The present disclosure relates to power tools that can adjust the force they exert on a workpiece and, more particularly, to portable, hand-held power tools with interchangeable heads that can detect the type of attached head and adjust the force exerted accordingly.
Portable, handheld power tools are used to perform a variety of tasks. Such tools include a power source such as a battery, an electric motor, and a working component, such as a saw, cutting blade, grinding wheel, or crimper. Some portable tools incorporate a hydraulic pump to drive a piston to apply a relatively large amount of force or pressure for a particular task. Some of these hydraulic tools include a working head with working surfaces shaped to perform a particular action on a workpiece, for example, crimping or cutting. Force from the piston actuated by the hydraulic system is applied to the workpiece to perform the desired task.
Battery powered hydraulic tools are employed in numerous applications to provide an operator with a desired flexibility and mechanical advantage. For example, an operator of a hydraulic power tool equipped with a head having a cutting blade can cut large conductors e.g., #8 conductors and larger. Likewise, an operator using a hydraulic tool equipped with a head including crimping surfaces can use the tool to make crimped connections on large conductors.
Many hydraulic tools require relatively expensive components to provide sufficient power, durability, and reliability for industrial and commercial tasks. Such tools may also require strong components to withstand significant forces required to perform industrial processes. Thus, such tools may be expensive, heavy, and bulky.
Hydraulic tools may be specialized to perform different tasks. The shape and materials forming the workpiece may differ depending on the task. Different working surfaces provided on the head of the tool may be required to shape the workpiece into the desired configuration. In addition, different dies may be attached to the head to accomplish particular tasks, e.g., deforming a particular crimp or lug connector onto a conductor to create a reliable mechanical and electrical connection. Moreover, the shape and configuration of the head or the die may differ depending on the metal (for example, copper or aluminum) forming the conductor.
Hydraulic power tools are designed to apply a particular force to perform a particular task. A tool might be designed to provide 4, 6, 11, 12, or 15 short tons of force. The force appropriate for a task may depend on such factors as the size of the conductor, whether the conductor is being cut or connected via a crimp or lug connector, the type of crimp or lug connector, the size of the conductor, and the metal forming the conductor (e.g. aluminum or copper). Generally, the amount of force applied by a hydraulic tool is fixed by the design of the tool.
Because hydraulic power tools are designed to apply a fixed amount of force, a different power tool may be required to perform different tasks. Where a job requires multiple kinds of operations, an installer may need to carry a number of different tools, each configured to provide the correct amount of force to accomplish a particular task. This may be expensive. Where a jobsite is difficult to access, carrying multiple tools may be inconvenient.
The present disclosure provides exemplary embodiments of hydraulic power tools with a tool frame that can be connected with interchangeable heads. Such tools allow an operator to change the function of a single tool frame so the same tool frame can perform a variety of different tasks. This may reduce the expense required to equip the user because a single tool frame can be joined with different working heads to perform different tasks. Using interchangeable working heads on a single tool frame may also reduce the weight and bulk of the equipment a user must bring to the job site.
The present disclosure also provides exemplary embodiments for a hydraulic power tool where the force applied to deform a workpiece is adjusted, depending on the configuration of the working head, as well as the configuration of dies forming the working surfaces that shape the workpiece.
The present disclosure also provides exemplary embodiments for a hydraulic power tool that automatically detects the configuration of the interchangeable head connected with the tool, determines the amount of force appropriate for that head, and alters the operation of the hydraulic system to apply the appropriate force.
The present disclosure also provides exemplary embodiments for a hydraulic power tool that detects the type of die connected with the working head and adjusts the force applied by the hydraulic system based on the type of die.
The present disclosure also provides exemplary embodiments for a hydraulic power tool for installing connectors, such as crimp connectors and lug connectors, that detects the type of connector and adjusts the force applied by the hydraulic system based on the connector type.
The present disclosure also provides exemplary embodiments for a hydraulic power tool that allows the installer to identify the metal forming the conductor being connected and adjusts the force applied by the hydraulic system based on the conductor metal.
According to one aspect of the disclosure there is provided a hydraulic tool comprising a working head, the working head comprising indicia that identify a type of the working head from a plurality of types, a tool frame having a piston, a hydraulic system coupled to piston, a coupling mechanism, the coupling mechanism releasably coupling the head to the frame, and a head sensor, the head sensor being adapted to detect the indicia, and a controller connected with the head sensor and the hydraulic system, wherein the controller receives a signal generated by the head sensor in response to the indicia, determines the type of the head, determines a force to apply based at least in part on the determined head type, and controls the hydraulic system to apply the identified force.
According to a further aspect of the disclosure, the tool further comprises a die, the die comprising indicia that identify a type of the die from a plurality of die types, and a die sensor connected with the controller, wherein the die sensor communicates information identifying the type of the die based on the indicia to the controller, and wherein the controller determines the force based at least in part on the determined die type.
According to a further aspect of the disclosure, the tool further comprises a connector sensor in communication with the controller, the connector sensor adapted to read an indicia of a connector indicating a type of the connector from a plurality of connector types, wherein the controller determines the force based at least in part on the determined connector type.
According to a further aspect of the disclosure, the tool further comprises an input device connected with the controller, the input device adapted to receive an input indicating a characteristic of a workpiece such as the metal forming a conductor that is part of the workpiece, and wherein the controller determines the force based at least in part on the characteristic. [Confirm finalized claims added to summary]
A more complete appreciation of the present disclosure and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
Illustrative embodiments of the present disclosure may be provided as improvements to portable, hand held, battery operated, hydraulic tools and one or more interchangeable working heads for performing different tasks where the force applied by the tool is adjusted based on factors including the type of working head, the type of die fitted to the working head, the type of connectors to be installed on a conductor, and the type of metal forming the conductor.
Head 14 includes an impactor 52 that connects with piston 60 via drive shaft 50. Impactor 52 engages with a guide 58 on arm 56. When the working head 14 is connected to the main body 30 and the piston 60 is driven in the distal direction, drive shaft 50 forces the impactor 52 along guide 58, as shown in
Impactor 52 and/or anvil 54 may also include surface features that allow a die, such as those shown in
Main body 30 has a head sensor 18 on the tool connecting portion 32 facing the head 14 as shown in
The handle 40 includes one or more operator controls, such as trigger switches 42 and 44, and pushbutton 16 which can be manually activated by an operator. The handle 40 may include a hand guard 46 to protect an operator's hand while operating the tool 10 and to prevent unintended operation of trigger switches 42 and 44. According to an embodiment of the present disclosure, one of the trigger switches (e.g., trigger switch 42) may be used to activate the hydraulic system 11 to pressurize hydraulic drive 28 to drive the piston 60 in the distal direction as shown by the arrow in
The battery 20 is removably connected to the bottom of the handle 40. In another embodiment, the battery 20 could be removably mounted or connected to any suitable position on the tool frame 12. In another embodiment, the battery 20 may be affixed to the tool 10 so that it is not removable. The battery 20 is preferably a rechargeable battery, such as a lithium ion battery, that can output a voltage of at least 16 VDC, and preferably in the range of between about 16 VDC and about 24 VDC. In the exemplary embodiment shown in
Relief valve 29 connects hydraulic cylinder 28 with fluid reservoir 22. Relief valve 29 can be opened and closed by controller 24. When relief valve 29 is opened, fluid flows back to reservoir 22 relieving pressure in hydraulic drive 28 and removing the force applied on the workpiece. A spring (not shown) may be provided as part of hydraulic drive 28 to return piston 60 to the home position shown in
Controller 24 may be a microprocessor, microcontroller, application specific integrated circuit, field programable gate array (FPGA) or other digital processing apparatus as will be appreciated by those skilled in the relevant art. Controller 24 communicates with memory 25 to receive program instructions and to retrieve data. Memory 25 may be read-only memory (ROM), random access memory (RAM), flash memory, and/or other types of electronic storage know to those of skill in the art. Controller 24 may also communicate with external devices or networks via a port (not shown) such as a USB port or wireless communication interface (e.g., WiFi, Bluetooth, and the like). Memory 25 includes data identifying operating parameters including the proper force to be used with various heads 14, as well as with various dies, connectors, and conductor materials and/or combinations thereof. Such data may be load into and/or updated in memory 25 via the port or interface or may be provided in memory 25 when the tool is assembled.
Controller 24 receives signals from head sensor 18 and/or die/connector sensor 21 and compares those signals with information stored in memory 25 to determine the type of head 14 and/or die connected with main body 30 and to determine the proper force to be applied by hydraulic drive 28. Controller 24 also receives signals from pushbutton 16 to activate die/connector sensor 21 and/or to determine the metal comprising the workpiece, as will be described below. Controller 24 also receives signals from triggers 42, 44 located on handle 40 to activate and deactivate hydraulic drive 28.
Working head 14 is separable from the main body 30. A variety of mechanisms may be provided to removably connect different working heads 14 to main body 30, as set forth in co-pending U.S. Provisional Patent Application No. 62/591,313, filed Nov. 28, 2017, now U.S. Patent Appl. Ser. No. ______, filed ——— and incorporated herein by reference. According to one embodiment shown in
When head 14 is joined with main body 30 head sensor 18 is positioned facing indicia 19 on head 14. Sensor 18 may be a barcode scanner, such as the MT80 Mini Scan Engine manufactured by Marson Technology Co., Ltd. Indicia 19 may be an adhesive label, etched surface, or painted area of head 14 that includes a barcode such as a UPC code. Sensor 18 collects identifying information about head 14 and communicates it to controller 24. According to the embodiment shown in
According to one embodiment, memory 25 includes a look-up table including operating parameters for a variety of heads 14. Controller 24 compares the data from sensor 18 with records on the look-up table to determine the correct force to apply. According to another embodiment, instead of a look-up table, controller 24 uses an algorithm to determine a correct force to apply based on the type of head. The sensor 18 may be activated by controller 24 when trigger 42 is pressed to identify the type of head 14.
In operation, a user selects head 14 from among a variety of heads 14 to perform a particular task, for example, installing a crimp connector to splice together two conductors. The user arranges tool 10 along with the crimp connector, such as the one shown in
Instead of or in addition to a barcode reader, sensor 18 may be a contact-type sensor 18' that determines the type of head 14 based on features on the corresponding surface of the head 14 as shown in
Other types of sensors 18 and indicia 19 can also be used to allow controller 24 to identify the type of head 14 connected with the main body 30. For example, an RFID tag may be attached to the head 14 and an RFID reader may be provided on the main body 30.
According to a further embodiment, controller 24 may also receive a signal from the die/connector sensor 21. Die/connector sensor 21 is located on the outer surface of tool 10. The die/connector sensor 21 may be a barcode sensor, such as the MT80 Mini Scan Engine manufactured by Marson Technology Co., Ltd.
In operation, a user places the barcode for the die 102 and/or connector 110, 114 to be used to perform a task so that it is readable by sensor 21. The user presses pushbutton 16. In response to the pushbutton press, controller 24 causes sensor 21 to read the barcode and send data indicating the type of die or connector back to controller 24. Controller 24 compares that data with information stored in memory 25 to identify the die and/or connector being used to perform a task. Once a die 100 is identified, the process is repeated to identify the connector 110, 114 or vice versa. The user then fits die 100 onto tool 10 by engaging an outer surface of the die with an inner surface of impactor 52 and anvil 54 of head 14. Based on the identified die and/or connector type, the controller 24 determines a force to be applied by hydraulic drive 28 based on information stored in memory 25.
According to one embodiment, controller 24 also monitors pushbutton 16 to allow a user to communicate to the controller certain information, such as the metal forming the conductor to be worked on for a task. According to one aspect, the user presses the button once to actuate the die/connector sensor 21, as described above. The user presses the button 16 twice in quick succession to indicate that the conductor being worked on is formed from copper. The user presses the button three times in quick succession to indicate that the conductor being worked on is aluminum. Controller 24 monitors pushbutton 16 to determine if the user has identified a particular metal and compares that information to information stored in memory 25 to determine a force to apply. According to one embodiment, if the user does not indicate a type of metal forming the conductor, a default metal type, e.g. copper, is assumed by controller 24 when determining the force to apply. According to a further embodiment, the user inputs other information about the conductor, such as the size of the conductor, by actuating the pushbutton or by another input means such as additional buttons, keypad, dial, or the like (not shown). This additional information is used by controller 24 to determine an appropriate force to apply.
In addition to, or in alternative to using a hydraulic pressure sensor 30 to monitor the force being applied to a workpiece, a load cell, strain gauge, or other force sensing device 17 may be used to directly sense the force being applied. As shown in
As shown throughout the drawings, like reference numerals designate like or corresponding parts. While illustrative embodiments of the present disclosure have been described and illustrated above, it should be understood that these are exemplary of the disclosure and are not to be considered as limiting. Additions, deletions, substitutions, and other modifications can be made without departing from the spirit or scope of the present disclosure. Accordingly, the present disclosure is not to be considered as limited by the foregoing description.
This application is a continuation of and claims priority to U.S. patent application Ser. No. 16/201,514 filed Nov. 27, 2018 which claims priority under 35 U.S.C. §119 to U.S. Provisional Patent Application No. 62/591,484, filed on Nov. 28, 2017, the disclosures of which are incorporated herein in their entirety by reference.
Number | Date | Country | |
---|---|---|---|
62591484 | Nov 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16201514 | Nov 2018 | US |
Child | 18420501 | US |