear include relatively stronger and more durable materials, such as natural and/or synthetic leather, rubber and/or durable fabrics. The sole of outdoor footwear generally must be very strong and durable in order to protect the wearer's foot from rough or jagged ground surfaces.
The differences in the desired properties of indoor footwear versus outdoor footwear, as well as the differences among the various subcategories, conventionally result in specific footwear satisfactory for only a single purpose.
A layered engagement structure, according to one disclosed non-limiting embodiment of the present disclosure can includes a first layer with a multiple of openings, the first layer at least partially corresponds to a shape of a foot sole; and a multiple of columns, each of the multiple of columns correspond with one of the multiple of openings in the first layer to extend at least partially therein.
A further embodiment of any of the embodiments of the present disclosure may include a second layer to at least partially entrap the multiple of columns with respect to the first layer.
A further embodiment of any of the embodiments of the present disclosure may include a web that joins each of the multiple of columns, the web located between the first layer and the second layer.
A further embodiment of any of the embodiments of the present disclosure may include, wherein the layered engagement structure is an insole, a top surface of the first layer forms a top surface of the layered engagement structure.
A further embodiment of any of the embodiments of the present disclosure may include, wherein the layered engagement structure is an outsole, a bottom surface of the first layer forms the bottom surface of the layered engagement structure.
A further embodiment of any of the embodiments of the present disclosure may include, wherein each of the columns range in size from 0.01 to 100 square centimeters in area.
A further embodiment of any of the embodiments of the present disclosure may include, wherein at least one of the multiple of columns forms a graphic in cross-sectional shape.
A further embodiment of any of the embodiments of the present disclosure may include, wherein the multiple of columns form a graphic.
A further embodiment of any of the embodiments of the present disclosure may include, wherein the layered engagement structure forms a portion of a footwear item.
A further embodiment of any of the embodiments of the present disclosure may include, wherein the multiple of columns form an organic pattern, the organic pattern correspond to a region of the user's foot.
A further embodiment of any of the embodiments of the present disclosure may include a web that joins each of the multiple of columns, the web located between the first layer and a second layer.
A further embodiment of any of the embodiments of the present disclosure may include, wherein the multiple of columns extend from a second layer, the second layer at least partially corresponds to a shape of a foot sole.
A further embodiment of any of the embodiments of the present disclosure may include, wherein a bottom surface of the second layer forms a bottom surface of a footwear item.
A further embodiment of any of the embodiments of the present disclosure may include a third layer with a multiple of openings that corresponds to the multiple of openings in the first layer, the third layer attached to the first layer such that at least a portion of a top surface of the third layer forms a surface closest a user's foot.
A further embodiment of any of the embodiments of the present disclosure may include, wherein the third layer is manufactured of a wear-resistant material.
A further embodiment of any of the embodiments of the present disclosure may include, wherein the first layer is formed of a first material and the second layer is formed of a second material different than the first material.
A further embodiment of any of the embodiments of the present disclosure may include, wherein the first material is relatively softer than the second material.
A further embodiment of any of the embodiments of the present disclosure may include, wherein the multiple of columns are arranged to provide propriocentric cues.
A further embodiment of any of the embodiments of the present disclosure may include, wherein at least one of the multiple of columns includes a hollow region.
A further embodiment of any of the embodiments of the present disclosure may include, wherein a top surface of at least one of the multiple of columns are generally flush with a top surface of the first layer while the first layer is in an uncompressed state.
A further embodiment of any of the embodiments of the present disclosure may include, wherein at least one of the multiple of openings extends completely through the first layer.
A further embodiment of any of the embodiments of the present disclosure may include, wherein a top surface of at least one of the multiple of columns is covered by the first layer.
A further embodiment of any of the embodiments of the present disclosure may include, wherein a top surface of the multiple of columns are generally flush with a top surface of the first layer while the first layer is in an uncompressed state.
A further embodiment of any of the embodiments of the present disclosure may include a second layer that at least partially corresponds to the shape of first layer, the multiple of columns extend from the second layer; and a third layer that at least partially corresponds to the shape of first layer, the third layer including a second multiple of openings therethrough, the second layer between the first layer and the third layer.
A further embodiment of any of the embodiments of the present disclosure may include, wherein the second layer includes a second multiple of columns, each of the second multiple of columns correspond with one of the second multiple of openings in the third layer to extend at least partially therein.
In an aspect, a footwear insole may include a first layer formed of a compressible first material with a top surface, a bottom surface, and one or more groups of one or more openings through at least one of the top surface and the bottom surface, and a second layer with a top surface and one or more groups of one or more columns formed from a second material protruding from the top surface in a position that corresponds to the openings in the first layer, wherein the one or more columns extend at least partially through the at least one or more openings. Each of the columns range in size from 0.01 to 100 square centimeters in area and may be at least one of square, circular, trapezoidal, triangular in shape, or have organic shapes arrayed in organic patterns. The patterns may correspond to various regions of the top surface of the first layer, various regions of the user's foot that engage the top insole, or may include the columns being shaped or arrayed to form a brand logo, graphic or image. The columns may not be integral to the second layer, but may be joined by a web and the column and web assembly may be mounted between the first layer and the second layer. The first layer and the second layer may be formed together in a two-material molding process, three-material molding process, insert molding, or casting process. The first layer may be molded directly onto or otherwise securely joined to the top surface of the second layer. The first layer, the second layer and the columns may be formed together in a three-material molding or casting process. The columns may be formed directly onto the second layer. The bottom surface of the second layer of the footwear insole may form the bottom surface of the footwear. The insole may be attached to the midsole, the outsole, or the upper of the footwear.
In an aspect, a footwear insole may include a top layer with a multiple of first openings, a bottom layer with a multiple of second openings, a top component comprising a multiple of first columns, and a bottom component comprising a multiple of second columns, wherein the first columns extend at least partially through at least one of the multiple of first openings and the second columns extend at least partially through at least one of the multiple of second openings. The bottom surface of the bottom layer of the footwear insole may form the bottom surface of the footwear.
In an aspect, a footwear insole may include a top layer with a multiple of first openings, a bottom layer with a multiple of second openings, and a component including a multiple of first columns and a multiple of second columns, wherein the first columns extend at least partially through at least one of the multiple of first openings and the second columns extend at least partially through at least one of the multiple of second openings. The bottom surface of the bottom layer of the footwear insole may form the bottom surface of the footwear.
In an aspect, a footwear outsole may include a first layer formed of a compressible first material with a top surface, a bottom surface, and one or more groups of one or more openings through at least one of the top surface and the bottom surface, and a second layer with a top surface, a bottom surface and one or more groups of one or more columns formed from a second material protruding from the bottom surface in a position that corresponds to the openings in the first layer, wherein the one or more columns extend at least partially through the at least one or more openings. The bottom surface of the second layer may have between 0.003 to 25 columns per square centimeter. Each of the columns may range in size from 0.01 to 100 square centimeters in area. The columns may be square or circular or trapezoidal or triangular in shape, and/or are arrayed in geometric patterns and may have organic shapes or be arrayed in organic patterns. The patterns may correspond to various regions of the top surface of the first layer, various regions of the user's foot that engage the top insole, or may include the columns being shaped or arrayed to form a brand logo, graphic or image. The outsole may be attached to a midsole, which may be attached to an upper. The footwear may lack a midsole, and the second layer may be attached to the upper. The columns may not be integral to the second layer, but may be joined by a web and the column and web assembly is mounted between the first layer and the second layer.
In an aspect, a footwear outsole may include a first layer with a multiple of first openings, a second layer with a multiple of second openings, a first component comprising a multiple of first columns, and a second component comprising a multiple of second columns, wherein the first columns extend at least partially through at least one of the multiple of first openings and the second columns extend at least partially through at least one of the multiple of second openings. The bottom surface of the first layer of the footwear outsole may form the bottom surface of the footwear.
In an aspect, a footwear outsole may include a first layer with a multiple of first openings, a second layer with a multiple of second openings, and a component comprising a multiple of first columns and a multiple of second columns, wherein the first columns extend at least partially through at least one of the multiple of first openings and the second columns extend at least partially through at least one of the multiple of second openings. The bottom surface of the first layer of the footwear outsole may form the bottom surface of the footwear.
In an aspect, a sock may include a woven body of fibers, and at least one layered engagement structure on one or more of the inside and the outside of the woven body, wherein the layered engagement structure comprises: a first layer formed of a compressible first material with a top surface, a bottom surface, and one or more groups of one or more openings through at least one of the top surface and the bottom surface, and a second layer with a top surface and one or more groups of one or more columns formed from a second material protruding from the top surface in a position that corresponds to the openings in the first layer, wherein the one or more columns extend at least partially through the at least one or more openings. The columns may not be integral to the second layer, but are joined by a web, and the column and web assembly is mounted between the first layer and the second layer.
In an aspect, a sock may include a woven body of fibers, and at least one layered engagement structure on the inside of the woven body, wherein the layered engagement structure includes a first layer formed of a compressible first material with a top surface, a bottom surface, and one or more groups of one or more openings through at least one of the top surface and the bottom surface, and one or more columns formed from a second material protruding from the inside surface of the woven body in a position that corresponds to the openings in the first layer, wherein the one or more columns extend at least partially through the at least one or more openings.
In an aspect, a sock may include a woven body of fibers, and at least one engagement structure on at least one of the inside and the outside of the woven body, wherein the engagement structure includes one or more columns formed from a first material protruding from at least one of the inside and the outside surface of the woven body, and one or more flexible fibers formed from a second material disposed adjacent to the one or more columns.
In an aspect, a footwear item may include an insole including a first layer with a multiple of openings, the first layer forms a top surface of the footwear insole, and a second layer with a multiple of columns, each of the multiple of columns correspond with one of the multiple of openings in the first layer to extend at least partially therein. In an aspect, a footwear item may include an outsole including a first layer with a multiple of openings, the first layer forms a bottom of the footwear outsole, and a second layer with a multiple of columns, each of the multiple of columns correspond with one of the multiple of openings in the first layer to extend at least partially therein. In an aspect, a footwear item may include an insole including a first layer with a multiple of openings, the first layer forms a top surface of the footwear insole, and a second layer with a multiple of columns, each of the multiple of columns correspond with one of the multiple of openings in the first layer to extend at least partially therein; and an outsole including a first layer with a multiple of openings, the first layer forms a bottom of the footwear outsole, and a second layer with a multiple of columns, each of the multiple of columns correspond with one of the multiple of openings in the first layer to extend at least partially therein.
The foregoing features and elements may be combined in various combinations without exclusivity, unless expressly indicated otherwise. These features and elements as well as the operation thereof will become more apparent in light of the following description and the accompanying drawings. It should be appreciated, however, the following description and drawings are intended to be exemplary in nature and non-limiting.
Various features will become apparent to those skilled in the art from the following detailed description of the disclosed non-limiting embodiments. The drawings that accompany the detailed description can be briefly described as follows:
As shown in
In various embodiments, the traction may be provided on the top surface 102 of the first layer 104 at certain areas of the mat 100. The areas may include the locations on the mat 100 that may frequently come in contact with feet, hands or other body parts of a user while performing the yoga exercises. In an embodiment, the hands and feet of the user may come in contact with an area of the mat 100 proximate to opposite ends 108 and 110 of the top surface 102 of the mat 100 during gliding sequences and poses. The top surface 102 of the mat 100 includes a low-traction surface 112 defined in the area proximate to the middle of the top surface 102 of the mat 100. The top surface 102 further includes one or more traction surface regions 114a and 114b defined in the areas proximate to the opposite ends 108 and 110, respectively, of the mat. The traction surface regions 114a and 114b may be configured to provide traction to the user's body parts such as the feet and hands that come in contact with these surfaces. The traction surface regions 114a and 114b may allow the user to glide during various yoga steps, while providing sufficient traction to the user's hands and feet in standing poses and while balancing. The added traction through the traction surface regions 114a and 114b may provide a neutral tactile feel to the user during movements and postures, thereby avoiding users from any feeling of unsteadiness, distraction, and frustration. Additionally, the traction surface regions 114a and 114b may be designed in such a way that they may provide stability (or support) to the user during standing and stationary postures, especially in a typical single-footed standing posture typical of yoga. In another disclosed non-limiting embodiment, the traction surface regions 114a and 114b may be limited to an area proximate to one of the ends 108 or 110 of the mat 100 such that the weight of the mat 100 is kept to a minimum, thereby increasing its portability.
An area covered by the length and width of the traction surface regions 114a and 114b may be hereinafter referred to as a ‘grip zone’ for simplicity in the description. The length of the grip zone referring to a measure along the direction of the length of the mat 100 and the width of the grip zone referring to a measure along the direction of the width of the mat 100 may vary based on the requirement such as the height of the user, the type of yoga exercise, and the like.
In accordance with various embodiments, the traction surface regions 114a and 114b may be composed of a material or have a surface roughness that may offer frictional resistance to one or more body parts, which comes in contact with the top surface 102 of the mat 100, in a direction tangential to the top surface 102 of the mat 100 or the first layer 104. In an embodiment, rubber or any other elastomeric or grip-enabling material may be utilized in the traction surface regions 114a and 114b to introduce desired traction in the grip zone of the mat 100.
The top surface 102 of the first layer 104 in the grip zone may include one or more first portions 118 (i.e., portions in the grip zone that are circular in shape in
In certain embodiments, the first layer 104 and a layer including the low-traction surface 112 may be separate layers. In certain other embodiments, the first layer 104 and the traction surface regions 114a and 114b may be separate layers. In yet other embodiments, there may be an intermediate layer of material disposed between the first layer 104 and a bottom/base layer of the mat 100 to maintain stiffness and avoid stretching of the first layer 104 upon movement of the user over the mat 100.
In various embodiments, openings may be formed through the one or more first portions 118. In one embodiment, one or more columns formed of a thermoplastic elastomer (i.e., second material) such as a rubber or any other synthetic material may be disposed in the openings. For example, the columns may be disposed in the openings such that the top surfaces of the columns may be disposed substantially parallel to the top surface 102 of the first layer 104. In another example, the columns may be disposed in the openings such that the top surfaces of the columns may be disposed below the top surface 102 of first layer 104.
Alternatively, in another disclosed non-limiting embodiment, the columns may be disposed proximate to the openings. For example, some portion of a column may be disposed in the opening, while the remaining portion of the column may be disposed below the opening. In another example, some portion of the column may be disposed in the opening, while the rest portion may protrude outward, i.e., above the top surface 102 of first layer 104.
Alternatively, in yet another disclosed non-limiting embodiment, the columns may be disposed below the openings. In various embodiments, the top surfaces of the columns may be formed of a traction material that may offer traction higher or lower than that offered by the traction material used to form the one or more second portions 120. The selection of higher or lower traction may be based on the fraction requirement.
In yet still another disclosed non-limiting embodiment, the openings may be single-sided holes such that the first layer 104 is uncut at one surface of the mat 100. For example, the one or more first portions 118 of the top surface 102 of the mat 100 may be cut to provide openings such that the bottom surface of the first layer 104 is left uncut. In another disclosed non-limiting embodiment, the openings may be pass-through holes such that the one or more first portions 118 are cut from the top surface 102 to the bottom surface of the first layer 104. The openings may be configured to receive the columns fixedly, in accordance with an embodiment. The top surfaces of the columns may be disposed substantially parallel to the top surface 102 of the first layer 104 or may protrude outward or inward. The shape of the columns may be cylindrical, square, rectangular, or the like, with defined lengths and widths of the columns such that a traction pattern is created. The traction pattern may provide fraction to the user's body parts contacting the grip zone of the mat 100. The traction pattern may be zigzag, puzzle, or the like. Alternatively, the traction pattern may be one or more continuous lines. In accordance with various embodiments, the configuration of the fraction pattern may vary based on the requirements. The traction pattern may be uniform or non-uniform.
The openings may be created through the first layer 104 by various manufacturing and cutting processes such as die cutting, laser or water-jet cutting, gang-punching, and the like. The columns in or proximate to the openings may be compressed when the user applies pressure during standing poses or any other activity that involves contact of the user's body parts with the traction surface regions 114a and 114b. The configuration in which the pressure applied on any portion of the traction surface regions 114a and 114b (e.g., anywhere on the one or more second portions 120, the top surface of at least one column, or both) facilitates the one or more second portions 120, the top surface of at least one column, or both to be compressed is hereinafter referred to as a compressed configuration. In an embodiment, the columns and/or the second portions 120 may compress only when pressure applied on the traction surface regions 114a and 114b is the same as or above a threshold pressure, i.e., the pressure at which the columns and/or the second portions 120 begin to compress. In various embodiments, the material of the columns and/or the second portions 120 may be chosen to be of sufficient stiffness such that they will not compress until the threshold pressure is achieved. The stiffness (or compressibility) of the columns may also be affected by the structure of the underside of the columns, which could be hollow on their undersides with ribs in order to reduce weight, and/or by the stiffness (or compressibility) of the bottom layer of the mat 100. The amount of threshold pressure may vary based on the relative compressibility of the columns, the first layer 104, the bottom layer of the mat 100, relative heights of the columns, and the like.
The compressed configuration may provide either support (or stability) to the body parts that contact in a direction perpendicular to the top surface 102 of the first layer 104, or traction to the body parts that contact in a direction tangential to the top surface 102, or both. In other words, the support refers to the resistance to movement of the body parts in the direction perpendicular to the top surface 102 of the first layer 104, whereas the traction refers to the resistance to movement in a direction tangential to the first layer's top surface. In an embodiment where the one or more second portions 120 depresses more than the top surfaces of at least one column in the compressed configuration, these columns may engage with the hands/feet of the user to offer both support and traction. In various embodiments, the material used to form the columns may be harder and hence, less compressible, than the material used to form the first layer 104. The columns, being more rigid than the first layer 104, provide more stability/support than the cushioning first layer 104 when the columns engage with the hands/feet, thus improving the user's balance. This may allow the columns to provide the required support in the direction perpendicular to the top surface 102 of the first layer 104 since the columns will not depress significantly in the compressed configuration. The traction and support, thus developed under pressure, may still maintain a comfortable level for hands and feet while gliding over the grip zone of the mat 100. In other words, the mat 100 is able to offer the required traction and support to the user without compromising smooth movements between the yoga poses. Alternatively, in another disclosed non-limiting embodiment where the one or more second portions 120 depresses less than the top surfaces of at least one column in the compressed configuration, the one or more second portions 120 may engage with the hands/feet of the user to offer only traction to the hands/feet.
The traction may be provided based on any or all of the known factors, such as, but not limited to, the coefficient of friction (such as static friction and dynamic/sliding friction), surface texture/roughness, the edge contact and contact with the sides of the columns (in the compressed configuration). In other words, the traction may be affected by a combination of material properties and geometry.
Further, the configuration in which the columns and/or the second portions 120 are in uncompressed state (i.e., the pressure applied on the traction surface regions 114a and 114b is below the threshold pressure) is interchangeably referred to as an uncompressed configuration. In the uncompressed configuration, the top surfaces of some or all columns are configured to be disposed either below or coplanar to the top surface 102 of the first layer 104.
In accordance with an embodiment of the present disclosure, grip zones may be provided proximate to the opposite ends 108 and 110 of the top surface 102 of the mat 100 as depicted in
The mat 100 may further include various patterns or textures based on varying requirements at different locations of the mat 100. In some embodiments, the top surface 102 of the mat 100 may be covered with a waterproofing layer that may block the sweat or perspiration from absorbing into the mat 100. In an embodiment, the waterproofing layer may be coated with an elastomer such as a rubber to provide traction. The waterproofing layer may include a texture for additional traction.
In accordance with an embodiment, a bottom surface of the mat 100 may be provided with a traction element or coating that may deliver traction to the entire bottom surface of the mat 100 for creating a binding impact between the mat 100 and the floor. In another disclosed non-limiting embodiment, the bottom surface of the mat 100 may be provided with a texture to create such a binding impact between the mat 100 and the floor. This may protect the mat 100 from dislocating and may also keep it clean. Further, a layer or coating may be provided on the bottom surface to protect and maintain the cleanliness of the mat 100. In accordance with various embodiments of the present disclosure, antimicrobial treatment may be performed on the mat 100 to ensure the desired hygienic conditions. Antimicrobial agents that may kill or limit the growth of the microorganisms may be utilized in the antimicrobial treatment. In addition, an antimicrobial coating may be applied on the surface of the mat 100 that may kill or inhibit the growth of microorganisms.
The mat 100 may be customized based on the user's requirements and preferences. The hardness of foam or rubber may vary in durometer and/or density based on the user's preference. Similarly, the shape and size of the columns, openings, and the like may also vary. In accordance with an embodiment, the mat 100 may include two or more layers of foam to form the first layer 104. The top layer may be utilized to generate the traction pattern of the traction surface regions 114a and 114b, while the lower layers may act as a base. In another disclosed non-limiting embodiment, a single layer may be utilized that may be die cut or embossed with columns of rubber and the like on the top surface of the layer or in openings formed through this top surface. The color of foam and rubber used to form the columns may be customized based on user preferences. The size of the traction surface regions 114a and 114b, pattern of rubber shapes, and their placement (e.g., depth) in or proximate to the openings may vary based on the requirements.
In accordance with various embodiments, the mat 100 may be manufactured in a layered manner with a plurality of layers disposed on top of one another in a stacked form.
The columns 210 may be formed of a high-traction material such that the top surfaces 212 of some or all of the columns 210 include a higher traction than the one or more second portions 120 of the top surface 102 of the first layer 104. In an uncompressed configuration, the top surfaces 212 of some or all of the columns 210 are configured to be disposed either below or coplanar to the top surface 102 of the first layer 104. The columns 210 may protrude through the openings 208 in the first layer 104 when sufficient pressure (i.e., on or above threshold pressure) is applied on the grip zone of the mat 100. In one embodiment, the one or more second portions 120 of the top surface 102 of the first layer 104, which is formed of the compressible material, may compress in response to the sufficient pressure applied by the hands and feet of the user, thereby exposing some or all the columns 210 above the top surface 102. This compressed configuration of the mat 100 facilitates the top surface 102 of the mat 100 to provide increased grip and traction to the user's hands and feet contacting the grip zone. Additionally, the columns 210, being more rigid than the first layer 104, provide more stability than the cushioning first layer 104 would by itself, thereby improving the user's balance on the mat 100. The traction and support, developed under pressure, may still maintain a comfortable level for hands and feet while gliding over the grip zone of the mat 100. Further, in an embodiment when the pressure is removed from the grip zone or the pressure applied is below the threshold pressure, the one or more second portions 120 may return to its original position and conceal the high-traction columns 210.
Alternatively, in another disclosed non-limiting embodiment where the one or more second portions 120 depresses less than the top surfaces 212 of some or all of the columns 210 in the compressed configuration, the one or more second portions 120 may engage with the hands/feet of the user to offer only traction to the hands/feet. This will be described later in conjunction with
In accordance with an embodiment of the present disclosure, the columns 210 and the top surface 102 of the first layer 104 may be fabricated from the same material such that the materials of the columns 210 and the first layer 104 only differ in hardness (durometer) or density. The variance in hardness or weight of the columns 210 and the first layer 104 may provide the required traction even with the use of similar materials. In an exemplary scenario, both the first layer 104 and the columns 210 may be fabricated from rubber. However, the hardness of the first layer 104 and the columns 210 may be varied to induce a traction pattern in the grip zone.
The multi-layer mat 100 may utilize various types of materials based on the requirements. In an exemplary scenario, the first layer 104 of the mat 100 may be fabricated from foam and the bottom layer 202 may be fabricated from rubber. Similarly, various other materials may be used to manufacture various layers of the mat 100. In an embodiment of the present disclosure, the bottom layer 202 may be less compressible than the first layer 104. In this case, the material used to form the bottom layer 202 may be harder and hence, less compressible, than the material used to form the first layer 104. This may allow the columns 210 to provide the required support since the columns 210 will not depress significantly in the compressed configuration.
It will be apparent to a person skilled in the art that the number of openings and columns represented in
In the embodiment described in conjunction with
As depicted in
As depicted in
As depicted in
However, still various other embodiments, as described above, may also be possible without limitations. In an embodiment, the individual columns may be formed by pouring liquid elastomer into the openings of the first layer (such as 104 or 302) and curing the elastomer. This embodiment will be described in detail later in conjunction with
In yet another disclosed non-limiting embodiment, rubber in the form of a plurality of rubber dots may be embossed on the first layer 302 to form a traction surface (such as the one or more traction surface regions 114a and 114b) on the top surface 308 of the first layer 302. The embossed rubber dots may provide a raised design or relief on the first layer 302 of the mat 300. Embossing of the rubber dots may be done with the help of embossing dies or rollers or any other technique. In embodiments, embossing or providing traction pattern may channel moisture or sweat away from hands and feet of the user. Various patterns of the embossing dies and rollers may be utilized to accomplish a required design of the rubber dots on the mat 300. In another disclosed non-limiting embodiment, rubber textured coating may be applied on the first layer 302 to form the traction surface. Similarly, in accordance with various other embodiments of the present disclosure, several other kinds of manufacturing techniques and processes may be utilized without limitations to form the traction pattern on the first layer 302. This embodiment of using the rubber embossing may be similarly applied to columns formed in or proximate to the openings (such as 318, 330, or 340) formed through the one or more first portions (such as 310) of the top surface 308 of the first layer 302.
In embodiments, the traction pattern may vary based on the requirements. In an embodiment, the traction pattern may be continuous. In another disclosed non-limiting embodiment, the traction pattern may be discontinuous. For example, rubber shapes such as rubber dots or rubber columns may be disposed or embossed in the openings formed through the first portions of the top surface 308 of the first layer 302 in a continuous or discontinuous manner. Further, the size and/or shape of rubber such as dots or columns may vary. Still, in another disclosed non-limiting embodiment, the size and/or shape of the rubber may be kept uniform.
Various embodiments described below in conjunction with
As depicted in
In an embodiment of the compressed configuration shown in
Further, when the pressure is removed from the grip zone or the pressure applied is below the threshold pressure, the second portions 412 may return to their original positions and conceal the columns 414 as illustrated in
Further, when the downward pressure is removed or it is below the threshold pressure, the top surfaces of the columns 602 may return to their original positions, concealing the edges of the openings 418 as illustrated in
The top surface 908 of the first layer 902 may include one or more first portions 910 (shown by dashed lines in
It will be apparent to a person skilled in the art that the mat 900 may include any number of layers based on the requirement and utility of the mat 900.
As shown in
It should be appreciated that any other design (shape and/or size) of the mat and its components is possible without deviating from the scope of the present disclosure.
The traction layer 1202 may be formed of a high-traction material such that the top surface of the traction layer 1202 has a higher traction than the one or more second portions 120 of the top surface 102 of the first layer 104. In various embodiments, the traction layer 1202 may be formed of a material that is less or equally compressible than the material used to form the second portions 412 of the top surface 408 of the first layer 402. In an embodiment as illustrated in
Further, one or more of the embodiments disclosed herein provide a towel that may offer the required traction and stability to a user without compromising smooth movements between yoga poses. In various embodiments, the towel may be disposed above any of the mats described above. In one embodiment, the towel may be any ordinary towel. In another disclosed non-limiting embodiment, the towel used may be the towel as described below in conjunction with
The absorption layer 1302 has a top surface 1308. As shown in
Further, the towel 1300 includes one or more columns 1318 disposed on the one or more second portions 1312. Between the compressible regions 1304 of flexible fiber 1306 are portions where the fiber is abbreviated or cut to create the relief pattern that in turn provides a surface (such as the one or more second portions 1312) upon which the traction material such as the one or more columns 1318 may be applied. The one or more columns 1318 may be manufactured of a second material such as a woven fabric, a non-woven fabric, an elastomer, or the like. The shape of the one or more columns 1318 may be cylindrical, square, rectangle, or the like, with defined lengths and widths of the columns such that a traction pattern is created. The traction pattern may provide traction to the user's body parts contacting the grip zone of the towel 1300. In accordance with various embodiments, the configuration of the traction pattern may vary based on the requirements. The traction pattern may be uniform or non-uniform.
The one or more columns 1318 include top surfaces 1320 that may be configured to be disposed below one or more portions of top surfaces 1322 of the compressible regions 1304 of flexible fiber 1306 in the uncompressed configuration. The configuration in which the compressible regions 1304 of flexible fiber 1306 are in an uncompressed state (i.e., the pressure applied on the grip zone is below the threshold pressure) is interchangeably referred to as an uncompressed configuration.
Further,
The compressed configuration may provide support (or stability) to the body parts that contact in a direction perpendicular to the top surface 1308 of the absorption layer 1308, and traction to the body parts that contact in a direction tangential to the top surface 1308. The support and traction are provided using the fraction pattern created by the one or more columns 1318, which may engage with the hands/feet of the user in the compressed configuration. The traction and support, thus developed under pressure, may still maintain a comfortable level for hands and feet while gliding over the grip zone of the towel 1300. In other words, the towel 1300 is able to offer the required traction and support to the user without compromising smooth movements between the yoga poses.
The perspective view of the towel 1300 may be similar to the mat 100, except that the towel 1300 includes the absorption layer 1302 adapted to absorb moisture (instead of the first layer 104), and the one or more columns 1318 disposed on the one or more second portions 1312 of the top surface of the absorption layer (instead of being disposed in or proximate to the openings formed through the one or more first portions 118). Additionally, the towel 1300 also includes the compressible regions 1304 of flexible fiber 1306. The towel 1300 may include the grip zones provided proximate to the opposite ends of the top surface 1308 of the absorption layer 1302 (similar to the opposite ends 108 and 110 of the top surface 102 of the mat 100). In another disclosed non-limiting embodiment, the grip zones may be provided on the entire top surface 108 to provide additional traction.
The one or more columns 1318 may include non-repeating patterns including silicone rubber, various elastomers or other high-traction materials. In an embodiment of the present disclosure, the high-traction material may be directly embedded below the top surface 1322 of the compressible regions 1304 of flexible fibers 1306. The height difference between the top surfaces 1320 of the one or more columns 1318 and the compressible regions 1304 of flexible fiber 1306 may be defined based on the traction requirements and the application of external pressure. The embedded non-repeating patterns of high-traction material may ensure better grip during yoga positions and postures.
The traction pattern in the one or more columns 1318 may be generated with the use of one or more continuous threads of a high-traction material. The material used for these threads be a rubber, silicone, or any other elastomer that may offer sufficient traction. In accordance with various embodiments, several other types of traction materials may be utilized to provide stitched patterns. In various embodiments, these threads may be stitched on the top surface 1308 of the absorption layer 1302 to form the one or more columns 1318. There can also be a bottom layer that is waterproof or moisture resistant and/or has traction properties for adhering to a mat or the floor.
Another embodiment of the present disclosure provides a towel that may absorb sweat and prevent slipping once hands and feet are moist, and also protect the mat (such as the mat 100) from absorbing perspiration. In embodiments, the towel 1300 may include a moisture barrier or waterproofing layer or connection grip layer that may be disposed below the absorption layer 1302. This moisture barrier may be formed of a waterproof material. In embodiments, the waterproofing layer may be coated in a material that provides fraction, such as silicone or many other plastic, rubber or other resins. The second layer 304 may be adapted to reduce sweat and moisture of the user from penetrating beneath the towel 1300 when the towel 1300 is disposed above the mat 100. This may facilitate in maintaining the mat 100 in sanitary condition. The silicone or other impermeable coating may provide gripping and sticking capability to the moisture barrier, thereby creating a connection between the mat 100 and the towel 1300. This may provide stability to the towel 1300 during various flow sequences of the user, especially during a gliding motion. In addition, the moisture barrier may connect the towel 1300 and the mat 100 with an additional surface area. Further, the weight of the waterproof material and/or the silicone coating may provide additional traction to avoid bunching and scrunching of the towel 1300. Further, the stiffness of the waterproof material and/or silicone coating may encourage the towel 1300 to lie flat and stable against the mat 100 thereby minimizing the sliding and bunching that plagues the towels on the market today. The two-layer construction of the towel 1300 may increase its weight, thereby stabilizing the towel 1300 on the mat 100 during yoga practice.
In accordance with various embodiments of the present disclosure, the moisture barrier may be formed of rip-stop nylon with bottom high-grip polyurethane coating. However, it must be appreciated by a person ordinarily skilled in the art that various other materials may be utilized in the formation and construction of the moisture barrier. The permeability of the moisture barrier may vary based on the requirements.
Similarly, in accordance with various other embodiments of the present disclosure, several other kinds of coupling mechanisms may be utilized without limitations for coupling the towel 1402 and the mat 1404 to form an integrated mat/towel assembly. The mat towel 1402 and the mat 1404 may be any towel and mat, respectively, as described above in various embodiments of the present disclosure. Alternatively, in another disclosed non-limiting embodiment, the towel 1402 may be any ordinary towel, whereas the mat 1404 may be the mat of the present disclosure. Alternatively, in yet another disclosed non-limiting embodiment, the towel 1402 may be the towel of the present disclosure, whereas the mat 1404 may be any ordinary mat.
As shown in
In accordance with various embodiments of the present disclosure, the towel 1300 or 1402 or 1500 may be customized based on specific requirements. The traction pattern created by a high traction material may be designed accordingly. For example, the high traction material may form a continuous pattern throughout the grip zone in accordance with an embodiment of the present disclosure. In another disclosed non-limiting embodiment, the high traction material may form a discontinuous pattern and may be embedded in discrete units. In yet another disclosed non-limiting embodiment, a high-traction coating may be applied to offer the required traction and grip.
In accordance with various embodiments of the present disclosure, the colors of the towel 1300 or 1402 or 1500 and various layers such as the absorption layer 1302, the moisture barrier 304, and the one or more columns 1318 may vary based on user preferences. The hardness of the one or more columns 1318 may vary in durometer based on requirements. For example, the hardness of the columns may be 20 Shore A, in accordance with an embodiment of the present disclosure.
The top surface 1602 may include one or more traction surface regions defined in the area where user's hands and/or feet come in contact with the grip apparatus 1600.
The top surface 1602 of the first layer 1604 in the traction surface region 1610 may include one or more first portions 1612. The top surface 1602 in the traction surface region 1610 other than the first portions 1612 forms one or more second portions 1614. As shown in
In various embodiments, openings 1618 may be formed through the one or more first portions 1612. As shown in
It must be appreciated by a person of ordinarily skilled in the art that though the disclosure has been described in terms of yoga, the present disclosure may be utilized equally for other activities, forms of exercising, sporting and the like without limiting the spirit and scope of the present disclosure. A grip apparatus similar to the mat (such as the mat 100) or the towel (such as the towel 1300) disclosed in the present disclosure may be used in various applications. In an embodiment, the grip apparatus may be adapted to form an outside surface of at least a portion of a glove, a sock, a bat, a hockey stick, a racquet, or the like. In another embodiment, the grip apparatus may be a strip or a tape.
The present disclosure described above has several applications and advantages, some of which are stated below without limitations.
An advantage of the present disclosure is that the mat and the towel may increase the performance of a user or a yogi.
Another advantage of the present disclosure is that the mat and the towel may be used in heated and cooled environments without compromising the performance.
Yet another advantage of the present disclosure is that the mat may include different areas with differentiated construction patterns based on varying requirements on different locations of the mat.
Still another advantage of the present disclosure is that the mat may provide the required traction to a user without compromising glide. The required traction may be provided in the prevalent areas of the mat based on requirements. Therefore, a user may get a neutral tactile feel during movements and postures, thereby avoiding any distraction during yoga practice. Further, the mat may provide comfort and stability, especially during standing and stationary postures such as the challenging single-footed standing posture and the like. The traction may be provided to the mat while still achieving lightness and portability. Furthermore, the mat may create an additional traction to the floor surface, and also protect and keep the mat clean.
Still another advantage of the present disclosure is that the mat may provide the desired stiffness and cushioning effect without compromising portability.
Still another advantage of the present disclosure is that the mat may achieve a limited sweat condition to keep the mat clean over time and also offer a waterproofing impact to the mat.
Still another advantage of the present disclosure is that the towel may absorb sweat and prevent slipping once hands and feet are moist, and protect the mat from absorbing perspiration. The towel may also include a moisture barrier that may keep the moisture from penetrating into and onto the mat from the towel. The moisture barrier may further connect the towel and the mat with more surface area, thereby avoiding bunching and scrunching.
Still another advantage of the present disclosure is that the towel may provide sufficient topside traction, especially in the hands and feet area without compromising glide. The traction may be delivered only on application of an external pressure that may further allow the user to glide comfortably. Further, the towel may provide sufficient grip on the bottom side to make it stable on the mat.
Still another advantage of the present disclosure is that the towel may include multiple layers that may increase the towel weight and stiffness and further stabilize it on the mat surface.
Still another advantage of the present disclosure is that the grip apparatus may increase the performance of a user.
Another advantage of the present disclosure is that the grip apparatus may be used in heated and cooled environments without compromising the performance.
Yet another advantage of the present disclosure is that the grip apparatus may include different areas with differentiated construction patterns based on varying requirements on different locations of the grip apparatus.
Still another advantage of the present disclosure is that the grip apparatus may provide traction without compromising glide. The required fraction may be provided in the prevalent areas of the mat based on requirements. Therefore, a user may get a neutral tactile feel during use, thereby avoiding any distraction. Further, the grip apparatus may provide comfort and stability during use.
Still another advantage of the present disclosure is that the grip apparatus may absorb sweat and prevent slipping once hands are moist, and protect the grip from absorbing perspiration. The grip apparatus may also include a moisture barrier that may keep the moisture from penetrating into and onto the object being gripped.
Still another advantage of the present disclosure is that the grip apparatus may provide sufficient traction without compromising smooth, unobstructed movement. The traction may be delivered only on application of an external pressure that may further allow the user to change grip positions comfortably and without distraction.
In an embodiment described in conjunction with
Alternatively, the grip component 1710 may not include flanges 1714 and the connecting segments 1718 may directly connect the columns 1712. The connecting segments 1718 may be flush the columns 1712 in a configuration that facilitates coupling the grip component 1710 through the bottom surface of the grip zone of the top layer 1702 such that the columns 1712 fix into the openings 1704 of the top layer 1702. The flanges 1714 and the connecting segments 1718 may form openings 1720 through the grip component 1710. The top surface 1722 of the bottom layer 1708 and the bottom surface of the top layer 1702 may include embossed regions 1724 that correspond to the shape and at least a portion of the thickness of the flanges 1714 and of the connecting segments 1718 such that the top surface 1722 of the bottom layer 1708 and the bottom surface of the top layer 1702 directly contact one another when assembled with the grip component 1710. Alternatively, only the top surface 1722 of the bottom layer 1708 or only the bottom surface of the top layer 1702 may include the embossed regions 1724.
Alternatively, neither the bottom surface of the top layer 1702 nor the top surface 1722 of the bottom layer 1708 may include embossed regions, in which case the direct contact between the top layer 1702 and the bottom layer 1708 occurs when the top layer 1702 and the bottom layer 1708 compress in the regions corresponding to the flanges 1714 and the connecting segments 1718 of the grip component 1710. The top layer 1702 and the bottom layer 1708 may be bonded together in the areas where they make direct contact with an adhesive, by a bonding process involving heat or solvents, or with any other feature or by any other process that may securely join the top layer 1702 and the bottom layer 1708. The direct contact between the top layer 1702 and the bottom layer 1708 may enhance the feel and increase the apparent compressibility of the top layer 1702 during use, and may also enhance the adhesion between the top layer 1702 and the bottom layer 1708, thereby improving the overall durability of the mat 1700.
In the embodiment described in conjunction with
Alternatively, the columns 1712 may be directly woven into the connecting web 1804 during the weaving process. The spaces between the fibers of the connecting web 1804 may allow the top layer 1702 and the bottom layer 1708 to directly contact one another. The top layer 1702 and the bottom layer 1708 may be bonded together in the areas where they make direct contact, either with an adhesive, by a bonding process involving heat or solvents, or with any other feature or by any other process that may securely join the top layer 1702 and the bottom layer 1708. The direct contact between the top layer 1702 and the bottom layer 1708 in the areas corresponding to the spaces between the fibers of the connecting web 1804 may enhance the feel and increase the apparent compressibility of the top layer 1702 during use, may increase the overall flexibility of the mat 1800, thereby improve its rolling and unrolling characteristics, and may enhance the adhesion between the top layer 1702 and the bottom layer 1708, thereby improving the overall durability of the mat 1800.
In the embodiment described in conjunction with
In an embodiment, grip zone 1902a may include grip columns with top surfaces from 1 to 400 square millimeters in size. Alternatively, a grip zone adapted for the hands may include any combination of a relatively more compressible top layer or bottom layer or grip columns, or larger edge radii on the top surfaces of the grip columns, or more grip columns per unit area of grip zone, or grip columns with smaller top surfaces, or any combination of features and characteristics, such as grip zone size, shape or location, grip column size or shape, grip column number, grip zone pattern, grip column top surface profile, top layer or bottom layer material or characteristics, or grip column material, construction or compressibility, that enable the grip zone to provide a better combination of traction, cushion, support and stability for the hands. The grip column top surface profile may include ribs, indentations, raised areas, raised letters, indented letters, raised or indented numerals, raised or indented icons, raised or indented shapes, slopes, and the like. Grip zone 1902b may be configured to provide enhanced support, cushioning, stabilization or traction, or any combination thereof, for the user's feet. A grip zone adapted for the feet may include a relatively less compressible top layer or bottom layer or grip columns to provide relatively more stability for standing poses. In an embodiment, grip zone 1902b may include grip columns with a Shore A durometer in the range of 35 to 100.
Alternatively, the top surfaces of the grip columns may include smaller edge radii for relatively greater engagement and traction. In an embodiment, the top surfaces of the grip columns in grip zone 1902b may include top surface edge radii in the range of 0.1 mm to 0.75 mm. Alternatively, a grip zone adapted for the feet may include less grip columns per unit area of grip zone. In an embodiment, grip zone 1902b may include from 0.04 to 0.2 grip columns per square centimeter. Alternatively, a grip zone adapted for the feet may include grip columns with larger top surfaces. In an embodiment, grip zone 1902b may include grip columns with top surfaces from 10 to 2500 square millimeters in size. Alternatively, a grip zone adapted for the hands may include any combination of a relatively less compressible top layer or bottom layer or grip columns, or smaller edge radii on the top surfaces of the grip columns, or less grip columns per unit area of grip zone, or grip columns with larger top surfaces, or any combination of features and characteristics, such as grip zone size, shape or location, grip column size or shape, grip column number, grip zone pattern, grip column top surface profile, top layer or bottom layer material or characteristics, or grip column material, construction or compressibility, that enable the grip zone to provide a better combination of traction, cushion, support and stability for the feet. The top surface 1904 of the mat 1900 may include textual cues 1908a and 1908b proximate to the grip zones 1902a and 1902b, respectively, to indicate the proper orientation for using the mat 1900. Users may orient the mat such that the textual cues 1908a and 1908b are in the proper orientation for reading.
Alternatively, the top surface 1904 of the mat 1900 may include graphic symbols or diagrams, or may be color coded, or the grip zones 1902a and 1902b may include shapes or patterns, or any combination thereof, to indicate the proper orientation for using the mat 1900. The mat 1900 may provide enhanced overall performance because grip zone 1902a is uniquely configured for the user's hands and grip zone 1902b is uniquely configured for the user's feet.
A yoga mat with two different grip zone configurations may also allow a single mat to address the differing grip needs of advanced users as well as those of basic users. Advanced users may tend to support their upper body weight with particular portions of their hands, such as with their index fingers and thumbs, which may result in relatively higher localized pressures and relatively greater localized deformation of the mat. In contrast, basic users may tend to contact the mat more evenly with the palms and fingers of their hands, which may result in relatively lower localized pressures and relatively lower localized deformation of the mat. Advanced users may also tend to have greater flexibility, so that the soles of their feet may contact the mat when in certain yoga poses such as the one commonly known as the downward facing dog pose. This may result in lower localized pressures and lower localized deformation of the mat. In contrast, basic users may tend to have limited flexibility and therefore may tend to contact the mat with only their toes and the balls of their feet when in certain yoga poses such as the one commonly known as the downward facing dog pose. This may result in higher localized pressures and greater localized deformation of the mat. Because advanced users may tend to support their upper body weight with portions of their hands and basic users may tend to support their lower body weight with portions of their feet, and because both may result in relatively greater localized pressures and relatively greater localized deformation of the mat, a grip zone adapted for the hands of advanced users may also be well adapted for the feet of basic users.
A grip zone adapted for the hands of advanced users and for the feet of basic users may include a relatively larger number of grip columns or relatively smaller grip columns to increase the incidence of contact with grip edges, or the grip column surfaces facing the opposite grip zone may be concave to enhance engagement with portions of the hands and feet, or the top layer or the bottom layer or the grip columns may be relatively less compressible to accommodate greater contact pressure, or the top surfaces of the grip columns may be concave to better engage with portions of the hands and feet, or the top surfaces of the grip columns may include larger edge radii to accommodate greater contact pressure, or any combination thereof or any combination of features and characteristics that enable the grip zone to provide a better combination of fraction, cushion, support and stability for the hands of advanced users and the feet of basic users. Furthermore, because basic users may tend to support their upper body weight relatively more evenly with the palms and fingers of their hands, and advanced users may tend to support their lower body weight relatively more evenly with their feet, and because both may result in relatively lower localized contact pressures and relatively lower localized deformation of the mat, a grip zone adapted for the hands of basic users may also be well adapted for the feet of advanced users. A grip zone adapted for the hands of basic users and for the feet of advanced users may include a relatively smaller number of grip columns or relatively larger grip columns, or the top layer or the bottom layer or the grip columns may be relatively more compressible, or the grip column surfaces facing the opposite grip zone may be straight and normal to the direction of the opposite grip zone to enhance resistance to forces in the direction away from the opposite grip zone, or the top surfaces of the grip columns may be flat or convex to better engage with the palms and soles, or the top surfaces of the grip columns may include smaller edge radii to better engage with the surfaces of the palms or the soles, or any combination thereof or any combination of features and characteristics that enable the grip zone to provide a better combination of traction, cushion, support and stability for the hands of basic users and the feet of advanced users. Therefore, a mat with two different uniquely configured grip zones may provide benefits for advanced users when they use the mat oriented in one direction, and may also provide benefits for basic users when they use the mat oriented in the opposite direction.
In an embodiment, grip zones 2102a and 2102b may include grip columns with a Shore A durometer in the range of 35 to 100, or may include grips with top surface edge radii in the range of 0.1 mm to 0.75 mm, or a combination thereof, or any combination of features and characteristics, such as grip zone size, shape or location, grip column size or shape, grip column number, grip zone pattern, grip column top surface profile, top layer or bottom layer material or characteristics, or grip column material, construction or compressibility, that enable the grip zone to provide a better combination of traction, cushion, support and stability for advanced users. Grip zones 2108a and 2108b on the bottom surface 2110 are configured to provide optimal traction, cushion, support and stability for basic users, who may appreciate a relatively greater amount of comfort and cushioning. Accordingly, grip zones 2102a and 2102b may include relatively more compressible top layers, bottom layers, or grip columns, or the top surfaces of the grip columns may include larger edge radii to provide greater comfort.
In an embodiment, grip zones 2108a and 2108b may include grip columns with a Shore A durometer in the range of 10 to 45, or may include grips with edge radii in the range of 0.5 mm to 1.5 mm, or a combination thereof, or any combination of features and characteristics, such as grip zone size, shape or location, grip column size or shape, grip column number, grip zone pattern, grip column top surface profile, top layer or bottom layer material or characteristics, or grip column material, construction or compressibility, that enable the grip zone to provide a better combination of traction, cushion, support and stability for basic users.
The top surface 2104 and the bottom surface 2110 may each include one or more textual cues 2112 and 2114, respectively, to indicate the proper surface of the mat 2100 for use by advanced users and basic users, respectively.
In use, the advanced user would orient the mat 2100 such that the top surface 2104, with the one or more textual cues 2112 indicating the proper surface for use by advanced users, is facing upward, and the basic user would orient the mat 2100 such that its bottom surface 2110, with the one or more textual cues 2114, indicating the proper surface for use by basic users, is facing upward. Accordingly, the mat 2100 may provide optimal traction, cushion and stability for advanced users and for basic users. As shown in
In an embodiment, grip columns 2208 of the top grip component 2202 may have a Shore A durometer in the range of 35 to 100, or may include top surface edge radii in the range of 0.1 mm to 0.75 mm, or a combination thereof, and grip columns 2210 of the bottom grip component 2204 may include a Shore A durometer in the range of 10 to 45, or may include top surface edge radii in the range of 0.5 mm to 1.5 mm, or a combination thereof. The columns 2208 of the top grip component 2202 and the columns 2210 of the bottom grip element 2204 are in configurations that facilitate in coupling the top grip component 2202 through the openings 2120 of the top layer 2118 and in coupling the bottom grip component 2204 through the openings 2124 of the bottom layer 2122, respectively. This layered mat configuration may provide grip zones with different grip characteristics on both the top surface 2104 and the bottom surface (not shown in this view) of the mat 2100.
With different yoga mat characteristics to select from, the manufacturer, the retailer and the user may need to identify a mat with the proper characteristics for a particular user.
In step 2400, the procedure may be initiated, and in step 2402, the users are classified as weighing less than or equal to a threshold weight such as 50 kilograms or weighing greater than a threshold weight such as 50 kilograms. In step 2404, users weighing less than a threshold weight such as 50 kilograms are recommended to purchase a mat configured to provide a better combination of traction, cushion, support and stability for lighter-weight users, as lighter-weight users may use less force to support their weight on the mat and they may need a mat with relatively more compressibility. A mat configured for lighter-weight users may include a relatively more compressible top layer or bottom layer or relatively more compressible grip columns or any combination thereof, or any combination of features and characteristics, such as grip zone size, shape or location, grip column size or shape, grip column number, grip zone pattern, grip column top surface profile, top layer or bottom layer material or characteristics, or grip column material, construction or compressibility, that enable the grip zone to provide a better combination of traction, cushion, support and stability for lighter-weight users.
In step 2408, users weighing more than a threshold weight, for example, 50 kilograms (110 pounds) are classified as highly proficient or not highly proficient. Self-reported proficiency may be assisted by the use of additional criteria such as the number of years that the user has been practicing yoga, the number of times per week the user practices yoga, and whether the user presses on the mat with the fingertips or with the palms and with only the toes or with the soles of the feet when in certain yoga poses such as the downward facing dog pose.
In step 2410, highly proficient users are recommended to purchase a mat configured to provide a better combination of traction, cushion, support and stability for advanced users. In step 2412, users who are not highly proficient are recommended to purchase a mat configured to provide a better combination of traction, cushion, support and stability for basic users. It should be readily understood that additional criteria, such as additional user weight thresholds, additional levels of proficiency, whether the user practices yoga techniques commonly referred to as hot yoga, may be added to the procedure, and that additional yoga mat variants may also be added to the options that the procedure may recommend.
User-assessed proficiency may be subjective and may sometimes be inaccurate, and a more objective assessment that does not require the user, the retailer or the manufacturer to include expertise in assessing yoga proficiency may be desired.
Although the embodiment as shown in
In operation, the tablet computer 2510 may prompt the user to input information such as their age, experience, gender, frequency of yoga practice and types of yoga practiced, into the tablet computer 2510, and may then prompt the user to assume one or more yoga poses on the surface 2502. The at least one array of sensors 2504 in the surface 2502 may measure both normal and tangential forces and pressures from the user's hands and feet, and communicates this information through the electronic cable 2512 to the tablet computer 2510, which may analyze the data from the at least one array of sensors 2504 and generate a pressure map of the at least one sensor region 2508, and, optionally, display this pressure map to the user. The tablet computer 2510 may alternatively or additionally use the data from the at least one array of sensors 2504 to detect if the user does not have their hands and feet within the at least one sensor region or if the user is wearing shoes, and the tablet computer 2510 may convey a message or messages instructing the user to remove their shoes or move their hands, feet or both hands and feet to within the at least one sensor region 2508. The tablet computer 2510 may then analyze the sensor data to determine the size of the user's palms, the span of the user's hands and feet, the user's overall weight, the relative loads on the user's hands and feet and the relative tangential forces compared to the relative normal forces, to determine if the user presses on the surface 2502 primarily with portions of the hand or with the entire hand when in certain yoga poses, to determine if the user presses on the mat primarily with the toes or with the entire soles of the feet when in certain yoga poses, to determine if the user has relatively well-developed core muscles, to determine if the user is relatively steady or unsteady when assuming the one or more yoga poses on the surface 2502, or to calculate any other measure or measures relevant to identifying the proper mat characteristics for the user.
The tablet computer 2510 may then use the analyzed data from the at least one array of sensors 2504, as well as the user-prompted information, in a decision-making process, such as the exemplary process shown in
The principles described in the various embodiments may also be beneficial when applied to footwear such as shoes, socks, slippers, moccasins, slipper boots, dress footwear, casual footwear, tennis footwear, running footwear, work footwear, boots, sandals, thongs, sneakers, etc.
With reference to
In one disclosed non-limiting embodiment, the top surface 2612 of the second layer 2610A may define a relationship of about 0.003 to 25 columns 2614 per square centimeter and each of the columns 2614 may be from about 0.01 to 100 square centimeters in cross-sectional area. The columns 2614 may provide a cross-sectional shape that may be square, circular, trapezoidal, triangular, a shape representative of a logo, or together form a logo etc., as well as various combinations thereof.
In another disclosed non-limiting embodiment, the columns 2614 may be of organic shapes and/or arrayed in organic patterns. For example, the organic shape may be that which correspond to various regions of the top surface 2604 of the first layer 2602, various regions of the user's foot (
In another disclosed non-limiting embodiment, the columns 2614 may be shaped or arrayed to form a graphic such as a brand logo, image, or other shape (
The first layer 2602A may be manufactured of a relatively compressible material such as Ethyl Vinyl Acetate (‘EVA’) or other elastomeric, or polymeric materials. The second layer 2610A may also be manufactured of a relatively compressible material such as EVA or other elastomeric or polymeric material. In contrast, the second layer 2610 may also be manufactured of relatively flexible, but relatively uncompressible material. For example, the columns 2614 may be manufactured of elastomer or other relatively compressible polymeric material, or may be manufactured of a natural flexible material such as leather or other flexible fiber, such as the flexible fibers 2912. In a particular example, the columns 2614 may have a Shore A durometer in the range of 10 to 100.
The columns 2614 may be attached to the second layer 2610 by adhesive, stitching, or other such attachment process. Alternatively, the second layer 2610 and the columns 2614 may be integrally formed from one piece by a process such as injection molding, stamping, or by any suitable forming process. Alternatively, the columns 2614 may be interconnected with a web (
In another disclosed non-limiting embodiment, one or more of the columns 2614A may include one or more hollow regions 2615 (
When the first layer 2602 is mounted on the second layer 2610, the top surfaces 2618 of the columns 2614 may include edge radii in the range of 0.1 mm to 1.5 mm and be arranged to align with the top surface 2604 of the first layer 2602. The second layer 2610 arranges the columns 2614 in a configuration that facilitates coupling the columns 2614 through the bottom surface 2605 of the first layer 2602 such that the columns 2614 are received for independent movement within the corresponding openings 2608 of the first layer 2602. The columns 2614 may be located on specific regions of the footwear insole 2600 to optimize impact reduction, stability, comfort, gripping action, massaging action, pressure point stimulation, propriocentric feedback, or any combination thereof, on the related specific regions of the user's foot. To further facilitate engagement with the sole of the user's foot, the top surfaces 2618 of the columns 2614 may be convex, concave and/or may include additional features such as dimples, ribs, protuberances, or any combination thereof, to, for example, facilitate engagement with the sole of the user's foot.
In another disclosed non-limiting embodiment, a third layer 2601E (
In another disclosed non-limiting embodiment, the bottom surface 2605 of the first layer 2602, and the top surface 2612 of the second layer 2610, may be secured together in areas of direct contact, via, for example, an adhesive, a bonding process involving heat or solvents, or with any other feature or process that can secure the first layer 2602 and the second layer 2610. Alternatively, the first layer 2602 and the second layer 2610 may be formed together in a two-material molding process, an insert molding process, or a casting process wherein the first layer 2602 may be molded or cast directly onto the top surface 2612 of the second layer 2610, or the first layer 2602. The first layer 2602, the second layer 2610, and the columns 2614 may alternatively be formed together in a three-material molding or casting process, or by any other process that may form columns 2614 directly onto the second layer 2610, and the first layer 2602 directly onto the second layer 2610, or by any other process that may securely join the first layer 2602, the second layer 2610, and the columns 2614.
The footwear insole 2600 may be permanently attached to the footwear midsole, the footwear outsole, or the footwear upper via, for example, an adhesive, a bonding process involving heat or solvents, stitching, a two-material, a three-material molding process, an insert molding process, a casting process, or with any other feature or process that may securely join the footwear insole 2600 to the midsole, outsole, or upper, of the footwear.
Alternatively, the footwear insole 2600 may be removably attached to the midsole, outsole, or upper of the footwear by friction fit, gravity, or by any other feature that may removably attach the footwear insole 2600 to the footwear. The bottom surface 2613 of the second layer 2610 of the footwear insole 2600 may form the ultimate bottom surface of the footwear that contacts the ground.
In operation of the footwear insole 2600, the sole of the user's foot may interface with the top surface 2604 of the first layer 2602, and with the top surfaces 2618 of the columns 2614, either through direct contact or, if the user is wearing socks, through indirect contact. The interface applies pressure on the top surface 2604 of the first layer 2602 such that the pressure may vary locally by region of the foot and also may vary based on the user's movement, e.g., walks, runs, jumps, exercises, etc. In embodiments, the first layer 2602 and/or one or more of the multiple of columns 2614 may have a tailored compressibility appropriate for the associated region of the foot. That is, the columns 2614 may not all have the same compressibility.
In response to localized pressure on the footwear insole 2600 exceeding a threshold value, such as that which may be caused by a particular user motion, e.g., walk, run, jump, etc., the first layer 2602 may compress more than the columns 2614, which relatively increases the engagement of the columns 2614 with the sole of the user's foot. This may result in a relative decrease in slippage between the user's foot and the footwear. Alternatively, the increased engagement of the columns 2614 with the sole of the user's foot may provide impact reduction, increased stability, increased comfort, a massaging action, may stimulate specific beneficial pressure points on the sole of the foot, and/or may provide propriocentric cues through engagement with the sole of the foot. The propriocentric cues may, for example, remind the user to apply less force or impact on the heel, to avoid over-pronation, to discourage excessive force, impact and/or other motion on any other region of the foot in response to the particular user motion, e.g., walk, run, jump, etc.
With reference to
With reference to
With reference to
In embodiments, the insole 2600 may function as, or be modified to become, a removable orthotic insert that covers the entire footwear insole, or only a select portion or portions of the insole. Such a removable orthotic insert may be readily received into different brands and types of footwear to provide benefits as described for the insole 2600.
With reference to
With reference to
The second layer 2708 may include a bottom surface 2720 and one or more arrays of one or more columns 2722 that correspond to the openings 2718 in the first layer 2704 and protrude from the bottom surface 2720 of the second layer 2708. In one example, the bottom surface 2720 of the second layer 2708 may define a relationship of about 0.003 to 25 columns 2722 per square centimeter and each of the columns 2722 may be about 0.01 to 100 square centimeters in area.
As described above with regard to the embodiments represented by
In operation, the bottom surface 2714 of the first layer 2704 and the bottom surfaces 2724 of the columns 2722 engage with the ground. The term “ground” as utilized herein includes any affected surfaces such as a deck, floor, turf, cement, etc. Pressure from the user's foot may transmit through the second layer 2708 and the first layer 2704 to the ground in a localized manner by region of the foot and also may vary as the user moves, e.g., walks, runs, jumps, etc. When the pressure on a region of the first layer 2704 exceeds a threshold value, the first layer 2704 in that region may compress more than the columns 2722 in that region, thereby increasing the engagement of the columns 2722 in that region with the ground, to, for example, increase the amount of grip between the outsole 2702 and the ground, increase stability, reduce impact, increase comfort, or any combination thereof.
Alternatively, the first layer 2704 of the outsole 2702 may include low friction properties, such that the outsole 2702 may provide a combination of relatively higher traction when pressure is applied locally, for example in the toe or heel areas, and relatively lower traction, or sliding, when pressure is applied evenly. This combination may be beneficial for certain activities such as dancing, indoor racquet sports, bowling, etc.
With reference to
With reference to
With reference to
In embodiments, the second layer 2810 is engaged with the woven body 2802. That is, the second layer 2810 may be weaved, sewed, bonded or otherwise partially embedded into the woven body 2802. Alternatively, the columns 2822 may be individually attached to the woven body 2802 of the sock 2800, and the remainder of the second layer 2810 may be eliminated. In one example, the top surface 2820 of the second layer 2810 may define a relationship of about 0.04 to 0.5 columns 2822 per square centimeter.
As described above with regard to the embodiments represented by
With reference to
With reference to
With reference to
In embodiments, the columns 2910 may be manufactured of an at least partially compressible material such as an elastomer or other polymeric material of, for example, a Shore A durometer in the range of 10 to 100. The columns 2910 may be attached to the woven body 2902 by adhesive, by stitching, or by any suitable bonding process such that the columns 2910 extend therefrom. The columns 2910 may be solid, may include one or more hollow regions, or be otherwise configured and/or shaped as described above. Alternatively, the columns 2910 may be formed of materials equivalent to that of the woven body 2902 but at a significantly more dense arrangement. That is, the columns 2910 may differ from the woven body 2902 only by the density of the fabric. Alternatively still, the columns 2910 may be formed of a fabric different than that of the woven body 2902.
In embodiments, a web 2909 (
In embodiments, the compressible regions 2912 may be formed by flexible fibers 2914 (illustrated schematically as wavy lines;
The compressible regions 2912 form a top surface 2918 defined by the tops of the flexible fibers 2914. In one embodiment, the columns 2910 may have top surfaces 2920 that may be disposed below, above, or be aligned with the top surfaces 2918 of the compressible regions 2912. As the compressible regions 2912 may be, for example, tufts of fibers, it should be appreciated that the top surfaces 2918 may be somewhat uneven. The compressible regions 2912 may be relatively more compressible than the columns 2910 as the compressible regions 2912 and the columns 2910 may be manufactured of different materials, and/or the same material that is weaved, sewn or otherwise manufactured to achieve the desired different compressibility.
With reference to
With reference to
Illustrative Insoles, Outsoles, Layered Structures, Socks, and Footwear Items
In some implementations, a footwear item may be described in the following clauses or otherwise described herein and as illustrated in at least
Clause 27. A footwear item, comprising: a first layer that at least partially corresponds to a shape of a foot sole and forms a top surface of the footwear item, the first layer including a multiple of openings; and a second layer with a multiple of columns, each of the multiple of columns correspond with one of the multiple of openings in the first layer to extend at least partially therein.
Clause 28. The footwear item as recited in clause 27, wherein each of the columns range in size from 0.01 to 100 square centimeters in area.
Clause 29. The footwear item as recited in clause 27, wherein at least one of the multiple of columns forms a graphic in cross-sectional shape.
Clause 30. The footwear item as recited in clause 27, wherein the multiple of columns form a graphic.
Clause 31. The footwear item as recited in clause 27, wherein the multiple of columns form an organic pattern, the organic pattern correspond to a region of the user's foot.
Clause 32. The footwear item as recited in clause 27, wherein a bottom surface of the second layer forms a bottom surface of a footwear item.
Clause 33. The footwear item as recited in clause 27, further comprising a third layer with a multiple of openings that corresponds to the multiple of openings in the first layer, the third layer attached to the first layer such that at least a portion of a top surface of the third layer forms a surface closest a user's foot.
Clause 34. The footwear item as recited in clause 27, wherein the first layer is formed of a first material and the second layer is formed of a second material different than the first material, the first material is relatively softer than the second material.
Clause 35. The footwear item as recited in clause 27, wherein the multiple of columns are arranged to provide propriocentric cues.
Clause 36. The footwear item as recited in clause 27, wherein at least one of the multiple of columns includes a hollow region.
Clause 37. The footwear item as recited in clause 27, wherein a top surface of at least one of the multiple of columns are generally flush with a top surface of the first layer while the first layer is in an uncompressed state.
Clause 38. The footwear item as recited in clause 27, wherein at least one of the multiple of openings extends completely through the first layer.
Clause 39. The footwear item as recited in clause 27, wherein a top surface of at least one of the multiple of columns is covered by the first layer.
Clause 40. The footwear item as recited in clause 27, wherein a top surface of the multiple of columns are generally flush with a top surface of the first layer while the first layer is in an uncompressed state.
In some implementations, footwear insoles may be described in the following clauses or otherwise described herein and as illustrated in at least
Clause 1. A footwear insole, comprising: a first layer with a multiple of openings, the first layer forms a top surface of the footwear insole; and a second layer with a multiple of columns, each of the multiple of columns correspond with one of the multiple of openings in the first layer to extend at least partially therein.
Clause 2. The insole as recited in clause 1, wherein each of the columns range in size from 0.01 to 100 square centimeters in area.
Clause 3. The insole as recited in clause 1, wherein at least one of the multiple of columns is at least one of square, circular, trapezoidal, or triangular in cross-sectional shape.
Clause 4. The insole as recited in clause 1, wherein at least one of the multiple of columns include an organic shape.
Clause 5. The insole as recited in clause 1, wherein at least one of the multiple of columns form a graphic in cross-sectional shape.
Clause 6. The insole as recited in clause 1, wherein at least two of the multiple of columns are arranged in an organic pattern.
Clause 7. The insole as recited in clause 6, wherein the organic patterns correspond to various regions of the user's foot.
Clause 8. The insole as recited in clause 4, wherein at least two of the multiple of columns are arranged to form a graphic.
Clause 9. The insole as recited in clause 1, further comprising a web that joins each of the multiple of columns, the web located between the first layer and the second layer.
Clause 10. The insole as recited in clause 1, wherein the first layer and the second layer are manufactured together by at least one of a two-material molding process, a three-material molding process, an insert molding process, or casting process.
Clause 11. The insole as recited in clause 10, wherein the first layer is molded directly onto the top surface of the second layer.
Clause 12. The insole as recited in clause 1, wherein the first layer, the second layer, and the multiple of columns are formed together in a three-material molding process.
Clause 13. The insole as recited in clause 1, wherein the multiple of columns are formed directly onto the second layer.
Clause 14. The insole as recited in clause 1, wherein a bottom surface of the second layer forms a bottom surface of the footwear insole.
Clause 15. The insole as recited in clause 1, wherein the footwear insole is attached to at least one of a footwear midsole, a footwear outsole, or a footwear upper.
Clause 16. The insole as recited in clause 1, wherein the footwear insole is receivable within footwear such that at least a portion of the top surface of the first layer is located closest to a user's foot.
Clause 17. The insole as recited in clause 1, further comprising a third layer with a multiple of openings that corresponds to the multiple of openings in the first layer, the third layer attached to the first layer such that at least a portion of a top surface of the third layer forms a surface closest a user's foot.
Clause 18. The insole as recited in clause 17, wherein the third layer is manufactured of a wear-resistant material.
Clause 19. The insole as recited in clause 1, wherein the multiple of columns are arranged to provide propriocentric cues.
Clause 20. The insole as recited in clause 1, wherein the first layer is formed of a first material and the second layer is formed of a second material different than the first material.
Clause 21. The insole as recited in clause 20, wherein the first material is relatively softer than the second material.
Clause 22. The insole as recited in clause 21, wherein the first material includes an ethyl vinyl acetate.
Clause 23. The insole as recited in clause 1, wherein at least one of the multiple of columns includes a hollow region.
Clause 24. The insole as recited in clause 1, wherein a top surface of at least one of the multiple of columns are generally flush with a top surface of the first layer while the first layer is in an uncompressed state.
Clause 25. The insole as recited in clause 24, wherein at least one of the multiple of openings extends completely through the first layer.
Clause 26. The insole as recited in clause 1, wherein a top surface of at least one of the multiple of columns are covered by the first layer.
Clause 27. The insole as recited in clause 1, wherein a top surface of the multiple of columns are generally flush with a top surface of the first layer while the first layer is in an uncompressed state.
Clause 28. The insole as recited in clause 1, further comprising a third layer with a second multiple of openings therethrough, the second layer between the first layer and the third layer.
Clause 29. The insole as recited in clause 28, wherein the second layer includes a second multiple of columns, each of the second multiple of columns correspond with one of the second multiple of openings in the third layer to extend at least partially therein.
In some implementations, footwear outsoles may be described in the following clauses or otherwise described herein and as illustrated in at least
Clause 30. A footwear outsole, comprising: a first layer with a multiple of openings, the first layer forms a bottom of the footwear outsole; and a second layer with a multiple of columns, each of the multiple of columns correspond with one of the multiple of openings in the first layer to extend at least partially therein.
Clause 31. The outsole as recited in clause 30, wherein each of the columns range in size from 0.003 to 100 square centimeters in area.
Clause 32. The outsole as recited in clause 30, wherein at least one of the multiple of columns is at least one of square, circular, trapezoidal, or triangular in cross-sectional shape.
Clause 33. The outsole as recited in clause 30, wherein at least one of the multiple of columns include an organic shape.
Clause 34. The outsole as recited in clause 30, wherein at least one of the multiple of columns form a graphic in cross-sectional shape.
Clause 35. The outsole as recited in clause 30, wherein at least two of the multiple of columns are arranged in an organic pattern.
Clause 36. The outsole as recited in clause 35, wherein the organic pattern corresponds to a region of the user's foot.
Clause 37. The outsole as recited in clause 36, wherein the patterns correspond to various regions of the top surface of the first layer.
Clause 38. The outsole as recited in clause 36, wherein the patterns correspond to a region of the user's foot that engage a top insole.
Clause 39. The outsole as recited in clause 30, wherein the footwear outsole is attached to a footwear midsole.
Clause 40. The outsole as recited in clause 39, wherein the footwear midsole is attached to an upper.
Clause 41. The outsole as recited in clause 30, wherein the outsole forms a portion of a sandal.
Clause 42. The outsole as recited in clause 30, wherein the footwear lacks a midsole, and the second layer is attached to a footwear upper.
Clause 43. The outsole as recited in clause 30, further comprising a cleat that extends from at least one of the multiple of columns.
Clause 44. The outsole as recited in clause 30, wherein at least one of the multiple of columns is a cleat as recited in clause 43, wherein the cleat extends through a respective one of the multiple of openings in response to application of a pressure to the second layer and retracts when the pressure is removed.
Clause 45. The outsole as recited in clause 44, wherein the application of the pressure is generated in response to a differential pressure between a user and a relative soft surface on the cleat.
Clause 46. The outsole as recited in clause 44, wherein the removal of the pressure is generated in response to a relative pressure between a user and a relative hard surface on the cleat.
Clause 47. The outsole as recited in clause 30, further comprising a third layer with a second multiple of openings therethrough, the second layer between the first layer and the third layer.
Clause 48. The outsole as recited in clause 30, wherein the second layer includes a second multiple of columns, each of the second multiple of columns correspond with one of the second multiple of openings in the third layer to extend at least partially therein.
Clause 49. The outsole as recited in clause 48, wherein a top surface of at least one of the multiple of columns are covered by the third layer.
Clause 50. The outsole as recited in clause 48, wherein the top surface of the third layer is located closest to a user's foot.
Clause 51. The outsole as recited in clause 30, wherein the multiple of columns are integral to the second layer.
Clause 52. The outsole as recited in clause 30, further comprising a web that joins each of the multiple of columns, the web located between the first layer and the second layer.
In some implementations, footwear outsoles may be described in the following clauses or otherwise described herein and as illustrated in at least
Clause 53. A layered engagement structure, comprising: a first layer with a multiple of openings, the first layer sole shaped; and a multiple of columns, each of the multiple of columns correspond with one of the multiple of openings in the first layer to extend at least partially therein.
Clause 54. The layered engagement structure as recited in clause 53, further comprising a second layer to at least partially entrap the multiple of columns with respect to the first layer, the multiple of columns extend from the second layer.
Clause 55. The layered engagement structure as recited in clause 53, further comprising a web that joins each of the multiple of columns, the web located between the first layer and the second layer.
Clause 56. The layered engagement structure as recited in clause 53, wherein the sole is an insole, a top surface of the first layer of the footwear insole forms the bottom surface of the footwear.
Clause 57. The layered engagement structure as recited in clause 53, wherein the sole is an outsole, a bottom surface of the first layer of the footwear outsole forms the bottom surface of the footwear.
In some implementations, footwear outsoles may be described in the following clauses or otherwise described herein and as illustrated in at least
Clause 1. A sock, comprising: a woven body; a multiple of columns that extend relative to the woven body; and a compressible region that surrounds each of the multiple of columns.
Clause 2. The sock as recited in clause 1, further comprising a web that joins each of the multiple of columns.
Clause 3. The sock as recited in clause 2, wherein the web is integrated with the woven body.
Clause 4. The sock as recited in clause 2, wherein the web is sewn into the woven body.
Clause 5. The sock as recited in clause 1, wherein the compressible regions are formed from flexible fibers.
Clause 6. The sock as recited in clause 1, wherein the compressible regions are formed from a material that forms the woven body.
Clause 7. The sock as recited in clause 1, wherein the compressible regions are formed by a relatively thicker region of the woven body.
Clause 8. The sock as recited in clause 1, wherein the compressible regions are formed by a layer of material with a multiple of openings, each of the multiple of columns correspond with one of the multiple of openings to extend at least partially therein.
Clause 9. The sock as recited in clause 8, wherein the layer of material is formed from flexible fibers.
Clause 10. The sock as recited in clause 8, wherein the layer of material is formed from a material that forms the woven body.
Clause 11. The sock as recited in clause 1, wherein the multiple of columns extend toward an interior of the woven body.
Clause 12. The sock as recited in clause 1, wherein the multiple of columns extend toward an exterior of the woven body.
Clause 13. The sock as recited in clause 1, wherein at least one of the multiple of columns includes a top surface aligned with a top surface of the compressible region.
Clause 14. The sock as recited in clause 1, wherein the multiple of columns are formed of a first material and the compressible region is formed of a second material different than the first material.
Clause 15. The sock as recited in clause 14, wherein the first material is relatively softer than the second material.
Clause 16. The sock as recited in clause 15, wherein the first material includes ethyl vinyl acetate.
Clause 17. The sock as recited in clause 1, wherein at least one of the multiple of columns includes a hollow region.
Clause 18. A sock, comprising: a woven body; a first layer with a multiple of openings; and a second layer with a multiple of columns, each of the multiple of columns correspond with one of the multiple of openings in the first layer to extend at least partially therein, the second layer attached to the woven body.
Clause 19. The sock as recited in clause 18, wherein the second layer is sewn to the woven body.
Clause 20. The sock as recited in clause 18, wherein the second layer is bonded to the woven body.
Clause 21. The sock as recited in clause 18, wherein the second layer is integrated into the woven body.
Clause 22. The sock as recited in clause 18, wherein the first layer is formed from a material that forms the woven body.
Clause 23. The sock as recited in clause 18, wherein the first layer is formed from flexible fibers.
Clause 24. The sock as recited in clause 18, wherein at least one of the multiple of columns includes a top surface aligned with at top surface of the first layer.
Clause 25. The sock as recited in clause 18, wherein the multiple of columns are formed of a first material and the second layer is formed of a second material different than the first material.
In some implementations, footwear outsoles may be described in the following clauses or otherwise described herein and as illustrated in
Clause 1. A footwear item, comprising: an insole, comprising: a first layer with a multiple of openings, the first layer forms a top surface of the footwear insole; and a second layer with a multiple of columns, each of the multiple of columns correspond with one of the multiple of openings in the first layer to extend at least partially therein.
Clause 2. A footwear item, comprising: an outsole, comprising: a first layer with a multiple of openings, the first layer forms a bottom of the footwear outsole; and a second layer with a multiple of columns, each of the multiple of columns correspond with one of the multiple of openings in the first layer to extend at least partially therein.
Clause 3. A footwear item, comprising: an insole, comprising: a first layer with a multiple of openings, the first layer forms a top surface of the footwear insole; and a second layer with a multiple of columns, each of the multiple of columns correspond with one of the multiple of openings in the first layer to extend at least partially therein; and an outsole, comprising: a first layer with a multiple of openings, the first layer forms a bottom of the footwear outsole; and a second layer with a multiple of columns, each of the multiple of columns correspond with one of the multiple of openings in the first layer to extend at least partially therein.
The elements disclosed and depicted herein, including in flow charts and block diagrams throughout the figures, imply logical boundaries between the elements. However, according to software or hardware engineering practices, the depicted elements and the functions thereof may be implemented on machines through computer executable media having a processor capable of executing program instructions stored thereon as a monolithic software structure, as standalone software modules, or as modules that employ external routines, code, services, and so forth, dynamically loaded or updated modules, or any combination of these, and all such implementations may be within the scope of the present disclosure.
It should be appreciated that like reference numerals identify corresponding or similar elements throughout the several drawings. It should also be appreciated that although a particular component arrangement is disclosed in the illustrated embodiment, other arrangements will benefit herefrom.
Although the different non-limiting embodiments include specific illustrated components, the embodiments are not limited to those particular combinations. It is possible to use some of the components or features from any of the non-limiting embodiments in combination with features or components from any of the other non-limiting embodiments.
Although particular step sequences are shown, disclosed, and claimed, it should be appreciated that steps may be performed in any order, separated or combined unless otherwise indicated and will still benefit from the present disclosure.
The foregoing description is exemplary rather than defined by the limitations within. Various non-limiting embodiments are disclosed herein, however, one of ordinary skill in the art would recognize that various modifications and variations in light of the above teachings will fall within the scope of the appended claims. It is therefore to be appreciated that within the scope of the appended claims, the disclosure may be practiced other than as specifically disclosed. For that reason the appended claims should be studied to determine true scope and content.
All documents referenced herein are hereby incorporated by reference.
This application claims the benefit of the following provisional applications: U.S. Patent Application No. 62/047,404, filed Sep. 8, 2014 (BNDG-0003-P01); and U.S. Patent Application No. 62/072,733, filed Oct. 30, 2014 (BNDG-0004-P01).
Number | Date | Country | |
---|---|---|---|
62047404 | Sep 2014 | US | |
62072733 | Oct 2014 | US |