This U.S. patent application claims priority under 35 U.S.C. §119(e) to U.S. Provisional Application 61/432,317, filed on Jan. 13, 2011, which is hereby incorporated by reference in its entirety.
This disclosure relates to footwear.
Articles of footwear, such as shoes, are generally worn while exercising to protect and provide stability of a user's feet. In general, shoes include an upper portion and a sole. When the upper portion is secured to the sole, the upper portion and the sole together define a void that is configured to securely and comfortably hold a human foot. Often, the upper portion and/or sole are/is formed from multiple layers that can be stitched or adhesively bonded together. For example, the upper portion can be made of a combination of leather and fabric, or foam and fabric, and the sole can be formed from at least one layer of natural rubber. Often materials are chosen for functional reasons, e.g., water-resistance, durability, abrasion-resistance, and breathability while shape, texture, and color are used to promote the aesthetic qualities of the shoe. The sole generally provides support for a user's foot and acts as an interface between the user's foot and the ground.
One aspect of the disclosure provides a footwear upper including a first layer and a second layer disposed on the first layer exteriorly of the first layer. The second layer defines grooves in a rhombille tiling pattern.
Implementations of the disclosure may include one or more of the following features. In some implementations, the second layer is disposed on at least one of a top forefoot portion, a heel portion, a lateral portion, and a medial portion of the first layer. The rhombille tiling may be a tessellation of 60° rhombi. Moreover, the rhombille tiling pattern may include a hexagonal tiling of overlapping hexagonally shaped figures. Each figure is divided into three rhombi meeting at a center point of the hexagonally shaped figure. First and second diagonals of each rhombus may have a ratio of 1:√3.
In some examples, the grooves are defined to provide an edge density of between about 40 mm/cm2 and about 200 mm/cm2 and a surface contact ratio of between about 40% and about 95%. The first layer may comprise polychloroprene. The second layer may comprise rubber. In some instances, the second layer has durometer between about 35 Shore A and about 70 Shore A and/or a thickness of between about 1 mm and about 1.5 cm.
Another aspect of the disclosure provides a footwear article that includes a sole assembly and an upper assembly attached to the sole assembly. The upper assembly includes a first layer and a second layer disposed on the first layer exteriorly of the first layer. The second layer defines grooves in a rhombille tiling pattern.
In some implementations, the second layer is disposed on at least one of a top forefoot portion, a heel portion, a lateral portion, and a medial portion of the first layer. The rhombille tiling may be a tessellation of 60° rhombi. Moreover, the rhombille tiling pattern may include a hexagonal tiling of overlapping hexagonally shaped figures. Each figure is divided into three rhombi meeting at a center point of the hexagonally shaped figure. First and second diagonals of each rhombus may have a ratio of 1:√3.
In some examples, the grooves are defined to provide an edge density of between about 40 mm/cm2 and about 200 min/cm2 and a surface contact ratio of between about 40% and about 95%. The first layer may comprise polychloroprene. The second layer may comprise rubber. In some instances, the second layer has durometer of between about 35 Shore A and about 70 Shore A and/or a thickness of between about 1 mm and about 1.5 cm. A third layer may be disposed between the first and second layers. The third layer includes a compliant material for cushioning.
One aspect of the disclosure provides an outsole (e.g., as part of a sole assembly) for an article of footwear. The outsole includes an outsole body having a ground contact surface and defining grooves having a sinusoidal path along the ground contact surface. The grooves are arranged to provide an edge density of between about 40 mm/cm2 and about 200 mm/cm2 and a surface contact ratio of between about 40% and about 95%.
Implementations of the disclosure may include one or more of the following features. In some implementations, at least some of the sinusoidal grooves are arranged substantially parallel to each other to provide an edge density of about 59 mm/cm2 and a surface contact ratio of about 67%. In additional implementations, at least some of the sinusoidal grooves are arranged substantially parallel to each other to provide an edge dens: of about 106 mm/cm2 and a surface contact ratio of about 91%. In yet additional implementations, at least some of the sinusoidal grooves are arranged substantially parallel to each other to provide an edge density of about 80 mm/cm2 and a surface contact ratio of about 84%. At least some of the sinusoidal grooves, in some implementations, are arranged substantially parallel to each other to provide an edge density of about 77 mm/cm2 and a surface contact ratio of about 90%.
At least one sinusoidal groove path along the ground contact surface may have is an amplitude of between about 3 mm and about 25 mm and/or a frequency of between about 4 mm and about 50 mm. For example, at least one sinusoidal groove path along the ground contact surface may have an amplitude of between about 5 mm and a frequency of about 6.3 mm. Moreover, the corresponding groove may have a width of between about 0.1 mm and about 5 mm and/or a depth of between about 25% a thickness of the outsole and about 75% the thickness of the outsole. For example, the corresponding groove may have a width of about 0.4 mm and/or a depth of about 1.2 mm.
In some implementations, each groove has a sinusoidal groove path along the ground contact surface having an amplitude of about 5 mm and a frequency of about 6.3 mm. Adjacent grooves are offset from each other along the ground contact surface in a common direction by an offset distance of about 3.15 mm. At least one channel may connect two adjacent grooves. The at least one channel can have a depth of about half a depth of the grooves and/or a width substantially equal to a width of the grooves.
In additional implementations, at least one sinusoidal groove path along the ground contact surface has an amplitude of about 17.6 mm and a frequency of about 40 mm. The corresponding groove may have a width of about 1 mm and/or a depth of about 1.5 mm.
Each groove may have a sinusoidal groove path along the ground contact surface having an amplitude of about 17.6 mm and a frequency of about 40 mm, where adjacent grooves are offset from each other along the ground contact surface in a common direction by an offset distance of between about 3 mm and about 3.75 mm. For three consecutive grooves along the ground contact surface, a first groove may be offset from a second groove by an offset distance of about 3 mm and the second groove may be offset from a third groove by an offset distance of about 3.75 mm.
Each groove may have at least one shoulder edge with the ground contact surface. The at least one shoulder edge may define a right angle with a substantially non-radiused corner. Other shoulder edge configurations are possible as well, such as rounded, chamfered, etc.
The outsole body may comprise at least one of rubber having a durometer is between about 45 Shore A and about 65 Shore A, a rubber having a minimum coefficient of friction of about 0.9 and a durometer of between about 50 Shore A and about 65 Shore A, and a rubber having a minimum coefficient of friction of about 1.1 and a durometer of between about 50 Shore A and about 65 Shore A.
Another aspect of the disclosure provides an outsole for an article of footwear that includes an outsole body having a ground contact surface and defining grooves having a sinusoidal path along the ground contact surface. The grooves define a sinusoidal groove path along the ground contact surface having an amplitude of about 5 mm and a frequency of about 6.3 mm.
In some implementations, the grooves have a width of about 0.4 mm and/or a depth of about 1.2 mm. Adjacent grooves may be offset from each other along the ground contact surface in a common direction by an offset distance (e.g., about 3.15 mm). In some examples, the outsole includes at least one channel connecting the adjacent grooves. The at least one channel may have a depth of about half a depth of the grooves and/or a width substantially equal to a width of the grooves. Moreover, the grooves may be arranged substantially parallel to each other to provide an edge density of about 106 mm/cm2 and a surface contact ratio of about 91%.
In another aspect, an outsole for an article of footwear includes an outsole body having a ground contact surface and defining grooves having a sinusoidal path along the ground contact surface. The grooves define a sinusoidal groove path along the ground contact surface having an amplitude of about 17.6 mm and a frequency of about 40 mm.
In some implementations, the grooves have a width of about 1 mm and/or a depth of about 1.5 mm. Adjacent grooves my be offset from each other along the ground contact surface in a common direction by an offset distance (e.g., between about 3 mm and about 3.75 mm). For example, for three consecutive grooves along the ground contact surface, a first groove may be offset from a second groove by an offset distance of about 3 mm and the second groove is offset from the third groove by an offset distance of about 3.75 mm.
Each groove may have at least one shoulder edge with the ground contact surface. The at least one shoulder edge may define a right angle with a substantially non-radiused corner. Moreover, at least some adjacent grooves may intersect each other periodically along their respective sinusoidal paths. The grooves can be arranged substantially parallel to each other to provide an edge density of about 59 mm/cm2 and a surface contact ratio of about 67%.
In yet another aspect, an outsole for an article of footwear includes an outsole body having lateral and medial portions and aground contact surface. The outsole defining a longitudinal axis along a walking direction and perpendicular transverse axis. The ground contact surface has a first tread region disposed on the lateral outsole body portion near a lateral periphery of the outsole, a second tread region disposed on the medial outsole body portion neuro medial periphery of the outsole, and a third tread region disposed between the first and second tread regions in at least a ground striking portion of the outsole. The first and second tread regions define grooves having a sinusoidal path along the ground contact surface with an axis of propagation substantially parallel to the longitudinal axis of the outsole. Adjacent grooves are offset from each other along the transverse axis by a first offset distance. The third tread region defines grooves having a sinusoidal path along the ground contact surface with an axis of propagation substantially parallel to the transverse axis of the outsole. Adjacent grooves are offset from each other along the longitudinal axis by a second offset distance.
In some implementations, the grooves of the first and second tread regions define a sinusoidal groove path along the ground contact surface having an amplitude of about 17.6 mm and a frequency of about 40 mm. The grooves of the first and second tread regions may have a width of about 1 mm and/or a depth of about 1.5 mm. The first offset distance may be between about 3 mm and about 3.75 mm. For example, for three consecutive grooves along the ground contact surface of the first and second tread regions, a first groove is offset from a second groove by an offset distance of about 3 mm and the second groove is offset from a third groove by an offset distance of about 3.75 mm. At least some adjacent grooves of the first and second tread regions may intersect each other periodically along their respective sinusoidal paths. Moreover, the grooves the first and second tread regions may be arranged to provide an edge density of about 59 mm/cm2 and a surface contact ratio of about 67%.
The grooves of the third tread region may define a sinusoidal groove path along the ground contact surface having an amplitude of about 5 mm and a frequency of about 6.3 mm. In some examples, the grooves of the third tread region have a width of about 0.4 mm and/or a depth of about 1.2 mm. The second offset distance may be about 3.15 mm. The third tread region sometimes includes at least one channel connecting adjacent grooves. The at least one channel has a depth of about half a depth of the grooves of the third tread region and/or a width substantially equal to a width of the grooves the third tread region. The grooves of the third tread region can be arranged to provide an edge density of about 106 mm/cm2 and a surface contact ratio of about 91%.
Each groove may have at least one shoulder edge with the ground contact surface. The at least one shoulder edge defines a right angle with a substantially non-radiused corner.
For each of the aspects discussed, the outsole body may comprise at least one of rubber having a durometer of between about 45 Shore A and about 65 Shore A, a rubber having a minimum coefficient of friction of about 0.9 and a durometer of between about 50 Shore A and about 65 Shore A, and a rubber having a minimum coefficient of friction of about 1.1 and a durometer of between about 50 Shore A and about 65 Shore A.
In yet another aspect, a footwear upper includes a first layer and a second layer disposed on the first layer exteriorly of the first layer. The second layer defines grooves arranged to have edge density of between about 40 mm/cm2 and about 200 mm/cm2 and a surface contact ratio of between about 40% and about 95%. Each groove has a width of between about 0.1 mm and about 2.5 mm.
In some implementations, the second layer is disposed on at least one of a top forefoot portion, a heel portion, a lateral portion, and a medial portion of the first layer. The grooves may be arranged in a in a rhombille tiling pattern comprising a tessellation of 60° rhombi. Moreover, the rhombille tiling pattern my include a hexagonal tiling of overlapping hexagonally shaped figures. Each figure is divided into three rhombi meeting at a center point of the hexagonally shaped figure. First and second diagonals of each rhombus may have a ratio of 1:√3.
In some implementations, the grooves are defined to have a sinusoidal path. For example, at least one sinusoidal groove path may have an amplitude of between about 3 mm and about 25 mm and/or a frequency of between about 4 mm and about 50 mm, such as an amplitude of about 5 mm and a frequency of about 6.3 mm or an amplitude of about 17.6 mm and a frequency of about 40 mm. Each groove may have at least one shoulder edge. The at least one shoulder edge defines a right angle with a substantially non-radiused corner.
The details of one or more implementations of the disclosure are set forth in the accompanying drawings and the description below. Other aspects, features, and advantages will be apparent from the description and drawings, and from the claims.
Like reference symbols in the various drawings indicate like elements. By way of example only, all of the drawings are directed to an article of footwear suitable to be worn on a right foot or a left foot. The invention also includes the mirror images of the drawings, i.e. an article of footwear suitable to be worn on a left foot or a right foot, respectively.
Referring to
Referring to
Many boats, especially dinghies, have equipment that facilitates effective hiking. For example, hiking straps 420, which can be made from rope or webbing, hold one or more feet of the sailor (e.g., as shown in
Referring again to
In the example shown in
Referring again to
In the examples shown in
The second layer 120 may be configured to provide traction and/or padding for engaging a hiking strap 420 of a sail boat 400. In some examples, the second layer 120 comprises rubber, such as a sticky rubber that provides a non-slip characteristic to the second layer 120. The second layer 120 may comprise rubber, such as a sticky rubber that provides a non-slip characteristic, and have a thickness T2 that reduces or eliminates impingement of the hiking strap 420 into the wearer's foot (e.g., a thickness T2 of between about 1 mm and about 1.5 cm, or about 2 mm). In some examples, the second layer 120 has durometer of between about 35 Shore A and about 70 Shore A.
For added comfort and padding, a third layer 130 (e.g., a cushion layer) may be disposed between the first and second layers 110, 120, as in the examples shown in
Referring again to
In some implementations, the contact surface 122 defines grooves 128, such as siped grooves (e.g., molded and/or razor cut), having a tread configuration designed for slip resistance. The plurality of grooves 128 receive water escaping from between the contact surface 122 and an object pressing against it, such the hiking strap 420. Liquid can flow in the channels 124 and/or grooves 128 toward a perimeter of the contact surface 122 (i.e., away from weight-bearing and contact surfaces). For example, water can flow from the grooves 128 into the channels 126 between the ribs 124 to a perimeter of the second layer 120. The grooves 128 may be adequately sized for liquid movement there-through, while deterring the accumulation of small objects therein. Moreover, the grooves 128 may flex open (e.g., during foot flexion/extension), providing traction and water escapement from the contact surface 122. In some implementations, the channels 124 and/or grooves 128 are cut into the traction pad 120, while in other implementations, the channels 124 and/or grooves 128 are molded with the traction pad 120.
Referring to
The groove and or channel configuration can be arranged to have a certain edge density and a certain surface contact ratio to provide a certain level of traction performance (or resistance to slip). Edge density can be defined as a length of surface edges of the contact surface 122 (e.g., the cumulative length (millimeters) of edges on the contact surface 122 from the channels 124 and/or grooves 128) within a square centimeter. In general, the greater the edge density, the greater the traction; however, manufacturability, aesthetics, resistance to wear and other factors may limit the edge density. The surface contact ratio can be defined as an overall area of the contact surface 122 minus a groove area of the contact surface 122 (i.e. an area of the contact surface removed for the channels 124 and/or grooves 128) divided by the overall area of the contact surface 122. In dry conditions, a surface contact ratio of 100% can provide the best traction; however, a contact surface 122 with no channels 124 or grooves 128 provides very poor traction or slip resistance in wet conditions. Therefore, a relationship or balance between the edge density and the surface contact ratio of the contact surface 122 can provide certain traction and performance characteristics of the traction pad 120 in various environmental conditions.
Referring to
Referring to
The channels 124 and/or grooves 128 defined by the second layer 120 can be arranged to provide an edge density of between about 40 mm/cm2 and about 200 mm/cm2 and/or a surface contact ratio of between about 40% and about 95%. In some implementations, the channels 124 and/or grooves 128 are arranged to provide an edge density of between about 100 mm/cm2 and about 110 mm/cm2 and/or a surface contact ratio of between about 50% and about 95%.
Referring to FIGS. 2F and 7A-7G, in some implementations, the sole assembly 200 includes an outsole 300 connected to a midsole 400 and having aground contact surface 310. The outsole 300 has a forefoot portion 302, a heel portion 304 as well as a lateral portion 306 and a medial portion 308. The midsole 400 can be made of ethylene vinyl acetate (EVA), foam, or any suitable material for providing cushioning in an article of footwear.
The outsole 300 may have a tread configuration designed for slip resistance. For example, the ground contact surface 310 of the ° outsole 300 (
The grooves or channels 312 can have a width WG of between about 0.1 mm to about 5 mm (e.g., 1.2 mm) and/or a depth DG of between about 25% to about 75% of a thickness T of the outsole 300. For example, for an outsole 300 having a thickness of 3.5 mm, the grooves 312 can have a depth DG of between about 0.8 mm and about 2.6 mm (e.g., a depth DG of 1 mm, 2 mm, or 2.5 mm). Siped grooves 312 may have a relatively thin width WG as compared to other types of grooves 312. Siped grooves 312 may be formed by razor cutting the groove 312 into the outsole 300 or molding the groove 312 with a relatively narrow width WG.
In the examples shown, the outsole 300 defines first and second tread regions 320, 330; however, the outsole 300 may define one contiguous tread region or many tread regions arranged randomly or in specific locations on the ground contact surface 330. Each tread region 320, 330 includes a corresponding configuration grooves or channels 322, 332 that provides traction on wet or slippery surfaces. The groove or channel configuration can be arranged to have a certain edge density and a certain surface contact ratio to provide a certain level of traction performance (or resistance to slip). Edge dens: can be defined as a length of surface edges of the ground contact surface 310 (e.g., the cumulative length (millimeters) of edges on the ground contact surface 310 from the grooves or channels 322, 332) within a square centimeter. In general, the greater the edge density, the greater the traction; however, manufacturability, aesthetics, resistance to wear and other factors may limit the edge density. The surface contact ratio can be defined as an overall area of the ground contact surface 310 minus a groove area of the ground contact surface 310 (i.e. an area of the ground contact surface removed for the grooves or channels 322, 332) divided by the overall area of the ground contact surface 310. In dry conditions, a surface contact ratio of 100% can provide the best traction; however, a ground contact surface 310 with no grooves or channels 322, 332 provides very poor traction or slip resistance in wet conditions. Therefore, a relationship or balance between the edge density and the surface contact ratio of the ground contact surface 310 can provide certain traction and performance characteristics of the outsole 300 in various environmental conditions.
The grooves or channels 312, 322, 332 of the outsole 300 can be arranged to provide an edge density of between about 40 mm/cm2 and about 200 mm/cm2 and/or a surface contact ratio of between about 40% and about 95%. In some implementations, the grooves or channels 312, 322, 332 of the outsole 300 are arranged to provide an edge density of between about 100 mm/cm2 and about 110 mm/cm2 and/or a surface contact ratio of between about 50% and about 95%.
In some implementations, the grooves and/or channels 124, 128, 322, 332 on the second layer 120 and/or the outsole 300 defines a sinusoidal path along the corresponding contact surface 122, 310. For example, the sinusoidal path of the grooves or channels 124, 128, 322, 332 may be defined by the following equation:
y(t)=A·sine(ωt+φ) (1)
where t is time, A is amplitude, ω is angular frequency and φ is phase at a time of t=0. Referring to
Referring to
Referring to FIGS. 3F and 7A-17, in some implementations, the first and second tread regions 320, 332 define grooves or channels 322, 332 in wave configurations (e.g., sine waves). In the example shown in
Referring to
In some examples, each groove or channel 128, 322 follows a sinusoidal path with an amplitude of about 8.8 mm (or 8.8 mm+/−1 or 2 mm) and an angular frequency of about 20 mm (or 20 mm+/−3 mm). Each grove or channel 128, 322 can have a width WT of about 0.5 mm and/or a depth DT of about 1.5 mm. In some implementations, the axis of propagation 325 of each grove or channel 128, 322 is offset from the axis of propagation 325 of an adjacent grove or channel 128, 322 by an offset distance OT of between about 1 mm and about 2 mm. Adjacent grooves or channels 128, 322 can be arranged such that their corresponding groove paths merge at various or periodic groove intersections 327. The first tread region 320 my have an edge density of groove edges 323 of about 124 min/cm2 and a surface contact ratio of about 65%.
Referring to
In some examples, each grooves 128, 332 follows a sinusoidal path with an amplitude of 5 mm (or 5 mm+/−1 or 2 mm) and an angular frequency of 6.3 mm (or 6.3 mm+/−1 or 2 mm). Each grove 128, 332 can have a width WQ of about 0.4 mm, a depth DQ of about 1.2 mm. In some implementations, the axis of propagation 335 of each grove 128, 332 is offset from the axis of propagation 335 of an adjacent grove 128, 332 by an offset distance OQ of between about 1.5 mm and about 3.5 mm (e.g., about 2.75 mm). Moreover, branch or cross-linking grooves 334 can interconnect adjacent grooves 128, 332 (e.g., every quarter or half a wavelength of the sinusoidal grooves 332). In some examples, the branch grooves 334 extend in a direction substantially parallel to or at a relatively small angle (e.g., between about 1° and about 45°) with respect to the longitudinal axis 301. The branch grooves 334 may have a width WQ of about 0.4 mm, a depth DQ of about 0.6 mm (or about half the depth DQ of the other grooves 332). The second tread region 330 may have an edge density of groove edges 333 of about 106 mm/cm2 and a surface contact ratio of about 91%.
Anti-slip characteristics of the second layer 120 and/or the outsole 300 may depend on the contact surface configuration (e.g., tread pattern, edge density, and/or surface contact ratio) as well as the material of the second layer 120 or outsole 300, respectively. The second layer 120 and/or the outsole 300 may be comprised of one or more materials. In some examples, the outsole comprises at least one of natural rubber, rubber, 0.9 anti-slip rubber (rubber having a minimum coefficient of friction of 0.9 for a durometer of 50-55 Shore A), and 1.1 anti-slip rubber (rubber having a minimum coefficient of friction of 1.1 for a durometer 50-55 Shore A), and latex, each having a durometer of between about 50 Shore A and about 65 Shore A.
A slip resistance test can be performed to determine a slip index or slip angle for different combinations of tread configurations and outsole materials to select a tread configuration and outsole material appropriate for a particular application, such as boating, fishing, or activities on wet surfaces. The slip resistance test can be performed using a tribometer (also known as a slipmeter), which is an instrument that measures a degree of friction between two rubbing surfaces. The English XL Variable Incidence Tribometer (VII) (available from Excel Tribometers, LLC, 160 Tymberbrook Drive, Lyman, S.C. 29365) is an exemplary Tribometer for determining slip resistance for various outsole configurations. The VII instrument mimics biomechanical parameters of the human walking gait and replicates a heel strike of a human walking (e.g., using a leg and ankle device). A leg of the VII instrument is free to accelerate once a slip occurs, as with a real-world human slip event. For example, some testing instruments that drag across the floor at a constant rate do not account for what happens when humans slip and fall. Moreover, the phenomenon of “sticktion” may produce misleading results when a
Table 2 provides results of slip resistance tests conducted on a number of materials having the same surface configuration in wet and dry conditions in accordance with ASTM D1894 measuring a coefficient of friction between a smooth sample material (i.e., flat without treads) and a metal surface.
Table 3 provides results of slip resistance tests conducted on a number of materials having the same surface configuration in wet and dry conditions in accordance with ASTM F1679-04 using a Variable Incidence Tribometer (VIT). A slip angle is the determined between a sample material and a test surface (e.g., a textured surface, Teak wood, Polyester-fiberglass, or metal). The sample material defined grooves having the third tread pattern (Q) 2000 described herein with reference to
Table 4 provides results of slip resistance tests conducted on a number of materials having the same surface configuration in wet and dry conditions in accordance with ASTM F1679-04 using a Variable Incidence Tribometer (VIT). The sample material defined grooves having the fourth tread pattern (T) 2100 described herein with reference to
The slip resistance test results shown in Tables 2-4 reveal that the 1.1 Anti-Slip Rubber having a durometer of 50-55 Shore A out-performed the other samples, while latex having a durometer of 60-65 Shore A and the 0.9 Anti-Slip Rubber having a durometer of 50-55 Shore A performed relatively well in comparison to the remaining samples as well The selection of an outsole material for an outsole 300 may depend on the combined performance of the material type and a tread configuration of the outsole 300.
Table 5 provides results of slip resistance tests for different combinations of tread designs and outsole materials on Teak wood under 20 psi of pressure. A sixth sample is smooth with no treads as a control sample.
Table 6 provides results of slip resistance tests for different combinations of tread designs and outsole materials on Teak wood under 25 psi of pressure. A sixth sample is smooth with no treads as a control sample.
Table 7 provides results of slip resistance tests for different tread designs made of the 0.9 anti-slip rubber having durometer of 50-55 Shore A on Teak wood under 25 psi of pressure with a VIT instrument angle of 15°. A sixth sample is smooth with no treads as a control sample.
Table 8 provides results of slip resistance tests for different tread designs made of the 1 anti-slip rubber having durometer of 50-55 Shore A on Teak wood under 25 psi of pressure with a VIT instrument angle of 15°. A sixth sample is smooth with no treads as a control sample.
Table 9 provides results of slip resistance tests for different tread designs made of the 1.1 anti-slip rubber having durometer of 50-55 Shore A on textured polyester fiberglass under 25 psi of pressure with a VIT instrument angle of 15°. A sixth sample is smooth with no treads as a control sample.
A number of implementations have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the disclosure. Accordingly, other implementations are within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
1725347 | Glidden et al. | Aug 1929 | A |
2129226 | Montano | Sep 1938 | A |
3191321 | Brutting | Jun 1965 | A |
3370363 | Kaplan | Feb 1968 | A |
3525165 | Randall, Jr. | Aug 1970 | A |
4103439 | Abramson | Aug 1978 | A |
D250617 | Noches | Dec 1978 | S |
4716663 | Steinhauser | Jan 1988 | A |
4858339 | Hayafuchi et al. | Aug 1989 | A |
5913592 | Moore | Jun 1999 | A |
6038792 | Hauter | Mar 2000 | A |
D424798 | McDowell | May 2000 | S |
D431351 | Prats et al. | Oct 2000 | S |
D461628 | Neely et al. | Aug 2002 | S |
D465320 | Weege | Nov 2002 | S |
6523282 | Johnston | Feb 2003 | B1 |
6681503 | Morle | Jan 2004 | B2 |
D508308 | Galway | Aug 2005 | S |
7047668 | Burris et al. | May 2006 | B2 |
D523624 | Kuerbis | Jun 2006 | S |
D579186 | Mervar et al. | Oct 2008 | S |
7487605 | Hatzilias | Feb 2009 | B2 |
7562471 | Minami | Jul 2009 | B2 |
D602235 | Hatzilias | Oct 2009 | S |
7650703 | Conolly | Jan 2010 | B2 |
7793434 | Sokolowski et al. | Sep 2010 | B2 |
7913420 | Arizumi | Mar 2011 | B2 |
7930841 | Luedecke et al. | Apr 2011 | B2 |
7941946 | Clancy et al. | May 2011 | B2 |
8196322 | Atsumi et al. | Jun 2012 | B2 |
D663519 | Grangaard | Jul 2012 | S |
20030167658 | Davis | Sep 2003 | A1 |
20040055183 | Lee et al. | Mar 2004 | A1 |
20040211090 | Miller et al. | Oct 2004 | A1 |
20050144812 | Wheeler | Jul 2005 | A1 |
20060174520 | Wu | Aug 2006 | A1 |
20070204481 | Conolly | Sep 2007 | A1 |
20090113766 | Hooper | May 2009 | A1 |
20100107449 | Minami | May 2010 | A1 |
20100299967 | Atsumi et al. | Dec 2010 | A1 |
20100331122 | Morag | Dec 2010 | A1 |
20110035963 | Baker et al. | Feb 2011 | A1 |
Number | Date | Country |
---|---|---|
2629486 | Aug 2004 | CN |
2255628 | May 1974 | DE |
2743666 | Mar 1978 | DE |
2801984 | Jul 1979 | DE |
2827172 | Jan 1980 | DE |
3314274 | Oct 1983 | DE |
0383489 | Aug 1990 | EP |
0496931 | Aug 1992 | EP |
0948269 | Oct 1999 | EP |
1430801 | Jun 2004 | EP |
2088365 | Aug 1996 | ES |
825095 | Feb 1938 | FR |
2475369 | Aug 1981 | FR |
6995 | Jan 1901 | GB |
7669 | Jan 1905 | GB |
202859 | Aug 1923 | GB |
409010 | Apr 1934 | GB |
735712 | Aug 1955 | GB |
940925 | Nov 1963 | GB |
2248171 | Apr 1992 | GB |
2259639 | Mar 1993 | GB |
2286517 | Aug 1995 | GB |
2361406 | Oct 2001 | GB |
2430859 | Apr 2007 | GB |
2015675 | Jul 1994 | RU |
WO-9305673 | Apr 1993 | WO |
WO-9632856 | Oct 1996 | WO |
WO-9816129 | Apr 1998 | WO |
WO-9825490 | Jun 1998 | WO |
WO-2006050565 | May 2006 | WO |
2007144331 | Dec 2007 | WO |
WO-2010138315 | Dec 2010 | WO |
Entry |
---|
International Search Report for Application PCT/US2011/052936 dated Feb. 21, 2012. |
PCT/US2011/062936, Written Opinion, Jan. 4, 2013. |
International Search Report for application PCT/US2011/052918 dated Apr. 4, 2012. |
Number | Date | Country | |
---|---|---|---|
20120180340 A1 | Jul 2012 | US |
Number | Date | Country | |
---|---|---|---|
61432317 | Jan 2011 | US |