Force attenuator for force sensor

Information

  • Patent Grant
  • 11874185
  • Patent Number
    11,874,185
  • Date Filed
    Friday, November 16, 2018
    7 years ago
  • Date Issued
    Tuesday, January 16, 2024
    2 years ago
Abstract
Described herein is a force attenuator for a force sensor. The force attenuator can linearly attenuate the force applied on the force sensor and therefore significantly extend the maximum sensing range of the force sensor. The area ratio of the force attenuator to the force sensor determines the maximum load available in a linear fashion.
Description
FIELD OF TECHNOLOGY

The present disclosure relates to a force attenuator for a force sensor that extends the maximum load of the force sensor.


BACKGROUND

Microelectromechanical systems (MEMS) force sensors are designed with certain maximum load in mind for certain applications. The maximum load of a MEMS force sensor is typically in the range of 10 kilograms (kg) or less. It is very difficult to increase the maximum load applied to a MEMS force sensor as MEMS force sensors typically have small form factor in the range of a couple square millimeters (mm2) in area. With the known fractural strength of silicon, there is a fixed maximum load the sensor is capable of handling. It is intuitive to increase the size to accommodate the larger maximum load. However, this approach is not cost effective and not flexible to accommodate various demands of maximum load range. A better solution is required to fit one sensor for multiple applications.


SUMMARY

In one implementation, the present disclosure pertains to a force attenuator for a force sensor. The force attenuator can be made of rubber material. This attenuator serves as a force transformer in the reduction manner, for example, attenuating the applied force to facilitate a force sensor's ability to sense larger loads. The surface area ratio between the force attenuator and the force sensor linearly defines the “turn ratio” of this force transformer. Multiple implementations of such force attenuator to different types of force sensors and the simulation data to support the linear relationship are described below.


An example force attenuated force sensor is described herein. The force attenuated force sensor can include a force attenuator including a deformable slab having two opposing surfaces, where the force attenuator defines a surface area for receiving an applied force. The force attenuated force sensor can also include a cavity formed on one of the two opposing surfaces of the deformable slab, and a force sensor arranged in the cavity. The force sensor can define a surface area for receiving the applied force, and a ratio of the surface area of the force sensor to the surface area of the force attenuator can have a linear relationship with the sensitivity attenuation of the force sensor.


Additionally, the deformable slab and the force sensor can be configured for mounting on a solid surface.


Alternatively or additionally, the deformable slab can be made of rubbery material.


Alternatively or additionally, the force attenuator can further include a solid non-deformable slab disposed on the deformable slab. The solid non-deformable slab can be disposed on a surface of the deformable slab opposite to a mounting surface.


Alternatively or additionally, the force sensor can be a microelectromechanical system (MEMS) force sensor. In some implementations, the MEMS force sensor can be a chip scale packaged MEMS force sensor including a piezoresistive sensing element. In some implementations, the MEMS force sensor can be a chip scale packaged MEMS force sensor including a piezoelectric sensing element. In some implementations, the MEMS force sensor can be a chip scale packaged MEMS force sensor including both piezoresistive and piezoelectric sensing elements. Optionally, the chip scale packaged MEMS force sensor can include a sealed cavity.


Alternatively or additionally, the force attenuated force sensor can include a package substrate, where the chip scale packaged MEMS force sensor can be electrically and mechanically connected to the package substrate. The chip scale packaged MEMS force sensor and the package substrate can be arranged in the cavity.


Alternatively or additionally, the sensitivity attenuation of the force sensor increases as the area ratio increases, and the sensitivity attenuation of the force sensor decreases as the area ratio decreases.


Alternatively or additionally, the deformable slab can define a cylindrical shape.


Alternatively or additionally, the two opposing surfaces of the deformable slab can be parallel surfaces.


An example force attenuator is described herein. The force attenuator can include a deformable slab having two opposing surfaces, where the force attenuator defines a surface area for receiving an applied force. The force attenuator can also include a cavity formed on one of the two opposing surfaces of the deformable slab. The cavity can be configured to accommodate a force sensor. Additionally, a ratio of a surface area of the force sensor to the surface area of the force attenuator can have a linear relationship with the sensitivity attenuation of the force sensor.


Alternatively or additionally, the force sensor can be a microelectromechanical system (MEMS) force sensor.


Alternatively or additionally, the deformable slab can be made of rubbery material.


Alternatively or additionally, the force attenuator can further include a solid non-deformable slab disposed on the deformable slab. The solid non-deformable slab can be disposed on a surface of the deformable slab opposite to a mounting surface.


Alternatively or additionally, the two opposing surfaces of the deformable slab can be parallel surfaces.


Other systems, methods, features and/or advantages will be or may become apparent to one with skill in the art upon examination of the following drawings and detailed description. It is intended that all such additional systems, methods, features and/or advantages be included within this description and be protected by the accompanying claims.





BRIEF DESCRIPTION OF THE FIGURES

The components in the drawings are not necessarily to scale relative to each other. Like reference numerals designate corresponding parts throughout the several views. These and other features of will become more apparent in the detailed description in which reference is made to the appended drawings wherein:



FIG. 1 illustrates a perspective view of an example force attenuator including a cavity that accommodates a force sensor.



FIG. 2 illustrates a cross sectional view of the force attenuator of FIG. 1 applied to an example chip scale packaged MEMS force sensor including a piezoresistive sensing element.



FIG. 3 illustrates a cross sectional view of the force attenuator of FIG. 1 applied to another example chip scale packaged MEMS force sensor including both piezoresistive and piezoelectric sensing elements.



FIG. 4 illustrates a cross sectional view of the force attenuator of FIG. 1 applied to yet another chip scale packaged MEMS force sensor including a sealed cavity and a piezoresistive sensing element.



FIG. 5 illustrates the linear relationship between force attenuation and the surface area ratio of the force attenuator to the force sensor.





DETAILED DESCRIPTION

The present disclosure can be understood more readily by reference to the following detailed description, examples, drawings, and their previous and following description. However, before the present devices, systems, and/or methods are disclosed and described, it is to be understood that this disclosure is not limited to the specific devices, systems, and/or methods disclosed unless otherwise specified, and, as such, can, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular aspects only and is not intended to be limiting.


The following description is provided as an enabling teaching. To this end, those skilled in the relevant art will recognize and appreciate that many changes can be made, while still obtaining beneficial results. It will also be apparent that some of the desired benefits can be obtained by selecting some of the features without utilizing other features. Accordingly, those who work in the art will recognize that many modifications and adaptations may be possible and can even be desirable in certain circumstances, and are contemplated by this disclosure. Thus, the following description is provided as illustrative of the principles and not in limitation thereof.


As used throughout, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a sensing element” can include two or more such sensing elements unless the context indicates otherwise.


The term “comprising” and variations thereof as used herein is used synonymously with the term “including” and variations thereof and are open, non-limiting terms.


Ranges can be expressed herein as from “about” one particular value, and/or to “about” another particular value. When such a range is expressed, another aspect includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another aspect. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint.


As used herein, the terms “optional” or “optionally” mean that the subsequently described event or circumstance may or may not occur, and that the description includes instances where said event or circumstance occurs and instances where it does not.


The present disclosure relates to a force attenuator with a cavity designed to fit a force sensor inside the cavity. The force attenuators described herein can optionally be used when the load on a force sensor (e.g., MEMS force sensor) is expected to be equal to or greater than about 10 Newtons (N). For example, this disclosure contemplates that the force attenuators described herein can be used to allow the use of a force sensor (e.g., MEMS force sensor) in applications including, but not limited to, automotive applications (e.g., car seat/passenger weight sensing), medical applications (e.g., patient bed monitoring), or weight scales (e.g., body weight, vehicle weigh stations, etc.). The force attenuator acts as a force transformer and adapts the same force sensor for use in applications with different maximum load requirements. As described herein, the force attenuator can be used to increase the maximum load of a given force sensor. In other words, the force attenuator can significantly extend the maximum sensing range of a given force sensor.


Referring now to FIG. 1, a force attenuator 101 is shown. The force attenuator 101 includes a deformable slab 105 with a plurality (e.g. two) opposing surfaces 105A, 105B. In some implementations, surfaces 105A, 1056 are parallel, which can help reduce preload on a force sensor. The deformable slab 105 has a cylindrical shape such that each of the opposing surfaces 105A, 105B has a circular cross section as shown in FIG. 1. It should be understood that the deformable slab having a cylindrical shape is provided only as an example. This disclosure contemplates that the deformable slab can have other shapes. In some implementations, the deformable slab 105 is formed of a rubber material. It should be understood that rubber material is provided only as an example. This disclosure contemplates that the deformable slab 105 can be made of other deformable materials including, but not limited to, elastomers, silicone rubber, polyurethane, acrylonitrile butadiene styrene (ABS), or a material with a Young's modulus less than about 2 gigapascals (GPa) that can tolerate a strain larger than about 10% without yielding. In FIG. 1, the force is applied to a top surface 103 of the force attenuator 101. Additionally, the force attenuator 101 can define a surface area for receiving an applied force, for example, the surface area of the top surface 103. In some implementations, surface 105A can serve as the top surface of the force attenuator 101 (not shown). In other implementations, a surface of a non-deformable slab, which is described in detail below, can serve as the top surface of the force attenuator 101 as shown in FIG. 1. It should be understood that the force sensor itself can define a surface area for receiving an applied force, which is transferred through the force attenuator 101.


The force attenuator 101 can include a cavity 102. The dimensions (e.g., size and/or shape) of the cavity 102 can be designed to accommodate a force sensor. In other words, the force sensor can be arranged or placed inside of the cavity 102. In some implementations, the force sensor can be fitted inside the cavity 102. In this way, the force that is applied to the force attenuator 101 is transferred to the force sensor. Optionally, the force sensor can be a MEMS force sensor as described herein. Example MEMS force sensors are described in U.S. Pat. No. 9,487,388, issued Nov. 8, 2016 and entitled “Ruggedized MEMS Force Die;” U.S. Pat. No. 9,493,342, issued Nov. 15, 2016 and entitled “Wafer Level MEMS Force Dies;” U.S. Pat. No. 9,902,611, issued Feb. 27, 2018 and entitled “Miniaturized and ruggedized wafer level mems force sensors;” U.S. Patent Application Publication No. 2016/0363490 to Campbell et al., filed Jun. 10, 2016 and entitled “Ruggedized wafer level mems force sensor with a tolerance trench;” WO2018/148503 to NextInput, Inc., filed Feb. 9, 2018 and entitled “INTEGRATED DIGITAL FORCE SENSORS AND RELATED METHODS OF MANUFACTURE;” and WO2018/148510 to NextInput, Inc., filed Feb. 9, 2018 and entitled “INTEGRATED PIEZORESISTIVE AND PIEZOELECTRIC FUSION FORCE SENSOR,” the disclosures of which are incorporated by reference in their entireties. As shown in FIG. 1, the cavity 102 is formed on a bottom surface 107 of the force attenuator 101. For example, the cavity 102 is formed on surface 105B of the deformable slab 105. The force sensor can be fitted inside the cavity 102 such that it receives the force applied on the top surface 103 of the force attenuator 101. As described above, the force sensor can define a surface area, which is smaller than the surface area of the force attenuator 101. For example, the surface area of the surface of a MEMS force sensor that receives the applied force is typically on the order of mm2. The surface area of the surface of the force attenuator (e.g., top surface 103 shown in FIG. 1) that receives the applied force can be orders of magnitude larger than that of the force sensor. As described below, the ratio of the force sensor's surface area to the force attenuator's surface area has a linear relationship to sensitivity attenuation (see FIG. 5). Additionally, a depth of the cavity (also referred to herein as “cavity depth”), which is shown by opposing arrows 104 in FIG. 1, is designed such that a height of the force sensor is equal to, or slightly larger than, the cavity depth 104. A thickness of the deformable slab 105, which is shown by opposing arrows 108 in FIG. 1, is designed such that there is still sufficient material (e.g., rubber) disposed over the force sensor at maximum load. For example, a typical force sensor has a height in the range of about 0.2 mm-0.6 mm. Accordingly, in some implementations, the cavity depth 104 can be equal to the height of the force sensor (e.g., about 0.2 mm-0.6 mm depending on the force sensor). Alternatively, in other implementations, the cavity depth 104 can be about 25 micrometers (μm)-50 μm less than the height of the force sensor, which ensures that the force attenuator 101 contacts the force sensor but without applying excessive preload to the force sensor.


Optionally, the force attenuator 101 can be in the shape of a stacked slab. For example, the force attenuator 101 can optionally further include a solid non-deformable slab 106 disposed on top of the deformable slab 105, e.g., forming the stacked slab as shown in FIG. 1. The solid non-deformable slab 106 can have a size and/or shape that matches the size and/or shape of the deformable slab 105 in cross section. For example, the solid non-deformable slab 106 shown in FIG. 1 has a cylindrical shape. It should be understood that the solid non-deformable slab having a cylindrical shape is provided only as an example. This disclosure contemplates that the solid non-deformable slab can have other shapes. This disclosure contemplates that the solid non-deformable slab 106 can be made of a non-deformable material. The solid non-deformable slab 106 can evenly distribute the force load applied on the top surface 103 of the force attenuator 101. The solid non-deformable slab 106 can be provided when there is a risk of damage to the force sensor.


Referring now to FIG. 2, an example force attenuated force sensor is described. In FIG. 2, the force sensor system 201 (e.g., the force attenuated force sensor) includes a force attenuator (e.g., the force attenuator 101 shown in FIG. 1) and a force sensor 202. The force attenuator includes a deformable slab 105 and a solid non-deformable slab 106. A cavity 102 is provided in the deformable slab 105, and the force sensor 202 is arranged inside the cavity 102. The force attenuator is described in detail above with regard to FIG. 1 and is therefore not described in further detail below with regard to FIG. 2. As described below, the force sensor 202 can include a piezoresistive sensing element.


As described above, the force sensor system 201 can include the force sensor 202. The force sensor system 201 can also include a package substrate 208 such as a printed circuit board (PCB) or a flexible printed circuit board (FPC). The force sensor 202 and the package substrate 208 can be arranged in the cavity 102 of the force attenuator. The force sensor 202 can include a dielectric layer 203, a sensor substrate 204 (e.g., a sensor die), and a piezoresistive sensing element 205. In some implementations, the force sensor 202 can include a plurality of piezoresistive sensing elements 205. This disclosure contemplates that the piezoresistive sensing element(s) 205 can be diffused, deposited, or implanted on a surface of the force sensor 202. The force sensor 202 can also include a metal layer 206 and a solder bump 207. The metal layer 206 and solder bump 207 can be used to electrically and mechanically connect the force sensor 202 to the package substrate 208. Additionally, as shown in FIG. 2, the force attenuator and the package substrate 208 can be mechanically coupled to a solid surface 210 to provide reaction force. An example MEMS force sensor including a piezoresistive sensing element is described in PCT application No. PCT/US2018/056245 to NextInput, Inc., filed Oct. 17, 2018 and entitled “INTEGRATED PIEZORESISTIVE AND PIEZOELECTRIC FUSION FORCE SENSOR,” the disclosure of which is incorporated by reference in its entirety.


Referring now to FIG. 3, another example force attenuated force sensor is described. In FIG. 3, the force sensor system 301 (e.g., the force attenuated force sensor) includes a force attenuator (e.g., the force attenuator 101 shown in FIG. 1) and a force sensor 202. The force attenuator includes a deformable slab 105 and a solid non-deformable slab 106. A cavity 102 is provided in the deformable slab 105, and the force sensor 202 is arranged inside the cavity 102. The force attenuator is described in detail above with regard to FIG. 1 and is therefore not described in further detail below with regard to FIG. 3. As described below, the force sensor 202 can include both piezoresistive and piezoelectric sensing elements.


As described above, the force sensor system 301 can include the force sensor 202. The force sensor system 301 can also include a package substrate 208 such as a PCB or an FPC. The force sensor 202 and the package substrate 208 can be arranged in the cavity 102 of the force attenuator. The force sensor 202 can include a dielectric layer 203, a sensor substrate 204 (e.g., a sensor die), and a piezoresistive sensing element 205. In some implementations, the force sensor 202 can include a plurality of piezoresistive sensing elements 205. This disclosure contemplates that the piezoresistive sensing element(s) 205 can be diffused, deposited, or implanted on a surface of the force sensor 202. Additionally, the force sensor 202 can include a piezoelectric sensor. A piezoelectric sensor can include a piezoelectric sensing element 312 arranged between opposing electrodes. In FIG. 3, the piezoelectric sensing element 312 is sandwiched between piezoelectric electrode 313 and metal layer 206 (e.g., the opposing electrodes). Piezoresistive and piezoelectric sensing elements can be used together in MEMS force sensors. For example, piezoresistive sensing elements are useful for sensing static forces applied to the force sensor 202, while piezoelectric sensing elements are useful for sensing dynamic forces acting on the force sensor 202. Thus, both piezoresistive and piezoelectric sensors can be used in conjunction to detect both static and dynamic forces. The force sensor 202 can also include a metal layer 206 and a solder bump 207. The metal layer 206 and solder bump 207 can be used to electrically and mechanically connect the force sensor 202 to the package substrate 208. Additionally, as shown in FIG. 3, the force attenuator and the package substrate 208 can be mechanically coupled to a solid surface 210 to provide reaction force. An example MEMS force sensor including both piezoresistive and piezoelectric sensing elements is described in PCT application No. PCT/US2018/056245 to NextInput, Inc., filed Oct. 17, 2018 and entitled “INTEGRATED PIEZORESISTIVE AND PIEZOELECTRIC FUSION FORCE SENSOR,” the disclosure of which is incorporated by reference in its entirety.


Referring now to FIG. 4, yet another example force attenuated force sensor is described. In FIG. 4, the force sensor system 401 (e.g., the force attenuated force sensor) includes a force attenuator (e.g., the force attenuator 101 shown in FIG. 1) and a force sensor 402. The force attenuator includes a deformable slab 105 and a solid non-deformable slab 106. A cavity 102 is provided in the deformable slab 105, and the force sensor 402 is arranged inside the cavity 102. The force attenuator is described in detail above with regard to FIG. 1 and is therefore not described in further detail below with regard to FIG. 4. As described below, the force sensor 402 can include a sealed cavity.


As described above, the force sensor system 401 can include the force sensor 402. The force sensor system 401 can also include a package substrate 410 such as a PCB or an FPC. The force sensor 402 and the package substrate 410 can be arranged in the cavity 102 of the force attenuator. The force sensor 402 can include a dielectric layer 403, a sensor substrate 404 (e.g., a sensor die), and a piezoresistive sensing element 405. In some implementations, the force sensor 402 can include a plurality of piezoresistive sensing elements 405. This disclosure contemplates that the piezoresistive sensing element(s) 405 can be diffused, deposited, or implanted on a surface of the force sensor 402. Optionally, in some implementations, the force sensor 402 can include piezoelectric sensing element(s). The force sensor 402 can also include a cap substrate 408, which is attached to the sensor substrate 404 through a bonded oxide layer 407. The internal surfaces between the sensor substrate 404 and the cap substrate 408 form a sealed cavity 450. The sealed cavity 450 can be formed by etching a trench from the sensor substrate 404 and then sealing a volume between the bonded sensor substrate 404 and cap substrate 408. For example, the volume is sealed between the sensor substrate 404 and the cap substrate 408 when adhered together, which results in formation of the sealed cavity 450. The force sensor 202 can also include a metal layer 406 and a solder bump 409. The metal layer 406 and solder bump 409 can be used to electrically and mechanically connect the force sensor 402 to the package substrate 410. Additionally, as shown in FIG. 4, the force attenuator and the package substrate 410 can be mechanically coupled to a solid surface 412 to provide reaction force. An example MEMS force sensor including a sealed cavity is described in U.S. Pat. No. 9,902,611, issued Feb. 27, 2018 and entitled “Miniaturized and ruggedized wafer level mems force sensors;” U.S. Patent Application Publication No. 2016/0363490 to Campbell et al., filed Jun. 10, 2016 and entitled “Ruggedized wafer level mems force sensor with a tolerance trench;” and PCT application No. PCT/US2018/056245 to NextInput, Inc., filed Oct. 17, 2018 and entitled “INTEGRATED PIEZORESISTIVE AND PIEZOELECTRIC FUSION FORCE SENSOR,” the disclosures of which are incorporated by reference in their entireties.


Referring now to FIG. 5, a graph illustrating the relationship of sensitivity attenuation and the area ratio between the force attenuator and force sensor is described. In FIG. 5, sensitivity attenuation is on the y-axis, and area ratio is on the x-axis. As described herein, the area ratio is the ratio of the respective surface areas of the force-receiving surfaces of the force attenuator and the force sensor. It should be understood from FIG. 5 that the area ratio between the surface area of the top surface of a force attenuator and the surface area of the top surface of a force sensor affects sensitivity attenuation. For example, by changing the area of the top surface of the force attenuator (e.g., top surface 103 of the force attenuator 101 shown in FIG. 1) and keeping the area of the top surface of a sensor (e.g., force sensor 202 or 402 shown in FIGS. 2-4) the same, it is possible to simulate the sensitivity from the force sensor caused by the force applied on the top surface of the attenuator. It is observed from FIG. 5 that from the sensor surface area versus the force attenuator surface area ratio from 1:1000 to 1:10, the relationship between sensitivity attenuation and area ratio is linear. This indicates that the maximum load from the combination of the force attenuator and the force sensor is effectively increased by a factor of 1000 in a linear fashion. This is an efficient solution to increase the maximum load of the force sensor.


Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims
  • 1. A force sensing device comprising: a force attenuator comprising a deformable slab and a solid-nondeformable slab, wherein: the force attenuator defines a first surface area for receiving an applied force;the deformable slab defines a first surface and a second surface, wherein the first surface opposes the second surface;the non-deformable slab defines a third surface and a fourth surface, wherein the third surface opposes the fourth surface;the third surface provides the first surface area and the fourth surface of the non-deformable slab is disposed on the first surface of the deformable slab; andareas of the first surface, the second surface, and the third surface are an identical size and an identical shape such that a relationship between sensitivity attenuation and an area ratio is linear, the areas include the first surface area and the area ratio is a ratio of the areas of the first surface, the second surface, and the third surface;a cavity formed by the deformable slab such that an opening of the cavity is exposed at the second surface of the deformable slab so that the applied force is transferred to a force sensor within the cavity;the force sensor provided in the cavity so as to be exposed from the second surface;a package substrate arranged in the cavity; andone or more electrical connectors arranged in the cavity and electrically connecting the package substrate to the force sensor, wherein: the force sensor defines a second surface area for receiving the applied force through the force attenuator;the force sensor comprises one or more piezoelectric sensing elements, each piezoelectric sensing element comprising a piezoelectric material arranged between a first electrode and a second electrode; andthe second electrode of at least one piezoelectric sensing element is arranged over a respective electrical connector and electrically connected to the respective electrical connector.
  • 2. The force sensing device of claim 1, wherein the deformable slab and the force sensor are configured for mounting on a solid surface.
  • 3. The force sensing device of claim 1, wherein the deformable slab is made of a rubber material.
  • 4. The force sensing device of claim 1, wherein the force sensor is a microelectromechanical system (MEMS) force sensor.
  • 5. The force sensing device of claim 4, wherein the MEMS force sensor is a chip scale packaged MEMS force sensor comprising the one or more piezoresistive sensing elements.
  • 6. The force sensing device of claim 1, wherein the force sensor comprises the one or more piezoresistive sensing elements.
  • 7. The force sensing device of claim 1, wherein the force sensor comprises a sealed cavity between a cap substrate of the force sensor and a sensor substrate of the force sensor.
  • 8. The force sensing device of claim 1, wherein: the sensitivity of the force sensing device increases as the first surface area decreases; orthe sensitivity of the force sensing device decreases as the first surface area increases.
  • 9. The force sensing device of claim 1, wherein the deformable slab defines a cylindrical shape.
  • 10. The force sensing device of claim 1, wherein the first surface, the second surface, the third surface, and the fourth surface are parallel surfaces.
  • 11. A force attenuator comprising: a deformable slab;a non-deformable slab, wherein: the deformable slab defines a first surface and a second surface, wherein the first surface opposes the second surface;the non-deformable slab defines a third surface and a fourth surface, wherein the third surface opposes the fourth surface;the third surface provides a first surface area and the fourth surface of the non-deformable slab is disposed on the first surface of the deformable slab; andthe third surface defines the first surface area for receiving an applied force;areas of the first surface, the second surface, and the third surface, are an identical size and an identical shape such that a relationship between sensitivity attenuation and an area ratio is linear, the areas include the first surface area and the area ratio is a ratio of the areas of the first surface, the second surface, and the third surface;a cavity formed by the deformable slab such that an opening of the cavity is exposed at the second surface of the deformable slab so that the applied force is transferred to a force sensor within the cavity;the force sensor provided in the cavity so as to be exposed from the second surface, wherein the force sensor comprises one or more piezoresistive sensing elements and one or more piezoelectric sensing elements, each piezoelectric sensing element comprising piezoelectric material between a first electrode and a second electrode;a package substrate; andone or more electrical connectors, wherein: the force sensor is disposed on a surface of the cavity;the package substrate is disposed opposite the force sensor in the cavity;the one or more electrical connectors are disposed in the cavity and electrically connect the package substrate to the force sensor; andthe second electrode of at least one piezoelectric sensing element is disposed over a respective electrical connector and electrically connected to the respective electrical connector.
  • 12. The force attenuator of claim 11, wherein the force sensor is a microelectromechanical system (MEMS) force sensor.
  • 13. The force attenuator of claim 11, wherein the deformable slab is made of a rubber material.
  • 14. The force attenuator of claim 11, wherein two opposing surfaces of the deformable slab are parallel surfaces.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a national stage application filed under 35 U.S.C. § 371 of PCT/US2018/061509 filed Nov. 16, 2018, which claims the benefit of U.S. provisional patent application No. 62/587,088, filed on Nov. 16, 2017, and entitled “FORCE ATTENUATOR FOR FORCE SENSOR,” the disclosures of which are expressly incorporated herein by reference in their entireties.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2018/061509 11/16/2018 WO
Publishing Document Publishing Date Country Kind
WO2019/099821 5/23/2019 WO A
US Referenced Citations (456)
Number Name Date Kind
4276533 Tominaga Jun 1981 A
4594639 Kuisma Jun 1986 A
4658651 Le Apr 1987 A
4814856 Kurtz et al. Mar 1989 A
4842685 Adams Jun 1989 A
4849730 Izumi et al. Jul 1989 A
4914624 Dunthorn Apr 1990 A
4918262 Flowers et al. Apr 1990 A
4933660 Wynne, Jr. Jun 1990 A
4983786 Stevens et al. Jan 1991 A
5095401 Zavracky et al. Mar 1992 A
5159159 Asher Oct 1992 A
5166612 Murdock Nov 1992 A
5237879 Speeter Aug 1993 A
5291795 Hafner Mar 1994 A
5320705 Fujii et al. Jun 1994 A
5333505 Takahashi et al. Aug 1994 A
5343220 Veasy et al. Aug 1994 A
5349746 Gruenwald et al. Sep 1994 A
5351550 Maurer Oct 1994 A
5483994 Maurer Jan 1996 A
5510812 O'Mara et al. Apr 1996 A
5541372 Baller et al. Jul 1996 A
5543591 Gillespie et al. Aug 1996 A
5565657 Merz Oct 1996 A
5600074 Marek et al. Feb 1997 A
5661245 Svoboda Aug 1997 A
5673066 Toda et al. Sep 1997 A
5679882 Gerlach Oct 1997 A
5760313 Guentner Jun 1998 A
5773728 Tsukada et al. Jun 1998 A
5780727 Gimzewski et al. Jul 1998 A
5889236 Gillespie et al. Mar 1999 A
5921896 Boland Jul 1999 A
5969591 Fung Oct 1999 A
5994161 Bitko et al. Nov 1999 A
6012336 Eaton et al. Jan 2000 A
6028271 Gillespie et al. Feb 2000 A
6128961 Haronian Oct 2000 A
6159166 Chesney et al. Dec 2000 A
6243075 Fishkin et al. Jun 2001 B1
6348663 Schoos et al. Feb 2002 B1
6351205 Armstrong Feb 2002 B1
6360598 Calame et al. Mar 2002 B1
6437682 Vance Aug 2002 B1
6555235 Aufderheide et al. Apr 2003 B1
6556189 Takahata et al. Apr 2003 B1
6569108 Sarvazyan et al. May 2003 B2
6610936 Gillespie et al. Aug 2003 B2
6620115 Sarvazyan et al. Sep 2003 B2
6629343 Chesney et al. Oct 2003 B1
6668230 Mansky et al. Dec 2003 B2
6720712 Scott et al. Apr 2004 B2
6788297 Itoh et al. Sep 2004 B2
6801191 Mukai et al. Oct 2004 B2
6809280 Divigalpitiya et al. Oct 2004 B2
6812621 Scott Nov 2004 B2
6822640 Derocher Nov 2004 B2
6868731 Gatesman Mar 2005 B1
6879318 Chan et al. Apr 2005 B1
6888537 Benson et al. May 2005 B2
6915702 Omura et al. Jul 2005 B2
6931938 Knirck et al. Aug 2005 B2
6946742 Karpman Sep 2005 B2
6995752 Lu Feb 2006 B2
7138984 Miles Nov 2006 B1
7173607 Matsumoto et al. Feb 2007 B2
7190350 Roberts Mar 2007 B2
7215329 Yoshikawa et al. May 2007 B2
7218313 Marcus et al. May 2007 B2
7224257 Morikawa May 2007 B2
7245293 Hoshino et al. Jul 2007 B2
7273979 Christensen Sep 2007 B2
7280097 Chen et al. Oct 2007 B2
7318349 Vaganov et al. Jan 2008 B2
7324094 Moilanen et al. Jan 2008 B2
7324095 Sharma Jan 2008 B2
7336260 Martin et al. Feb 2008 B2
7337085 Soss Feb 2008 B2
7343223 Miura Mar 2008 B2
7345680 David Mar 2008 B2
7367232 Vaganov et al. May 2008 B2
7406661 Vaananen et al. Jul 2008 B2
7425749 Hartzell et al. Sep 2008 B2
7426873 Kholwadwala et al. Sep 2008 B1
7449758 Axelrod et al. Nov 2008 B2
7460109 Safai et al. Dec 2008 B2
7476952 Vaganov et al. Jan 2009 B2
7508040 Nikkel et al. Mar 2009 B2
7554167 Vaganov Jun 2009 B2
7571647 Takemasa Aug 2009 B2
7607111 Vaananen et al. Oct 2009 B2
7620521 Breed et al. Nov 2009 B2
7629969 Kent Dec 2009 B2
7637174 Hirabayashi Dec 2009 B2
7649522 Chen et al. Jan 2010 B2
7663612 Bladt Feb 2010 B2
7685538 Fleck et al. Mar 2010 B2
7698084 Soss Apr 2010 B2
7701445 Inokawa et al. Apr 2010 B2
7746327 Miyakoshi Jun 2010 B2
7772657 Vaganov Aug 2010 B2
7791151 Vaganov et al. Sep 2010 B2
7819998 David Oct 2010 B2
7825911 Sano et al. Nov 2010 B2
7829960 Takizawa Nov 2010 B2
7832284 Hayakawa Nov 2010 B2
7880247 Vaganov Feb 2011 B2
7903090 Soss et al. Mar 2011 B2
7921725 Silverbrook et al. Apr 2011 B2
7938028 Hirabayashi May 2011 B2
7952566 Poupyrev et al. May 2011 B2
7973772 Gettemy et al. Jul 2011 B2
7973778 Chen Jul 2011 B2
8004052 Vaganov Aug 2011 B2
8004501 Harrison Aug 2011 B2
8013843 Pryor Sep 2011 B2
8026906 Molne et al. Sep 2011 B2
8044929 Baldo et al. Oct 2011 B2
8051705 Kobayakawa Nov 2011 B2
8068100 Pryor Nov 2011 B2
8072437 Miller et al. Dec 2011 B2
8072440 Pryor Dec 2011 B2
8096188 Wilner Jan 2012 B2
8113065 Ohsato et al. Feb 2012 B2
8120586 Hsu et al. Feb 2012 B2
8120588 Klinghult Feb 2012 B2
8130207 Nurmi et al. Mar 2012 B2
8134535 Choi et al. Mar 2012 B2
8139038 Chueh et al. Mar 2012 B2
8144133 Wang et al. Mar 2012 B2
8149211 Hayakawa et al. Apr 2012 B2
8154528 Chen et al. Apr 2012 B2
8159473 Cheng et al. Apr 2012 B2
8164573 DaCosta et al. Apr 2012 B2
8183077 Vaganov et al. May 2012 B2
8184093 Tsuiki May 2012 B2
8188985 Hillis et al. May 2012 B2
8196477 Ohsato Jun 2012 B2
8199116 Jeon et al. Jun 2012 B2
8212790 Rimas Ribikauskas et al. Jul 2012 B2
8220330 Miller et al. Jul 2012 B2
8237537 Kurtz Aug 2012 B2
8243035 Abe et al. Aug 2012 B2
8250921 Nasiri et al. Aug 2012 B2
8253699 Son Aug 2012 B2
8260337 Periyalwar et al. Sep 2012 B2
8269731 Molne Sep 2012 B2
8289288 Whytock et al. Oct 2012 B2
8289290 Klinghult Oct 2012 B2
8297127 Wade et al. Oct 2012 B2
8316533 Suminto Nov 2012 B2
8319739 Chu et al. Nov 2012 B2
8325143 Destura et al. Dec 2012 B2
8350345 Vaganov Jan 2013 B2
8363020 Li et al. Jan 2013 B2
8363022 Tho et al. Jan 2013 B2
8378798 Bells et al. Feb 2013 B2
8378991 Jeon et al. Feb 2013 B2
8384677 Mak-Fan et al. Feb 2013 B2
8387464 McNeil et al. Mar 2013 B2
8405631 Chu et al. Mar 2013 B2
8405632 Chu et al. Mar 2013 B2
8421609 Kim et al. Apr 2013 B2
8427441 Paleczny et al. Apr 2013 B2
8436806 Almalki et al. May 2013 B2
8436827 Zhai et al. May 2013 B1
8448531 Schneider May 2013 B2
8451245 Heubel et al. May 2013 B2
8456440 Abe et al. Jun 2013 B2
8466889 Tong et al. Jun 2013 B2
8477115 Rekimoto Jul 2013 B2
8482372 Kurtz et al. Jul 2013 B2
8493189 Suzuki Jul 2013 B2
8497757 Kurtz et al. Jul 2013 B2
8516906 Umetsu et al. Aug 2013 B2
8646335 Kotovsky Feb 2014 B2
8833172 Chiou Sep 2014 B2
8931347 Donzier et al. Jan 2015 B2
8973446 Fukuzawa et al. Mar 2015 B2
8984951 Landmann et al. Mar 2015 B2
8991265 Dekker Mar 2015 B2
9032818 Campbell May 2015 B2
9097600 Khandani Aug 2015 B2
9143057 Shah Sep 2015 B1
9366588 Lee Jun 2016 B2
9377372 Ogawa Jun 2016 B2
9425328 Marx et al. Aug 2016 B2
9446944 Ernst Sep 2016 B2
9464952 Pagani Oct 2016 B2
9487388 Brosh Nov 2016 B2
9493342 Brosh Nov 2016 B2
9574954 Baker Feb 2017 B2
9709509 Yang Jul 2017 B1
9728652 Elian Aug 2017 B2
9772245 Besling et al. Sep 2017 B2
9778117 Pagani Oct 2017 B2
9791303 Pagani Oct 2017 B2
9823144 Fujisawa Nov 2017 B2
9835515 Pagani Dec 2017 B2
9846091 Lu Dec 2017 B2
9851266 Nakamura Dec 2017 B2
9902611 Brosh et al. Feb 2018 B2
9967679 Krumbein et al. May 2018 B2
9970831 Shih May 2018 B2
9983084 Pavone May 2018 B2
10024738 Conti Jul 2018 B2
10067014 Tung Sep 2018 B1
10113925 Lai Oct 2018 B2
10488284 Jentoft Nov 2019 B2
10496209 Vummidi Murali Dec 2019 B2
10595748 Kubiak Mar 2020 B2
10598578 Pagani Mar 2020 B2
10724909 Abbasi Gavarti Jul 2020 B2
10788389 Pagani Sep 2020 B2
10962427 Youssefi et al. Mar 2021 B2
11385108 Tsai et al. Jul 2022 B2
11579028 Tsai Feb 2023 B2
20010009112 Delaye Jul 2001 A1
20030067448 Park Apr 2003 A1
20030128181 Poole Jul 2003 A1
20030189552 Chuang et al. Oct 2003 A1
20040012572 Sowden et al. Jan 2004 A1
20040140966 Marggraff et al. Jul 2004 A1
20050083310 Safai et al. Apr 2005 A1
20050166687 Kaneko Aug 2005 A1
20050190152 Vaganov Sep 2005 A1
20050252301 Dietrich Nov 2005 A1
20060028441 Armstrong Feb 2006 A1
20060244733 Geaghan Nov 2006 A1
20060272413 Vaganov et al. Dec 2006 A1
20060284856 Soss Dec 2006 A1
20070035525 Yeh et al. Feb 2007 A1
20070046649 Reiner Mar 2007 A1
20070070046 Sheynblat et al. Mar 2007 A1
20070070053 Lapstun et al. Mar 2007 A1
20070097095 Kim et al. May 2007 A1
20070103449 Laitinen et al. May 2007 A1
20070103452 Wakai et al. May 2007 A1
20070115265 Rainisto May 2007 A1
20070132717 Wang et al. Jun 2007 A1
20070137901 Chen Jun 2007 A1
20070139391 Bischoff Jun 2007 A1
20070152959 Peters Jul 2007 A1
20070156723 Vaananen Jul 2007 A1
20070182864 Stoneham et al. Aug 2007 A1
20070229478 Rosenberg et al. Oct 2007 A1
20070235231 Loomis et al. Oct 2007 A1
20070245836 Vaganov Oct 2007 A1
20070262965 Hirai et al. Nov 2007 A1
20070277616 Nikkel et al. Dec 2007 A1
20070298883 Feldman et al. Dec 2007 A1
20080001923 Hall et al. Jan 2008 A1
20080007532 Chen Jan 2008 A1
20080010616 Algreatly Jan 2008 A1
20080024454 Everest Jan 2008 A1
20080030482 Elwell et al. Feb 2008 A1
20080036743 Westerman et al. Feb 2008 A1
20080083962 Vaganov Apr 2008 A1
20080088600 Prest et al. Apr 2008 A1
20080088602 Hotelling Apr 2008 A1
20080094367 Van De Ven et al. Apr 2008 A1
20080105057 Wade May 2008 A1
20080105470 Van De Ven et al. May 2008 A1
20080106523 Conrad May 2008 A1
20080174852 Hirai et al. Jul 2008 A1
20080180402 Yoo et al. Jul 2008 A1
20080180405 Han et al. Jul 2008 A1
20080180406 Han et al. Jul 2008 A1
20080202249 Yokura et al. Aug 2008 A1
20080204427 Heesemans et al. Aug 2008 A1
20080211766 Westerman et al. Sep 2008 A1
20080238446 DeNatale et al. Oct 2008 A1
20080238884 Harish Oct 2008 A1
20080259046 Carsanaro Oct 2008 A1
20080284742 Prest et al. Nov 2008 A1
20080303799 Schwesig et al. Dec 2008 A1
20090027352 Abele Jan 2009 A1
20090027353 Im et al. Jan 2009 A1
20090046110 Sadler et al. Feb 2009 A1
20090078040 Ike et al. Mar 2009 A1
20090102805 Meijer et al. Apr 2009 A1
20090140985 Liu Jun 2009 A1
20090184921 Scott et al. Jul 2009 A1
20090184936 Algreatly Jul 2009 A1
20090213066 Hardacker et al. Aug 2009 A1
20090237275 Vaganov Sep 2009 A1
20090237374 Li et al. Sep 2009 A1
20090242282 Kim et al. Oct 2009 A1
20090243817 Son Oct 2009 A1
20090243998 Wang Oct 2009 A1
20090256807 Nurmi Oct 2009 A1
20090256817 Perlin et al. Oct 2009 A1
20090282930 Cheng et al. Nov 2009 A1
20090303400 Hou et al. Dec 2009 A1
20090309852 Lin et al. Dec 2009 A1
20090314551 Nakajima Dec 2009 A1
20100013785 Murai et al. Jan 2010 A1
20100020030 Kim et al. Jan 2010 A1
20100020039 Ricks et al. Jan 2010 A1
20100039396 Ho et al. Feb 2010 A1
20100053087 Dai et al. Mar 2010 A1
20100053116 Daverman et al. Mar 2010 A1
20100066686 Joguet et al. Mar 2010 A1
20100066697 Jacomet et al. Mar 2010 A1
20100079391 Joung Apr 2010 A1
20100079395 Kim et al. Apr 2010 A1
20100079398 Shen et al. Apr 2010 A1
20100097347 Lin Apr 2010 A1
20100102403 Celik-Butler et al. Apr 2010 A1
20100117978 Shirado May 2010 A1
20100123671 Lee May 2010 A1
20100123686 Klinghult et al. May 2010 A1
20100127140 Smith May 2010 A1
20100128002 Stacy et al. May 2010 A1
20100153891 Vaananen et al. Jun 2010 A1
20100164959 Brown et al. Jul 2010 A1
20100220065 Ma Sep 2010 A1
20100224004 Suminto et al. Sep 2010 A1
20100271325 Conte et al. Oct 2010 A1
20100289807 Yu et al. Nov 2010 A1
20100295807 Xie et al. Nov 2010 A1
20100308844 Day et al. Dec 2010 A1
20100309714 Meade Dec 2010 A1
20100315373 Steinhauser et al. Dec 2010 A1
20100321310 Kim et al. Dec 2010 A1
20100321319 Hefti Dec 2010 A1
20100323467 Vaganov Dec 2010 A1
20100328229 Weber et al. Dec 2010 A1
20100328230 Faubert et al. Dec 2010 A1
20110001723 Fan Jan 2011 A1
20110006980 Taniguchi et al. Jan 2011 A1
20110007008 Algreatly Jan 2011 A1
20110012848 Li et al. Jan 2011 A1
20110018820 Huitema et al. Jan 2011 A1
20110032211 Christofferson Feb 2011 A1
20110039602 McNamara et al. Feb 2011 A1
20110050628 Homma et al. Mar 2011 A1
20110050630 Ikeda Mar 2011 A1
20110057899 Sleeman et al. Mar 2011 A1
20110063248 Yoon Mar 2011 A1
20110113881 Suzuki May 2011 A1
20110128250 Murphy et al. Jun 2011 A1
20110141052 Bernstein et al. Jun 2011 A1
20110141053 Bulea et al. Jun 2011 A1
20110187674 Baker et al. Aug 2011 A1
20110209555 Ahles et al. Sep 2011 A1
20110227836 Li et al. Sep 2011 A1
20110242014 Tsai et al. Oct 2011 A1
20110267181 Kildal Nov 2011 A1
20110267294 Kildal Nov 2011 A1
20110273396 Chung Nov 2011 A1
20110291951 Tong Dec 2011 A1
20110298705 Vaganov Dec 2011 A1
20110308324 Gamage et al. Dec 2011 A1
20120025337 Leclair et al. Feb 2012 A1
20120032907 Koizumi et al. Feb 2012 A1
20120032915 Wittorf Feb 2012 A1
20120038579 Sasaki Feb 2012 A1
20120044169 Enami Feb 2012 A1
20120044172 Ohki et al. Feb 2012 A1
20120050159 Yu et al. Mar 2012 A1
20120050208 Dietz Mar 2012 A1
20120056837 Park et al. Mar 2012 A1
20120060605 Wu et al. Mar 2012 A1
20120061823 Wu et al. Mar 2012 A1
20120062603 Mizunuma et al. Mar 2012 A1
20120068946 Tang et al. Mar 2012 A1
20120068969 Bogana et al. Mar 2012 A1
20120081327 Heubel et al. Apr 2012 A1
20120086659 Perlin et al. Apr 2012 A1
20120092250 Hadas et al. Apr 2012 A1
20120092279 Martin Apr 2012 A1
20120092294 Ganapathi et al. Apr 2012 A1
20120092299 Harada et al. Apr 2012 A1
20120092324 Buchan et al. Apr 2012 A1
20120105358 Momeyer et al. May 2012 A1
20120105367 Son et al. May 2012 A1
20120113061 Ikeda May 2012 A1
20120127088 Pance et al. May 2012 A1
20120127107 Miyashita et al. May 2012 A1
20120139864 Sleeman et al. Jun 2012 A1
20120144921 Bradley et al. Jun 2012 A1
20120146945 Miyazawa et al. Jun 2012 A1
20120146946 Wang et al. Jun 2012 A1
20120147052 Homma et al. Jun 2012 A1
20120154315 Bradley et al. Jun 2012 A1
20120154316 Kono Jun 2012 A1
20120154317 Aono Jun 2012 A1
20120154318 Aono Jun 2012 A1
20120154328 Kono Jun 2012 A1
20120154329 Shinozaki Jun 2012 A1
20120154330 Shimizu Jun 2012 A1
20120162122 Geaghan Jun 2012 A1
20120169609 Britton Jul 2012 A1
20120169617 Maenpaa Jul 2012 A1
20120169635 Liu Jul 2012 A1
20120169636 Liu Jul 2012 A1
20120180575 Sakano Jul 2012 A1
20120188181 Ha et al. Jul 2012 A1
20120194460 Kuwabara et al. Aug 2012 A1
20120194466 Posamentier Aug 2012 A1
20120200526 Lackey Aug 2012 A1
20120204653 August et al. Aug 2012 A1
20120205165 Strittmatter et al. Aug 2012 A1
20120218212 Yu et al. Aug 2012 A1
20120234112 Umetsu et al. Sep 2012 A1
20120256237 Lakamraju et al. Oct 2012 A1
20120286379 Inoue Nov 2012 A1
20120319987 Woo Dec 2012 A1
20120327025 Huska et al. Dec 2012 A1
20130008263 Kabasawa et al. Jan 2013 A1
20130038541 Bakker Feb 2013 A1
20130093685 Kalu et al. Apr 2013 A1
20130096849 Campbell et al. Apr 2013 A1
20130140944 Chen et al. Jun 2013 A1
20130187201 Elian et al. Jul 2013 A1
20130239700 Benfield et al. Sep 2013 A1
20130255393 Fukuzawa et al. Oct 2013 A1
20130283922 Qualtieri et al. Oct 2013 A1
20130341741 Brosh Dec 2013 A1
20130341742 Brosh Dec 2013 A1
20140007705 Campbell et al. Jan 2014 A1
20140028575 Parivar et al. Jan 2014 A1
20140055407 Lee et al. Feb 2014 A1
20140090488 Taylor et al. Apr 2014 A1
20140109693 Sakai Apr 2014 A1
20140230563 Huang Aug 2014 A1
20140260678 Jentoft et al. Sep 2014 A1
20140283604 Najafi et al. Sep 2014 A1
20140367811 Nakagawa et al. Dec 2014 A1
20150110295 Jenkner et al. Apr 2015 A1
20150226618 Shih Aug 2015 A1
20150241465 Konishi Aug 2015 A1
20150362389 Yanev Dec 2015 A1
20160069927 Hamamura Mar 2016 A1
20160103545 Filiz et al. Apr 2016 A1
20160223579 Froemel et al. Aug 2016 A1
20160245667 Najafi et al. Aug 2016 A1
20160332866 Brosh et al. Nov 2016 A1
20160354589 Kobayashi Dec 2016 A1
20160363490 Campbell et al. Dec 2016 A1
20170103246 Pi et al. Apr 2017 A1
20170205303 Sanden et al. Jul 2017 A1
20170233245 Duqi Aug 2017 A1
20170234744 Tung Aug 2017 A1
20180058914 Iesato Mar 2018 A1
20180058955 Wade Mar 2018 A1
20190330053 Tseng Oct 2019 A1
20190383675 Tsai et al. Dec 2019 A1
20190383676 Foughi Dec 2019 A1
20200149983 Tsai et al. May 2020 A1
20200234023 Tsai et al. Jul 2020 A1
20200378845 Bergemont et al. Dec 2020 A1
20210190608 Tsai et al. Jun 2021 A1
20220228971 Yoshikawa et al. Jul 2022 A1
Foreign Referenced Citations (31)
Number Date Country
101341459 Jan 2009 CN
101458134 Jun 2009 CN
101801837 Aug 2010 CN
201653605 Nov 2010 CN
101929898 Dec 2010 CN
102062662 May 2011 CN
102853950 Jan 2013 CN
102998037 Mar 2013 CN
103308239 Sep 2013 CN
104535229 Apr 2015 CN
104581605 Apr 2015 CN
104919293 Sep 2015 CN
105934661 Sep 2016 CN
102010012441 Sep 2011 DE
2004156937 Jun 2004 JP
2010147268 Jul 2010 JP
2012037528 Feb 2012 JP
20200106745 Sep 2020 KR
9310430 May 1993 WO
2004113859 Dec 2004 WO
2007139695 Dec 2007 WO
2010046233 Apr 2010 WO
2011065250 Jun 2011 WO
2013067548 May 2013 WO
2015039811 Mar 2015 WO
2015106246 Jul 2015 WO
2018148503 Aug 2018 WO
2018148510 Aug 2018 WO
2019023552 Jan 2019 WO
2019079420 Apr 2019 WO
2020237039 Nov 2020 WO
Non-Patent Literature Citations (42)
Entry
PCT/US2018/061509, International Search Report and Written Opinion of the International Searching Authority, dated Jan. 29, 2019.
Mei, et al., “Design and Fabrication of an Integrated Three-Dimensional Tactile Sensor for Space Robotic Applications,” International Conference on Micro Electro Mechanical Systems, Jan. 1999, Orlando, Florida, IEEE, pp. 112-117.
Nesterov, et al., “Modelling and investigation of the silicon twin design 3D micro probe,” Journal of Micromechanics and Microengineering, vol. 15, 2005, IOP Publishing Ltd, pp. 514-520.
First Office Action for Chinese Patent Application No. 201880023913.1, dated Dec. 25, 2020, 22 pages.
Second Office Action for Chinese Patent Application No. 201880023913.1, dated Sep. 10, 2021, 13 pages.
Third Office Action for Chinese Patent Application No. 201880023913.1, dated Apr. 6, 2022, 13 pages.
Extended European Search Report for European Patent Application No. 18751209.0, dated Oct. 22, 2020, 7 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2018/017564, dated Jun. 15, 2018, 10 pages.
Non-Final Office Action for U.S. Appl. No. 16/485,016, dated Jun. 12, 2020, 13 pages.
Final Office Action for U.S. Appl. No. 16/485,016, dated Mar. 24, 2021, 10 pages.
Notice of Allowance for U.S. Appl. No. 16/485,016, dated Jul. 9, 2021, 8 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2018/017572, dated Mar. 2018, 8 pages.
Decision of Rejection for Chinese Patent Application No. 201880023913.1, dated Oct. 27, 2022, 9 pages.
Non-Final Office Action for U.S. Appl. No. 17/676,477, dated Nov. 23, 2022, 12 pages.
Notice of Allowance for U.S. Appl. No. 17/51,715, dated Oct. 26, 2022, 13 pages.
Notice of Allowance for U.S. Appl. No. 17/591,706, dated Nov. 10, 2022, 12 pages.
Notice of Allowance for U.S. Appl. No. 16/757,225, dated Oct. 6, 2022, 9 pages.
Examination Report for European Patent Application No. 18751209.0, dated Dec. 19, 2022, 5 pages.
Non-Final Office Action for U.S. Appl. No. 16/485,026, dated Apr. 28, 2021, 13 pages.
Applicant-Initiated Interview Summary for U.S. Appl. No. 16/485,026, dated Aug. 25, 2021, 2 pages.
Notice of Allowance for U.S. Appl. No. 16/485,026, dated Sep. 30, 2021, 8 pages.
Non-Final Office Action for U.S. Appl. No. 16/632,795, dated Feb. 18, 2021, 10 pages.
Notice of Allowance for U.S. Appl. No. 16/632,795, dated Sep. 3, 2021, 7 pages.
Non-Final Office Action for U.S. Appl. No. 16/634,469, dated May 27, 2021, 13 pages.
Notice of Allowance for U.S. Appl. No. 16/634,469, dated Sep. 30, 2021, 8 pages.
Non-Final Office Action for U.S. Appl. No. 16/757,225, dated Oct. 5, 2021, 14 pages.
Notice of Allowance for U.S. Appl. No. 16/757,225, dated May 10, 2022, 9 pages.
Virginia Semiconductors, “The General Properties of Si, Ge, SiGe2, SiO2, and Si3N4,” Jun. 2002, www.virginiasemi.com/pdf/generalpropertiesSi62002.pdf, Virginia Semiconductor Inc., 5 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2018/056245, dated Dec. 27, 2018, 8 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2018/044049, dated Oct. 18, 2018, 11 pages.
Office Action for Chinese Patent Application No. 2018800601531, dated Apr. 6, 2021, 16 pages.
Communication Pursuant to Rule 164(1) EPC issued for European Application No. 18834426.1, dated Mar. 10, 2021, 16 pages.
Extended European Search Report issued for European Application No. 18834426.1, dated Jun. 10, 2021, 13 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2018/042883, dated Dec. 6, 2018, 9 pages.
Non-Final Office Action for U.S. Appl. No. 17/676,477, dated May 9, 2023, 11 pages.
Notice of Allowance for U.S. Appl. No. 18/081,255, dated Apr. 27, 2023, 14 pages.
Non-Final Office Action for U.S. Appl. No. 18/103,465, dated May 24, 2023, 7 pages.
Non-Final Office Action for U.S. Appl. No. 18/117,156, dated Jul. 19, 2023, 13 pages.
Notice of Allowance for U.S. Appl. No. 18/103,465, dated Sep. 27, 2023, 8 pages.
Notice of Allowance for U.S. Appl. No. 17/676,477, dated Nov. 8, 2023, 8 pages.
Notice of Allowance for U.S. Appl. No. 18/117,156, dated Nov. 8, 2023, 8 pages.
Examination Report for European Patent Application No. 18834426.1, dated Sep. 6, 2023, 8 pages.
Related Publications (1)
Number Date Country
20200309615 A1 Oct 2020 US
Provisional Applications (1)
Number Date Country
62587088 Nov 2017 US