Force control, stop mechanism, regulating structure of removable arch adjustment appliance

Information

  • Patent Grant
  • 11376101
  • Patent Number
    11,376,101
  • Date Filed
    Friday, December 1, 2017
    6 years ago
  • Date Issued
    Tuesday, July 5, 2022
    a year ago
Abstract
A removable arch adjustment appliance includes a removable shell having a plurality of cavities formed therein, wherein the plurality of cavities are shaped to receive at least one posterior tooth of a patient on each side of a patient's jaw. The shell can include an elastic transpalatal element that spans a palate of the patient and provides force to expand at least one of the spaces between the posterior teeth on each side of a patient's jaw or the palate of the patient. The transpalatal element can include a predetermined force characteristic, a number of force control elements to control the force provided by the transpalatal element, and/or a regulating structure to balance and direct the force provided by the transpalatal element, wherein the transpalatal element has a width specific to a stage of a treatment plan.
Description
BACKGROUND

The present disclosure is related generally to the field of dental treatment. More particularly, the present disclosure is related to methods, systems, and devices for adjusting an arch of a patient.


Dental treatments may involve, for instance, restorative and/or orthodontic procedures. Restorative procedures may be designed to implant a dental prosthesis (e.g., a crown, bridge inlay, onlay, veneer, etc.) intraorally in a patient. Orthodontic procedures may include repositioning misaligned teeth and/or changing bite configurations for improved cosmetic appearance and/or dental function. Orthodontic repositioning can be accomplished, for example, by applying controlled forces to one or more teeth over a period of time.


As an example, orthodontic repositioning may be provided through a dental process that uses positioning appliances for realigning teeth. Such appliances may utilize a thin shell of material having resilient properties, referred to as an “aligner,” that generally conforms to a patient's teeth but is slightly out of alignment with a current tooth configuration.


Placement of such an appliance over the teeth may provide controlled forces in specific locations to gradually move the teeth into a new configuration. Repetition of this process with successive appliances in progressive configurations can move the teeth through a series of intermediate arrangements to a final desired arrangement.


Such systems typically utilize materials that are lightweight and/or transparent to provide a set of appliances that can be used serially such that as the teeth move, a new appliance can be implemented to further move the teeth toward the desired goal.


In some instances, the width of a dental arch of a patient's upper dentition can be insufficient (e.g., too narrow). A dental arch that is insufficient can result in malocclusions such as crossbite, crowding of teeth, impacted teeth, and/or the patient's smile may not be aesthetically pleasing in appearance. For instance, a patient's smile may be “narrow”, resulting in a sunken appearance in the buccal corridors due to the inability to see the back teeth from the front view.


In certain types of front-to-back bite correction (e.g., Class II and Class III correction), a need for transverse width correction exists, without which the upper and lower arches may not be properly coordinated. For Class II correction, the upper needs to be expanded so that when the lower is advanced, the teeth in the buccal regions (typically the bicuspids and molars) are fitting together correctly in the buccal-lingual dimension. For Class III correction, the reverse is required, and the lower needs to be expanded since it is usually the one that has compensated for the Class III bite by constricting. When both Class II and Class III are corrected to a more ideal Class I bite, the respective compensations need to be undone, and a transverse width dimension of movement is necessary in addition to the anterior-to-posterior movement.


There are several ways in which the arch of a patient can be expanded. For example, palatal expansion expands the upper jaw of the patient by spreading the maxilla. In some situations, the teeth of the upper jaw can be moved or angled outward thereby expanding the width of the arch of the patient. This technique can be referred to as dental expansion.


In young patients, the midpalatal suture has not fused the left and right maxillary palates together and therefore, the movement of the plates with respect to each other can be accomplished more easily and with less force than in older patients. When the fusing of the suture is new, it may still be possible to split the suture apart.


For example, currently available orthodontic appliances can include a jackscrew and/or other mechanism that is employed to deliver a horizontal stretching force to the molar teeth to split the upper jaw of the patient along the midpalatal suture. Such a mechanism typically spreads the left and right maxillary plates of the palate apart and then new bone material grows in between to fill the gap. As such, a large horizontal force (e.g., 10 to 50 Newtons (N) with cumulative loads reaching 40 to 150 N across the suture) is applied during a short period, in many cases. The insertion of such a mechanism is typically accomplished by a treatment professional and can cause discomfort and/or pain for a patient.


In some instances, the screw and/or other mechanism can be employed incrementally one or more times a day (e.g., 0.25 mm expansion twice a day—one activation in the morning and once at night). For example, a pinhole can be present in the orthodontic appliance and a patient can insert an activation key into the pinhole to incrementally increase a distance between portions of the orthodontic appliance.


Such orthodontic appliances can be difficult for a patient to use, and often require assistance from another person (e.g., a parent) to turn the key. Not only are such appliances often not aesthetically pleasing, they often times interfere with the patient's speech, temporarily affect their ability to chew and/or swallow, and/or can be painful when activated.


Adding to the challenges of such an appliance is the need to retain the expansion while the bone is filling into the suture, long after the active expansion has taken place. The active expansion process may be completed within 2 or 3 weeks' time, but the retention period can last around 6 months while waiting for the gap between the maxillary halves to fill in with new bony tissue.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates an example of a removable arch adjustment appliance having a transpalatal element that includes a number of flexing elements according to a number of embodiments of the present disclosure.



FIG. 2 illustrates an example of a removable arch adjustment appliance having a transpalatal element that includes a number of flexing elements according to the present disclosure.



FIG. 3 illustrates an example of a removable arch adjustment appliance having a transpalatal element that includes a number of flexing elements according to a number of embodiments of the present disclosure.



FIG. 4 illustrates an example of a removable arch adjustment appliance having a transpalatal element that includes a member according to one or more embodiments of the present disclosure.



FIG. 5 illustrates an example of a removable arch adjustment appliance having a transpalatal element that includes two members attached thereto according to one or more embodiments of the present disclosure.



FIG. 6 illustrates an example of a removable arch adjustment appliance having a transpalatal element that includes two members attached thereto according to one or more embodiments of the present disclosure.



FIG. 7 illustrates an example of a removable arch adjustment appliance having a transpalatal element that includes a sliding stop mechanism according to a number of embodiments of the present disclosure.



FIG. 8 illustrates an example of a removable arch adjustment appliance having a transpalatal element that includes a sliding stop mechanism according to a number of embodiments of the present disclosure.



FIG. 9 illustrates an example of a removable arch adjustment appliance having a transpalatal element that includes a tension stop mechanism according to a number of embodiments of the present disclosure.



FIG. 10 illustrates an example of a removable arch adjustment appliance having a transpalatal element that includes a tension stop mechanism according to a number of embodiments of the present disclosure.



FIG. 11 illustrates an example of a removable arch adjustment appliance having a transpalatal element that includes a deflection limit stop mechanism according to a number of embodiments of the present disclosure.



FIG. 12 illustrates an example of a removable arch adjustment appliance having a transpalatal element that includes a deflection limit stop mechanism according to a number of embodiments of the present disclosure.



FIG. 13A illustrates a removable arch adjustment appliance including a regulating structure for a plurality of tooth engagement structures according to a number of embodiments of the present disclosure.



FIG. 13B illustrates a removable arch adjustment appliance including regulating structures for a plurality of tooth engagement structures according to a number of embodiments of the present disclosure.



FIG. 13C illustrates a removable arch adjustment appliance including regulating structures for a plurality of tooth engagement structures according to a number of embodiments of the present disclosure.



FIG. 13D illustrates a removable arch adjustment appliance including regulating structures for a plurality of tooth engagement structures according to a number of embodiments of the present disclosure.



FIG. 13E illustrates a removable arch adjustment appliance including cavities and regulating structures for a plurality of tooth engagement structures according to a number of embodiments of the present disclosure.



FIG. 14 illustrates a removable arch adjustment appliance including a regulating structure comprising a ball joint according to a number of embodiments of the present disclosure.



FIG. 15 illustrates a removable arch adjustment appliance including a regulating structure comprising a universal joint according to a number of embodiments of the present disclosure.



FIG. 16 illustrates a removable arch adjustment appliance including a regulating structure comprising an arm according to a number of embodiments of the present disclosure.



FIG. 17 illustrates a removable arch adjustment appliance including a regulating structure comprising a mesh of arms according to a number of embodiments of the present disclosure.



FIG. 18A illustrates a removable arch adjustment appliance including a regulating structure comprising a horizontal accordion spring according to a number of embodiments of the present disclosure.



FIG. 18B illustrates a removable arch adjustment appliance including a regulating structure comprising a vertical accordion spring according to a number of embodiments of the present disclosure.



FIG. 19 illustrates a removable arch adjustment appliance including a regulating structure comprising a coupling spring according to a number of embodiments of the present disclosure.



FIG. 20 illustrates a removable arch adjustment appliance including regulating structures for individual tooth engagement structures according to a number of embodiments of the present disclosure.



FIG. 21 illustrates a removable arch adjustment appliance including regulating structures for individual tooth engagement structures comprising ball joint s according to a number of embodiments of the present disclosure.



FIG. 22 illustrates a removable arch adjustment appliance including regulating structures for individual tooth engagement structures comprising universal joint s according to a number of embodiments of the present disclosure.



FIG. 23 illustrates a removable arch adjustment appliance including regulating structures for individual tooth engagement structures comprising arms according to a number of embodiments of the present disclosure.



FIG. 24A illustrates a removable arch adjustment appliance including regulating structures for individual tooth engagement structures comprising horizontal accordion springs according to a number of embodiments of the present disclosure.



FIG. 24B illustrates a removable arch adjustment appliance including regulating structures for individual tooth engagement structures comprising vertical accordion springs according to a number of embodiments of the present disclosure.



FIG. 25 illustrates a removable arch adjustment appliance including regulating structures for individual tooth engagement structures comprising coupling springs according to a number of embodiments of the present disclosure.



FIG. 26 illustrates an example computing device readable medium having executable instructions that can be executed by a processor to perform a method according to one or more embodiments of the present disclosure.





DETAILED DESCRIPTION

As discussed above, the present disclosure provides methods, systems, and devices for expanding an arch of a patient. As used herein, expanding a dental arch can include dental and/or skeletal expansion and is inclusive of both dental arch expansion and palatal expansion. Such expansion can be part of an orthodontic treatment, which is a process of moving and reorienting teeth for functional and/or aesthetic purposes, although expansion can be provided for other purposes. The expansion of the dental arch can include movement of posterior teeth (e.g., molars) and/or other teeth of the dental arch in a transverse direction and/or stretching of the maxillary suture of the patient (e.g., separating the maxillary halves in the region of the suture), along with a stretching of the surrounding soft tissues (e.g., the palatal gingiva) during the expansion. A transverse direction in this context is outward along the arch.


Some orthodontic treatment plans can include a dental arch expansion process. Such a process typically occurs in an early stage of the plan in order to provide more room for the teeth to be arranged. A narrow dental arch can prevent the anterior-posterior bite relationship from being corrected properly during orthodontic treatment. A dental arch, as used herein, can include a curved row of teeth on a particular jaw of a patient. An insufficient dental arch can include a dental arch that has a width too narrow to support the row of teeth in a correct alignment.


A narrow arch can also prevent the anterior-posterior bite relationship from being corrected properly. An arch of teeth, as used herein, can include a curved row of teeth on a particular jaw of a patient. An insufficient arch can include an arch that has a width too narrow to support the row of teeth in a correct alignment, for instance. The arch width of a patient's teeth can be expanded, for instance, using an orthodontic appliance (e.g., a dental appliance).


As discussed above, patients that are children or teenagers may have a maxilla where the midpalatal suture has not yet fused. Usually in the mid to late teens, the palatal suture fuses and the halves of the maxilla join together to become a single maxillary bone.


The maxilla (e.g., the upper jaw) is a bone that is fixed to the skull and forms the palate of the patient. The mandible (e.g., lower jaw) is a bone that is also attached to the skull by numerous muscles that power its movement. The mandible articulates at its posterior upward extremities with the temporal bone to form the jaw joint. The jaw joint is a loosely connected joint that accommodates the variety of movements of the mandible relative to the maxilla during biting and chewing.


In correctly shaped and positioned jaws, the upper teeth occupy an arch that is wider than the arch comprising the lower teeth. In other words, the upper teeth are designed to be buccally positioned relative to the teeth in the lower jaw. Malocclusions, such as crossbite, occur when this normal arrangement is reversed and one or more of the upper teeth are positioned lingual to the teeth in the lower jaw.


A patient with an un-fused maxilla can, for instance, have their palate skeletally expanded. This is in contrast to dental expansion where the teeth are uprighted or moved within the boundaries of the jaw in which they are contained. With skeletal expansion, the underlying bone is moved and the teeth are moved along with the changes to the shape of the bone.


Expanding a palate can, for instance, include splitting the left and right sides of the maxilla so that the teeth on the upper left side move as a single unit relative to the teeth on the right side. Because of this phenomenon, a gap between the top two front teeth can open up during the expansion process if they are not restrained from separating.


As discussed above, expansion of the palate, such as those methods performed prior to an orthodontic treatment involving braces and wires, currently includes having a treatment professional place an orthodontic appliance that may include anchoring bands, support bars, springs, and/or jack screws. The appliance is firmly affixed to the teeth at the anchor points and the springs or jackscrew applies forces on the teeth in order to move the underlying portions of the palate of the patient, thereby causing the arch of the patient's dentition to widen.


To adjust the appliance and increase the amount of expansion, the patient and/or another person can insert a key into the pinhole and turn the key to increase the width of the orthodontic appliances. In some examples, prior approaches can include a removable appliance which contains a jackscrew expander that is activated with a pinhole key.


After expanding the arch of the patient to the desired width (and sometimes overcorrecting in order to anticipate potential relapse toward the narrowness initially present), further orthodontic treatment can be performed to move and re-orient the teeth of the patient. This type of additional orthodontic treatment is typically performed after the expansion phase and a retention period where the jaw position is stabilized for a period of time while the musculature and bone adjust to the new positioning.


Further, palate expansion devices that are used primarily for skeletal expansion are typically temporarily anchored to posterior teeth, which can include the molars and/or pre-molars of the patient for the duration of the expansion and cannot be removed except by a dental professional because they are cemented into place. The forces that are applied to the molars and/or premolars are rather high in order to separate the suture during a short time period (e.g., one or more days), and therefore, the treatment can be uncomfortable to the patient due to the high pressure that is generated during the activation period. Once the suture splits, the majority of the pressure is relieved and subsequent activations in close proximity to the initial activation are not as uncomfortable.


In contrast, expanding an arch of a patient (whether skeletally with a fixed appliance or dentally with a removable appliance) according to embodiments of the present disclosure, can include utilizing a set of one or more appliances, such as positioners, retainers, and/or other removable appliances (e.g., clear plastic polymer shells and/or aligners) having a shell to be worn over the teeth of a patient and having a transpalatal element thereon that is designed to expand an arch of teeth of the patient by: moving the teeth of the patient to a wider position within the jaw; by expanding the palate of the patient; or a combination of the two. A transpalatal element can extend from the removable shell and across at least a portion of the arch width of the removable shell. The arch width can be from molar to molar, from premolar to premolar, from canine to canine, or from any tooth on the left side to any tooth on the right side. For example, in transpalatal elements, the transpalatal element can extend across the palate (trans-palatal) and can extend across at the posterior, anterior, in parts of one or the other, or in both areas of the patient's mouth.


Palatal expansion may be accomplished, for example, by force driven appliances. As used herein, force driven appliances can include appliances that use a calculated force to expand an arch and/or a palate of a patient by a threshold distance. For instance, the transpalatal element of an appliance can expand an arch and/or a palate of a patient by providing a calculated force on the teeth of the patient to expand an arch and/or a palate of a patient by a threshold distance. However, force driven palatal expansion can result in over expansion of the arch and/or palate of the patient. Therefore, controlling the force provided by the appliance by utilizing force control elements and/or using stop mechanisms to stop the expansion of the appliance at a predetermined threshold distance may aid in preventing over expansion of the arch and/or palate of the patient.


One or more appliance embodiments can include a removable shell formed of a first material having a plurality of cavities therein, wherein the cavities are shaped to receive teeth of the patient. These appliances are not fixed to the teeth of the patient and therefore can be removed by the patient for periods of time during treatment without aid from other people or intervention by a treatment professional.


In some instances, applying an expansion force to multiple teeth via tooth engagement structures can result in one or more teeth moving differently than other teeth such that the dental arch expands unequally in an undesired or unplanned manner. In contrast, according to a number of embodiments of the present disclosure, a removable arch adjustment appliance can include regulating structures connected between the transpalatal element and the tooth engagement structures. The regulating structures can be configured to balance and direct the expansion force from the transpalatal element to the tooth engagement structures.


In some embodiments, a transpalatal element of the appliance can be formed of a first material and from a second material that is a different than the first material in at least one physical property. For example, the first material may be a polyurethane material and the second material may also be a polyurethane material with the same chemical formula, but of different hardness or rigidity due to greater crosslinking. Or, the first material can be of one chemical composition (e.g. polyurethane), and the second material of an entirely different chemical composition (e.g. polyvinyl chloride).


In some embodiments, the second material is more resilient than the first material. This can be beneficial in embodiments, for example, where there is an initial need for a more rigid transpalatal element and then a more resilient transpalatal element later in treatment, among other situations where such an embodiment may be utilized.


In some examples, the transpalatal element of the appliance can have a width specific to a stage of a treatment plan and can be designed to expand an arch of the teeth of the patient to that specified width, which may be less than the full width in which that arch is to be expanded (i.e., the arch expansion can be incrementally accomplished by expanding the arch a little distance at a time over the use of several differently designed sequential dental appliances). In some examples, the transpalatal element can include force control elements specific to a stage of a treatment plan and can be designed to expand an arch and/or palate of the patient to a specified width of that stage of the treatment plan, which may be less than the full width in which the arch and/or palate of the patient is to be expanded. In some examples, the transpalatal element can include stop mechanisms that allow expansion of an arch and/or palate of the patient by a predefined expansion length, where the stop mechanisms and/or the predefined expansion length may be specific to a stage of a treatment plan. The predefined expansion length may be less than the full expansion length in which the arch and/or palate of the patient is to be expanded. The expansion length of each stage of the treatment plan may be predefined by a treatment professional.


For example, rather than providing a strong force, such as 10 to 50 N for a short period of a few days to a few weeks, embodiments of the present disclosure can provide a lesser predetermined force, such as 3 to 9 N, for a longer period, such as a month to six months. This force can be used, for example, to move palatal plates, move teeth outward, and/or maintain the teeth and/or jaw in a particular orientation while musculature and bone are adjusting to the orientation and to prevent movement of the teeth or jaw back toward their pre-expansion orientation.


In some embodiments, the second material can include, for instance, a more rigid material than the first material designed to provide greater resistance and/or force in a horizontal direction (i.e., transverse direction) against the posterior teeth (e.g., molars and bicuspids) of the arch of the patient. In various embodiments, this second material can be designed to impart force to the molars and/or other teeth on the jaw of the patient in order to either help preserve or change the transverse dimensions of the arch. Additionally, in some embodiments, with the use of appliances on the upper jaw, the force can be imparted to parts of the opposing jaw (e.g., teeth, jaw bone, etc.).


The expansion of an arch of teeth in the patient can be used to treat malocclusions such as crossbites, sagittal problems, crowding, and/or to help prevent or resolve impacted teeth, in various embodiments. The transverse support elements can be designed to not interfere with the shells of the dental appliance. In this manner, a dental appliance in accordance with embodiments of the present disclosure can be used to concurrently expand or constrict an arch of the patient while also repositioning a number of teeth of the patient.


For example, in some embodiments, the shell of the dental appliance can be used to provide force on one or more teeth to change their location or orientation. Embodiments of the present disclosure can be utilized to treat Class I, Class II, and Class III malocclusions.


For instance, with Class I malocclusions, teeth of the patient are inserted into cavities in the shell and the shell applies force to one or more teeth to change their location or orientations. With Class II (overbite or overjet) and Class III (underbite) malocclusions, the appliance can include other features, such as cut outs (areas cut out of the appliance shell material to allow access to the tooth surface through the appliance or to form, for example, a hook to attach a resilient member (e.g., an elastic band material) between the upper and lower jaw, to for instance treat a overbite or overjet.)


As discussed above, in some embodiments, a plurality of appliances can be worn by a patient successively to achieve gradual expansion (or constriction) of the arch of teeth in the patient. For instance, each of a plurality of dental appliances can include an incrementally wider width to expand the arch of the patient in incremental distances (e.g., expansion lengths). In some such embodiments, since this arch expansion technique can be accomplished concurrently with other orthodontic treatments, the arch expansion can be accomplished over a series of appliances that can be utilized, for example, over a period of less than six months, thereby making any pain and/or discomfort of the patient more consistent and less arbitrary without prolonging the overall time for orthodontic treatment. Additionally, force control elements and/or stop mechanisms can prevent over expansion of the arch and/or palate in any one stage of a treatment plan.


In some embodiments, an appliance can be formed using a thermoforming process. For instance, a transpalatal element of a removable shell can be formed of a material using a virtual model of the palate of the patient and a virtual model of a number of teeth of the patient.


The transpalatal element of a removable shell can be wider than the arch width of the number of teeth of the jaw of the patient and can be shaped to substantially follow contours of the palate of the patient. For expansion, this difference in the width can facilitate the movement of the arch outward toward the wider position of the transpalatal element generating a transverse expansion force.


The removable shell can be formed over a set of molded teeth. The removable shell can include a plurality of cavities formed therein and shaped to receive the number of teeth of patient.


The transpalatal element of a removable shell can, for example, be connected to the removable shell to form the dental appliance. The transpalatal element can be connected, in accordance with various embodiments of the present disclosure, for example, by thermoforming the removable shell over the set of molded teeth with the transpalatal element placed within the set of molded teeth (e.g., encapsulated), or via direct fabrication of the transpalatal element from a virtual model, then by fusing the two materials together (e.g., ultrasonic welding), by adhering the transpalatal element to the removable shell using an agent subsequent to forming the first portion and the removable shell. In this manner, a dental appliance can be formed that has two distinct material properties, but is unitary in nature (e.g., forms a single body that can be used by the patient even though it is formed of two materials).


In the detailed description of the present disclosure, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration how one or more embodiments of the disclosure may be practiced. These embodiments are described in sufficient detail to enable those of ordinary skill in the art to practice the embodiments of this disclosure, and it is to be understood that other embodiments may be utilized and that process, electrical, and/or structural changes may be made without departing from the scope of the present disclosure. As used herein, “a number of” a particular thing can refer to one or more of such things (e.g., a number of teeth can refer to one or more teeth).


The figures herein follow a numbering convention in which the first digit or digits correspond to the drawing figure number and the remaining digits identify an element or component in the drawing. Similar elements or components between different figures may be identified by the use of similar digits. For example, 104 may reference element “04” in FIG. 1, and a similar element may be referenced as 204 in FIG. 2. As will be appreciated, elements shown in the various embodiments herein can be added, exchanged, and/or eliminated so as to provide a number of additional embodiments of the present disclosure. In addition, as will be appreciated, the proportion and the relative scale of the elements provided in the figures are intended to illustrate certain embodiments of the present invention, and should not be taken in a limiting sense.



FIG. 1 illustrates an example of a removable arch adjustment appliance having a transpalatal element that includes a number of flexing elements according to a number of embodiments of the present disclosure. The appliance 100, illustrated in the embodiment of FIG. 1, can include an upper dentition appliance (e.g., an appliance placed on the upper jaw of the patient). An upper jaw can include a maxilla and can include a number of teeth of a patient's upper dentition.


Appliances can include any positioners, retainers, and/or other removable dental appliances for finishing and maintaining teeth positioning in connection with a dental treatment. These appliances may be utilized by a treatment professional in performing a treatment plan. For example, a treatment plan can include the use of a set of appliances, created according to models described herein. Appliances, in some embodiments, can include flexible dental appliances which serve, in part, as a prosthesis for aesthetics and/or dental function.


An appliance can, for example, be fabricated from a polymeric shell, and/or formed from other material, having a cavity shaped to receive and apply force to reposition one or more teeth from one teeth arrangement to a successive teeth arrangement. The shell may be designed to fit over a number of, or in many instances all, teeth present in the upper jaw. The shell can include an interior surface (e.g., adjacent to a surface of the teeth place therein) and an exterior surface. The interior surface is configured to receive and apply forces to the teeth therein to reposition a number of teeth of the patient, for example.


In accordance with some embodiments of the present disclosure, the appliance 100 can include a removable shell 102 formed of a material and having a plurality of cavities formed therein. As discussed above, the plurality of cavities can be shaped to receive teeth of the patient, where the number of teeth include at least one molar on each side of the patient's jaw.


The appliance 100 can include an elastic transpalatal element 104 extending from the removable shell 102 in a lingual direction and across an arch width of the removable shell 102. The arch width of the removable shell 102, as used herein, is a space between the cavities of the removable shell 102. For instance, the transpalatal element 104 can expand across a surface of the mouth of the patient when the dental appliance 100 is placed over the teeth of the patient. The surface of the mouth can include, for instance, a palate and/or floor of the mouth.


The transpalatal element 104, as illustrated by FIG. 1, can be formed of a first material and can include a predetermined force characteristic. For example, the transpalatal element 104 can be formed such that transpalatal element 104 provides a certain force output that expands the space between the molars one each side of a patient's jaw or the palate of the patient. For instance, the force output can vary based the size of the space between the molars on each side of a patient's jaw or the palate of the patient, as well as the stage of the treatment plan, as will be further described herein.


As discussed above, the transpalatal element can be designed to expand an arch of teeth of the patient. For instance, the width of the transpalatal element 104 can be wider than the actual arch width of the teeth of the patient in order to define the desired arch width incremental target for the teeth. An arch width of the teeth of the patient can include a distance between teeth of the left posterior side of the patient's dentition and teeth of the right posterior side of the patient's dentition (e.g., a space between the posterior teeth, such as the molars and/or pre-molars, on each side of a patient's jaw or palate). As an example, the transpalatal element 104 can be 0.25 millimeters wider than the arch width of the teeth of the patient.


In some embodiments, the transpalatal element, or a portion thereof, can be made from a second material that can be different in at least one material property (e.g., chemical property of a material, weight of material used, mixture of chemicals used, etc.) than the first material. For instance, the rigidity of the second material can apply a force to at least a portion of the number of teeth in a transverse direction (e.g., horizontal direction) to expand the arch of teeth of the patient.


In some embodiments, the first material of the transpalatal element can form a first layer and the second material of the transpalatal element can form a second layer. The first layer of the first material can be formed integrally with and of a same material as the removable shell 102, for instance. The second layer of the second material can be formed in a separate process and attached to the first layer of the first material, for example.


In some embodiments, the transpalatal element can follow contours of a surface of the mouth of the patient when the appliance 100 is placed over the teeth of the patient. For example, the transpalatal element can be shaped to substantially follow the contours of the palate of the patient. This can be accomplished, for example, by taking a mold or scan of the surface of the palate of the patient and then forming the surface of the transpalatal element to substantially match (i.e., the surface may not be identical, as the transpalatal element may be designed to be wider as discussed above and therefore is not an identical copy of the mold/scan surface, and therefore may substantially match, but not be identical) the mold/scan surface using the physical data of the palate (e.g., the space between the molars on each side of the patient's jaw or the palate of the patient), where the physical data is obtained by the mold or the scan of the patient.


The contours of the palate in the appliance may be interpolated in anticipation of a stretching of the tissues during the expansion, in order to better accommodate the seating of the appliance in the patient's mouth. In other words, the shape of the appliance is designed to include an expected stretching of the patient's palatal lingual tissues during dental expansion, and not just a movement of the teeth.


The appliance 100 can be used for repositioning the number of teeth of the patient concurrently with expansion of the arch of teeth of the patient utilizing the transpalatal element. The expansion of the arch of teeth can include movement of posterior teeth (e.g., molars) and/or other teeth of the arch of the patient in a transverse direction and/or stretching of the maxillary suture of the patient (e.g., separates the maxillary halves in the region of the suture), along with a stretching of the surrounding soft tissues (e.g., the palatal gingiva) during the expansion.


The simultaneous treatment of misalignment of a patient's dental arch (e.g., insufficient dental arch width) in conjunction with teeth alignment issues (e.g., rotation, tipping, etc.) can, for example, potentially eliminate a second phase of a two phase treatment protocol, make the second phase less complex or a little more comfortable for the patient, shorten treatment times when compared to linear two-phase treatment protocols that first treat the misalignment of a patient's dental arch followed by treatment of misalignment of the patient's teeth. That is, the transpalatal element can, in accordance with a number of embodiments, avoid and/or not interfere with engagement of the removable shell 102 with the teeth therein and thereby allow for correction of various tooth misalignment issues during the arch expansion process. Therefore, the appliance can reposition the teeth of the patient concurrently as the transpalatal element expands at least one of the spaces between the molars on each side of a patient's jaw or palate so that both arch expansion and alignment correction occurs in tandem rather than as separate phases.


The transpalatal element 104 can include a number of force control elements to control the force provided by the transpalatal element 104 that expands the at least one molar on each side of the patient's jaw or the palate of the patient. As used herein, force control elements can control the force provided by the transpalatal element 104 as the patient's jaw and/or the palate of the patient expand. For example, force control elements can allow transpalatal element 104 to provide more or less expansion force as the patient's jaw and/or the palate of the patient is expanded.


The expansion force provided by the appliance 100 can be defined by Equation 1:









k
=


3





EI


l
3






(

Eq
.




1

)








where k is the spring constant of the first and/or second material, E is the modulus of elasticity of the first and/or second material, I is the length of the member, and I is a material constant (e.g., the second moment of area of the appliance).


The number of force control elements of the transpalatal element 104 can provide a non-linear force that expands the space between the molars on each side of a patient's jaw or the palate of the patient. In some embodiments, the number of force control elements of the transpalatal element 104 can provide a force that increases (e.g., exponentially) as the space between the molars on each side of the patient's jaw or the palate of the patient increases. In some embodiments, the number of force control elements of the transpalatal element 104 can provide a force that decreases (e.g., exponentially) as the space between the molars on each side of the patient's jaw or the palate of the patient increases. The force can increase and/or decrease until a specified distance, can increase exponentially and/or linearly, and/or decrease to zero.


The number of force control elements can include a number of flexing elements 106 in the transpalatal element 104 of the shell 102. The number of flexing elements 106 can control the force provided by the transpalatal element 104. For instance, the number of flexing elements 106 can control the force provided by the transpalatal element 104 such that the force provided by the transpalatal element 104 increases or decreases as the space between the molars on each side of the patient's jaw or the palate of the patient increases.


As shown in FIG. 1, the number of flexing elements 106 can include four flexing elements to control the force provided by the transpalatal element 104 of the shell 102. The four flexing elements 106 can be located substantially near an apex of the transpalatal element 104. The four flexing elements 106 can extend in a direction towards the tongue of the patient.


Flexing elements 106 can provide different non-linear force characteristics based on different design parameters. For instance, the non-linear force characteristics of the flexing elements 106 can be represented by Equation 1 above. The spring constant of appliance 100, as represented by Equation 1, may be influenced by design parameters including the number of flexing elements, length of the flexing elements (e.g., a distance the flexing element extends towards the tongue of the patient), the thickness of the flexing element, a distance between each flexing element, a bending curvature of each flexing element (e.g., a curvature of the length of the flexing element), and a bending/folding radius connecting adjacent flexing elements. Thus, the spring constant of each flexing element of an appliance, and consequently of an appliance itself, can vary non-linearly with length and thickness. Further, the curvature (e.g., the bending/folding radius) of segments connecting each flexing element may determine an extent of each flexing element bend until it settles on the adjacent element.


In some examples, a greater number of flexing elements may provide more non-linear force than a lesser number of flexing elements. In some examples, a first fold with a radius greater than a radius of a second fold may provide more non-linear force than the second fold. In some examples, a first fold with a length greater than the length of a second fold may provide more non-linear force than the second fold. In some examples, a greater distance between each fold of the number of flexing elements may provide more non-linear force than a smaller distance between each fold. The four flexing elements can control the force provided by the transpalatal element 104 of the shell 102. For example, the four flexing elements can provide a force that exponentially increases as the space between the molars on each side of the patient's jaw or the palate of the patient increases. In some embodiments, the four flexing elements can provide a force that exponentially decreases as the space between the molars on each side of the patient's jaw or the palate of the patient increases (e.g., as the transpalatal element 104 expands and the number of flexing elements are activated and flatten out).


Although the number of flexing elements 106 are shown in FIG. 1 as being the same length, embodiments of the present disclosure are not so limited. In some examples, the four flexing elements 106 can be longer or shorter. In some examples, two of the four flexing elements can be longer or shorter than the other two flexing elements.


Although the four flexing elements are shown in FIG. 1 and described as extending towards the tongue of the patient, embodiments of the present disclosure are not so limited. For example, the four flexing elements 106 can be bent towards the surface of the transpalatal element 104 such that they lie closer to and in a more substantially parallel fashion next to the surface of the transpalatal element 104.


The number of flexing elements 106 can be activated in different steps of expansion of the transpalatal element 104 of the shell. For example, as the expansion of the force providing portion 104 of the shell occurs, the two respective flexing elements located nearest the respective buccal sides of the patient's mouth may be activated to provide more or less expansion force as the space between the molars on each side of the patient's jaw or the palate of the patient increases. The two remaining flexing elements may be activated following activation of the two previous flexing elements. The two remaining flexing elements may be activated during expansion of the first two flexing elements, or after expansion of the first two flexing elements is finished.


Although not shown in FIG. 1 for clarity and so as not to obscure embodiments of the present disclosure, appliance 100 can include an expansion limiter. An expansion limiter can include a ball joint, a universal joint, an arm, mesh, a spring, and/or a hinge, although embodiments of the present disclosure are not limited to the above listed expansion limiters. The expansion limiter can direct the force output of appliance 100.


In some embodiments of the present disclosure, the appliance 100 can be a portion of a treatment plan. For instance, the treatment plan can include a series of appliances designed to incrementally implement a treatment plan. Each of the series of appliances can be a stage of the incremental treatment plan, for instance. The series can be used to reposition the teeth of the patient concurrently as the transpalatal element expands at least one of the spaces between the molars on each side of a patient's jaw or palate.


For instance, a first appliance, of a series of appliances designed to incrementally implement a treatment plan can comprise a first shell formed of a first material having a plurality of cavities therein designed to receive teeth of a jaw. The first appliance can include a first transpalatal element formed of a first layer of the first material and a second layer of the second material different than the first material.


The first transpalatal element can extend from the first shell across an arch width of the first shell. For instance, the first transpalatal element can have a first width specific to a first stage of the treatment plan and/or can be designed to expand at least one of the spaces between the molars on each side of a patient's jaw or the palate of the patient. The transpalatal element of the first appliance can provide force to expand the at least one of the space between the molars on each side of the patient's jaw or the palate of the patient by a predefined expansion length according to the first stage of the treatment plan. The predefined expansion length can be based on a stage of the treatment plan.


A second appliance, of the series of appliances, can comprise a second shell having a plurality of cavities therein designed to receive teeth of the jaw. The second appliance can include a second transpalatal element. For example, the second transpalatal element can have a second width specific to a second stage of the treatment plan. In some examples, the predefined expansion length of the transpalatal element of the second appliance can be different than the predefined expansion length of the transpalatal element of the first shell (e.g., can be more or less). In some examples, the predefined expansion length of the transpalatal element of the second appliance can be the same as the predefined expansion length of the transpalatal element of the first shell.


The second width can be wider than the first width. For instance, the second width can include an incremental increase in width as compared to the first width. The successive incremental increase in the arch width of the appliances can correspond to the desired gradual increase in at least one of the space between the molars on each side of a patient's jaw or the palate of the patient. For instance, the transpalatal element of the second appliance can provide force to expand the at least one of the space between the molars on each side of the patient's jaw or the palate of the patient by a predefined expansion length according to the second stage of the treatment plan.


A shape of the transpalatal elements of the shells and/or the shape of the force control elements can be specific to stages of the treatment plan. For example, the force control elements and/or the force providing portion of a first appliance specific to a first stage of a treatment plan may be shaped to provide more force than force control elements and/or the force providing portion of a second appliance specific to a second stage of the treatment plan.


Although the present embodiments illustrate two stages of a treatment plan, embodiments in accordance with the present disclosure are not so limited. Treatment plans can include a variety of number of stages, including more or less than two treatment stages. At least a portion of the stages can include treatment for gradual expansion of an arch of teeth of a patient. Alternatively and/or in addition, one or more of the stages may not include transpalatal elements, in various embodiments.


In an example embodiment, a system can include: a first appliance, of a series of appliances designed to incrementally implement a treatment plan, can include a removable shell having a plurality of cavities formed therein and shaped to receive teeth of a patient and wherein the teeth include at least one molar on each side of a patient's jaw, wherein the shell includes an elastic transpalatal element with a predetermined force characteristic that spans a palate of the patient and provides force to expand at least one of a space between the molars on each side of a patient's jaw or the palate of the patient, and wherein the transpalatal element includes a number of force control elements to control the force provided by the transpalatal element that expands the at least one of the space between the molars on each side of a patient's jaw or the palate of the patient. A second appliance, of the series of appliances, can including a removable shell having a plurality of cavities formed therein and shaped to receive teeth of a patient, wherein the shell includes an elastic transpalatal element with a predetermined force characteristic that spans a palate of the patient and provides force to expand at least one of the space between the molars on each side of a patient's jaw or the palate of the patient, and wherein the transpalatal element includes a number of force control elements to control the force provided by the transpalatal element that expands the at least one of the space between the molars on each side of a patient's jaw or the palate of the patient.


In some embodiments, a virtual appliance including a transpalatal element can be formed of a material using a virtual model of a palate of a patient and a virtual model of a number of teeth of the patient. The transpalatal element can be wider than an arch width of the number of teeth of the first jaw of the patient, specific to a stage of a treatment plan, and can be shaped to substantially follow contours of the palate of the patient (that may also include modeling of anticipated changes to the palatal contours due to tissue stretching), for instance.


The palatal contours in the model can also be specifically raised in a vertical direction so that any appliance which is formed over the model is slightly raised in comparison to the actual contours of the palate. In other words, a slight gap between the actual palate and the palatal coverage portion of the appliance can be designed to be present. This gap allows the transverse benefits of the appliance design to be in effect while not necessarily requiring an exact fit of the appliance to the contours of the tissue.


A slight offset in the vertical dimension can minimize any disruption in speech, swallowing, or feel due to changes in tongue position that may result in the alteration. More importantly, intentionally raising the vertical dimension of only the palatal tissue regions has the benefit of not needing perfect modeling of any non-linear stretching that might take place in the tissue. This can greatly reduce the risk of uncomfortable pressure spots and sores caused by the appliance. Having to relieve pressure spots in the appliance can be very time consuming for the treatment professional, and if the appliance is thin to begin with, such adjustments can lead to weakened areas in the appliance.


A virtual model of a number of teeth of the patient can, for example, include an initial virtual dental model and/or an intermediate virtual dental model. A virtual model of the palate (and/or other tissue surfaces of the patient's mouth) can include the contours of the palate. In some embodiments, the virtual model of the palate and the virtual model of the number of teeth can include a single virtual model and/or two separate virtual models.


The transpalatal element and/or stop mechanisms (e.g., as will be further described in connection with FIGS. 7-13) can be formed by a rapid prototyping process, such as, for example, by a Computer-aided manufacturing (CAM) milling, stereolithography, 3D printing, fused deposition modeling (FDM), selective laser sintering (SLS), and/or photolithography. Advantages of such techniques can include, for example, that multiple materials can be used in a single build, various cross sectional thickness's can be designed and built for rigidity, and easy fabrication of a complex organic geometry.


In some embodiments, the flexibility of the appliance is such that it can be compressed in the transverse direction during seating in order to activate the expansion force. This force then gets released and directed towards the teeth, soft tissues, and/or jaw bone when then the appliance is seated in the mouth.


As discussed above, in some embodiments, the transpalatal element can be shaped to substantially follow contours of the palate of the patient using the virtual model of the palate. Alternatively and/or in addition, the transpalatal element can be shaped to substantially follow contours of the floor of the mouth of the patient using a virtual model of the floor of the mouth.


To form an appliance, a removable shell can, for example, be formed over a set of molded teeth. The removable shell can include a plurality of cavities formed therein, wherein the plurality of cavities are shaped to receive the number of teeth of the patient. In various embodiments, the removable shell can include a second portion of the transpalatal element formed of the same material as the plurality of cavities. The second portion of the transpalatal element can be formed integrally with and/or during a same process as the plurality of cavities, for instance.


The material forming the first portion of the transpalatal element can be more rigid than the material forming the second portion of the transpalatal element, for instance. In some embodiments, the second portion of the transpalatal element can include the same width as the first portion of the transpalatal element.


Alternatively and/or in addition, the first portion of the transpalatal element can be designed to be adjacent to and/or in contact with a surface of the patient's mouth (e.g., the palate and/or floor of the patient's mouth) when the dental appliance is placed over the teeth of the patient. The second portion of the transpalatal element can be designed to be adjacent to and/or in contact with a tongue of the patient when the dental appliance is placed over the teeth of the patient.


The dental appliance can be made, for example, by thermoforming a piece of plastic over a physical dental model. The physical dental model, for instance, can represent an incremental position to which a patient's teeth are to be moved. This desired position of the patient's teeth includes any underlying desired changes to the skeletal structure which holds the teeth in place.


In some embodiments, a treatment file can be accessed by a rapid prototyping apparatus machine, such as a SLA or printing, to form and/or create the dental model. The result of the dental model can include a set of molded teeth (e.g., a physical set of molded teeth). The set of molded teeth can include at least a replica of a number of teeth of the patient. The dental model can be used to make a dental appliance, for example, by creating a negative impression of the dental model using polymeric sheets of material and vacuum forming heated sheets of the polymer over the dental model, as discussed above.


For instance, a dental appliance can be created by layering a thermoformable sheet of material and/or multiple sheets of one or more materials over the dental model. The materials can include at least one polymeric material, for instance.


Generally, the dental appliance can be produced and/or formed, for example, by heating the polymeric thermoformable sheet and vacuum or pressure forming the sheet over the dental model (i.e., over a number of the teeth in the mold). The shape of the sheet of material can be designed to intentionally vary in thickness in some portions of the sheet (beyond natural variations in thickness during the shaping process) as it conforms to the mold shape. A dental appliance can, for example, include a negative impression of the dental model. The appliance and/or parts thereof may be transparent, semi-transparent, or opaque in such a way as to emulate a natural tooth shade.


Force control elements of an arch adjustment appliance can eliminate the need for a patient to utilize screws and/or other mechanisms to incrementally activate expansion. Force control elements can allow for more precise forces to be applied to expand the space between the molars on each side of a patient's jaw or the palate of the patient, which may shorten the length of a treatment plan and avoid discomfort and/or pain for the patient. Additionally, the arch adjustment appliances can be more aesthetically pleasing.



FIG. 2 illustrates an example of a removable arch adjustment appliance having a transpalatal element that includes a number of flexing elements according to the present disclosure. As illustrated by the embodiment of FIG. 2, the appliance 200 can include a removable shell 202, a transpalatal element 204, and a number of flexing elements 207.


As previously described in connection with FIG. 1, the removable shell 202 can include a plurality of cavities formed therein, wherein the plurality of cavities are shaped to receive the number of teeth of the patient. The removable shell 202, as illustrated in FIG. 2, can include a virtual removable shell, a physical removable shell, and/or material to be thermoformed over a dental model.


Additionally, as previously described in connection with FIG. 1, the transpalatal element 204 can include a number of force control elements to control the force provided by the force expansion providing portion 204. The number of force control elements can include a number of flexing elements 207 that can be activated in different steps of expansion of the transpalatal element 204 of the shell 202.


As shown in FIG. 2, the number of flexing elements 207 can include two flexing elements to control the force provided by the transpalatal element 204 of the shell 202. The two flexing elements can be located substantially near the removable shell 202. The two flexing elements can extend in a direction towards the palate of the patient.


The number of flexing elements 207 can provide different non-linear force characteristics based on different design parameters. In some examples, a greater number of flexing elements may provide more non-linear force than a lesser number of flexing elements. In some examples, a first flexing element with a radius greater than a radius of a second flexing element may provide more non-linear force than the second flexing element. In some examples, a first flexing element with a length greater than the length of a second flexing element may provide more non-linear force than the second flexing element. In some examples, a greater distance between each flexing element of the number of flexing elements may provide more non-linear force than a smaller distance between each flexing element.


The two flexing elements can control the force provided by the transpalatal element 204 of the shell 202. For example, the two flexing elements can provide a force that exponentially increases as the space between the molars on each side of the patient's jaw or the palate of the patient increases. In some embodiments, the two flexing elements can provide a force that exponentially decreases as the space between the molars on each side of the patient's jaw or the palate of the patient increases.


Although the two flexing elements are shown in FIG. 1 and described as extending towards the palate of the patient, embodiments of the present disclosure are not so limited. For example, the two flexing elements can be bent towards the surface of the transpalatal element 204 such that they lie closer to and in a more substantially parallel fashion next to the surface of the transpalatal element 204.


Although the number of flexing elements 207 are shown in FIG. 2 as being the same length, embodiments of the present disclosure are not so limited. In some examples, the two flexing elements 207 can be longer or shorter. In some examples, one of the two flexing elements 207 can be longer or shorter than the second of the two flexing elements 207.


Although not shown in FIG. 2 for clarity and so as not to obscure embodiments of the present disclosure, appliance 200 can include an expansion limiter. An expansion limiter can include a ball joint, a universal joint, an arm, mesh, a spring, and/or a hinge, although embodiments of the present disclosure are not limited to the above listed expansion limiters. The expansion limiter can direct the force output of appliance 200.



FIG. 3 illustrates an example of a removable arch adjustment appliance having a transpalatal element that includes a number of flexing elements according to a number of embodiments of the present disclosure. As illustrated by the embodiment of FIG. 3, the appliance 300 can include a removable shell 302, a transpalatal element 304, and a number of flexing elements 309.


As previously described in connection with FIG. 1, the removable shell 302 can include a plurality of cavities formed therein, wherein the plurality of cavities are shaped to receive the number of teeth of the patient. The removable shell 302, as illustrated in FIG. 3, can include a virtual removable shell, a physical removable shell, and/or material to be thermoformed over a dental model.


Additionally, as previously described in connection with FIG. 1, the transpalatal element 304 can include a number of force control elements to control the force provided by the force expansion providing portion 304. The number of force control elements can include a number of flexing elements 309 that can be activated in different steps of expansion of the transpalatal element 304 of the shell 302.


As shown in FIG. 3, the number of flexing elements 309 can include two flexing elements to control the force provided by the transpalatal element 304 of the shell 302. The two flexing elements can be located substantially between an apex of the transpalatal element 304 of the shell 302 and the plurality of cavities of the shell 302. The two flexing elements can extend in a direction towards the palate of the patient.


The number of flexing elements 309 can provide different non-linear force characteristics based on different design parameters. In some examples, a greater number of flexing elements may provide more non-linear force than a lesser number of flexing elements. In some examples, a first flexing element with a radius greater than a radius of a second flexing element may provide more non-linear force than the second flexing element. In some examples, a first flexing element with a length greater than the length of a second flexing element may provide more non-linear force than the second flexing element. In some examples, a greater distance between each flexing element of the number of flexing elements may provide more non-linear force than a smaller distance between each flexing element.


The two flexing elements can control the force provided by the transpalatal element 304 of the shell 302. For example, the two flexing elements can provide a force that exponentially increases as the space between the molars on each side of the patient's jaw or the palate of the patient increases. In some embodiments, the two flexing elements can provide a force that exponentially decreases as the space between the molars on each side of the patient's jaw or the palate of the patient increases.


Although the number of flexing elements 309 are shown in FIG. 3 as being the same length, embodiments of the present disclosure are not so limited. In some examples, the two flexing elements 309 can be longer or shorter. In some examples, one of the two flexing elements 309 can be longer or shorter than the second of the two flexing elements 309.


Although not shown in FIG. 3 for clarity and so as not to obscure embodiments of the present disclosure, appliance 300 can include an expansion limiter. An expansion limiter can include a ball joint, a universal joint, an arm, mesh, a spring, and/or a hinge, although embodiments of the present disclosure are not limited to the above listed expansion limiters. The expansion limiter can direct the force output of appliance 300.



FIG. 4 illustrates an example of a removable arch adjustment appliance having a transpalatal element that includes a member according to one or more embodiments of the present disclosure. As illustrated by the embodiment of FIG. 4, the appliance 400 can include a removable shell 402, a transpalatal element 404, and a member that is a cross member 410.


As previously described in connection with FIG. 1, the removable shell 402 can include a plurality of cavities formed therein, wherein the plurality of cavities are shaped to receive the number of teeth of the patient. The removable shell 402, as illustrated in FIG. 4, can include a virtual removable shell, a physical removable shell, and/or material to be thermoformed over a dental model.


Additionally, as previously described in connection with FIG. 1, the transpalatal element 404 can include a number of force control elements to control the force provided by the force expansion providing portion 404. The number of force control elements can include a cross member 410.


The cross member 410 can control the force provided by the transpalatal element 404 of the shell 402. For example, the cross member 410 can provide a force that exponentially increases as the space between the molars on each side of the patient's jaw or the palate of the patient increases. In some embodiments, the cross member 410 can provide a force that exponentially decreases as the space between the molars on each side of the patient's jaw or the palate of the patient increases.


Cross member 410 can provide different non-linear force characteristics based on a size of the cross member and/or a material of the cross member. In some examples, a larger cross-sectional area of the cross member can generate more force, and a smaller cross-sectional area of the cross member can generate less force. In some examples, a cross member made of a first material can generate more force than a cross member made of a second material.


In some embodiments, the cross member 410 can act as a stop mechanism. In some examples, the cross member 410 can be attached to the transpalatal element 404 such that the cross member 410 includes a loaded force. In some examples, the cross member 410 can be attached to the transpalatal element 404 such that the cross member 410 does not include a loaded force, but a loaded force is induced when the cavities of the removable shell 402 receive the teeth of the patient (e.g., appliance 400 is placed in the patient's mouth). In either example, expansion of the space between the molars on each side of a patient's jaw or the palate of the patient can cause the loaded force of cross member 410 to be removed. Once the loaded force of cross member 410 is removed, the expansion force of the transpalatal element 404 goes to zero as the cross member 410 prevents the transpalatal element 404 from further expansion.


In some embodiments, the cross member 410 can be of the same material as the shell 402. In some embodiments, the cross member 410 can be of the same material as the transpalatal element 404.


Although not shown in FIG. 4 for clarity and so as not to obscure embodiments of the present disclosure, appliance 400 can include an expansion limiter. An expansion limiter can include a ball joint, a universal joint, an arm, mesh, a spring, and/or a hinge, although embodiments of the present disclosure are not limited to the above listed expansion limiters. The expansion limiter can direct the force output of appliance 400.



FIG. 5 illustrates an example of a removable arch adjustment appliance having a transpalatal element that includes two members attached thereto according to one or more embodiments of the present disclosure. As illustrated by the embodiment of FIG. 5, the appliance 500 can include a removable shell 502, a transpalatal element 504, and two members 512.


As previously described in connection with FIG. 1, the removable shell 502 can include a plurality of cavities formed therein, wherein the plurality of cavities are shaped to receive the number of teeth of the patient. The removable shell 502, as illustrated in FIG. 5, can include a virtual removable shell, a physical removable shell, and/or material to be thermoformed over a dental model.


Additionally, as previously described in connection with FIG. 1, the transpalatal element 504 can include a number of force control elements to control the force provided by the force expansion providing portion 504. The number of force control elements can include two members 512 attached to the side of the transpalatal element 504 of the shell 502 that face the palate of the patient.


The two members 512 can control the force provided by the transpalatal element 504 of the shell 502. For example, the two members 512 can provide a force that exponentially increases as the space between the molars on each side of the patient's jaw or the palate of the patient increases. In some embodiments, the two members 512 can provide a force that exponentially decreases as the space between the molars on each side of the patient's jaw or the palate of the patient increases.


The two members 512 can provide different non-linear force characteristics based on a size of the two members and/or a material of the two members. In some examples, a larger cross-sectional area of the two members can generate more force, and a smaller cross-sectional area the two members can generate less force. In some examples, the members made of a first material can generate more force than two members made of a second material.


In some embodiments, the two members 512 can be of the same material as the shell 502. In some embodiments, the two members 512 can be of the same material as the transpalatal element 504. In some embodiments, one of the two members 512 can be of a different material than the other of the two members 512.


Although not shown in FIG. 5 for clarity and so as not to obscure embodiments of the present disclosure, appliance 500 can include an expansion limiter. An expansion limiter can include a ball joint, a universal joint, an arm, mesh, a spring, and/or a hinge, although embodiments of the present disclosure are not limited to the above listed expansion limiters. The expansion limiter can direct the force output of appliance 500.



FIG. 6 illustrates an example of a removable arch adjustment appliance having a transpalatal element that includes two members attached thereto according to one or more embodiments of the present disclosure. As illustrated by the embodiment of FIG. 6, the appliance 600 can include a removable shell 602, a transpalatal element 604, and two members 614.


As previously described in connection with FIG. 1, the removable shell 602 can include a plurality of cavities formed therein, wherein the plurality of cavities are shaped to receive the number of teeth of the patient. The removable shell 602, as illustrated in FIG. 6, can include a virtual removable shell, a physical removable shell, and/or material to be thermoformed over a dental model.


Additionally, as previously described in connection with FIG. 1, the transpalatal element 604 can include a number of force control elements to control the force provided by the force expansion providing portion 604. The number of force control elements can include two members 614 attached to the side of the transpalatal element 604 of the shell 602 that face the tongue of the patient.


The two members 614 can control the force provided by the transpalatal element 604 of the shell 602. For example, the two members 614 can provide a force that exponentially increases as the space between the molars on each side of the patient's jaw or the palate of the patient increases. In some embodiments, the two members 614 can provide a force that exponentially decreases as the space between the molars on each side of the patient's jaw or the palate of the patient increases.


The two members 614 can provide different non-linear force characteristics based on a size of the two members and/or a material of the two members. In some examples, a larger cross-sectional area of the two members can generate more force, and a smaller cross-sectional area the two members can generate less force. In some examples, the members made of a first material can generate more force than two members made of a second material.


In some embodiments, the two members 614 can be of the same material as the shell 602. In some embodiments, the two members 614 can be of the same material as the transpalatal element 604. In some embodiments, one of the two members 614 can be of a different material than the other of the two members 614.


Embodiments of the present disclosure can also provide other beneficial functions. For example, embodiments can maintain space in the patient's mouth when the patient's primary and permanent dentition have a size discrepancy.


For instance, unlike the anterior teeth, the permanent premolars may be smaller than the primary teeth they replace. On average, the mandibular primary second molar is 2 mm larger than the second premolar and, in the maxillary arch, the primary second molar is only 1.5 mm larger. The primary first molar is only 0.5 mm larger than the first premolar. Accordingly, on average, this results in 2.5 mm of space, called leeway space, in the mandibular arch and 1.5 mm in the maxillary arch. The leeway space is usually taken by mesial movement of the permanent molars (the permanent first molars move mesially relatively rapidly).


This creates an opportunity to gain arch length and relieve crowding by stopping the first molar mesial movement by, for example, using a pontic along with the appliance by filling the appliance tooth space and leaving clearance for an erupting tooth. The filled pontic material can be used to keep the first molar from moving into the leeway space while allowing the permanent premolar to erupt.


It should be noted that in some embodiments, portions of the appliance may not be visible to people when they see the appliance in the patient's mouth and as such the material does not have to be clear, and this therefore allows for more options with regard to the choice of material that can be utilized. With some manufacturing processes, as discussed herein, the appliance can be fabricated from multiple materials or can be manufactured in parts wherein the parts are made from different materials and are attached together to create the appliance.


Although not shown in FIG. 6 for clarity and so as not to obscure embodiments of the present disclosure, appliance 600 can include an expansion limiter. An expansion limiter can include a ball joint, a universal joint, an arm, mesh, a spring, and/or a hinge, although embodiments of the present disclosure are not limited to the above listed expansion limiters. The expansion limiter can direct the force output of appliance 600.



FIG. 7 illustrates an example of a removable arch adjustment appliance having a transpalatal element that includes a sliding stop mechanism according to a number of embodiments of the present disclosure. As illustrated by the embodiment of FIG. 7, the appliance 700 can include a removable shell 702, a transpalatal element 704, two opposing members 716, tabs of the two opposing members 718, connection member 720, and tabs of the connection member 722.


The appliance 700 shown in FIG. 7 can be similar to the appliance previously described in connection to FIG. 1. For example, appliance 700 can include a removable shell 702 having a plurality of cavities formed therein, wherein the plurality of cavities are shaped to receive teeth of a patient and wherein the teeth include at least one molar on each side of a patient's jaw, and wherein the shell 702 includes an elastic transpalatal element 704 with a predetermined force characteristic that spans a palate of the patient, wherein the transpalatal element 704 provides force to expand at least one of the space between the molars on each side of a patient's jaw or the palate of the patient.


Appliance 700 can include a stop mechanism located on shell 702 that provides a mechanical force on the transpalatal element 704 of the shell 702 at a predefined expansion length of the transpalatal element 704. As used herein, a stop mechanism can provide a mechanical force on the transpalatal element 704 to reduce and/or prevent any further expansion of the space between the molars on each side of the patient's jaw and/or the palate of the patient after expansion of the space between the molars on each side of the patient's jaw and/or the palate of the patient by a predefined expansion length. That is, the mechanical force can reduce and/or counteract the force provided by the transpalatal element that expands the at least one of the space between the molars on each side of a patient's jaw or the palate of the patient.


The stop mechanism can be a sliding stop mechanism. As shown in FIG. 7, the sliding stop mechanism can include two opposing members 716 partially spanning, in a lingual direction, the transpalatal element 704 of the shell 702. Each of the opposing members 716 can include a tab 718, as will be further described herein.


The stop mechanism can include a connection member 720 connected to the two opposing members 716. The connection member 720 can include two tabs 722. The connection member 720 can be connected to the two opposing members 716 by way of the two tabs 722. For example, each of the two tabs 722 can include a hole large enough such that each of the two opposing members 716 may fit through each of the holes of the two tabs 722. This connection can allow for the two opposing members 716 and the connection member 720 to slide relative to each other during expansion of the appliance 700.


The two opposing members 716 and the connection member 720 can slide relative to each other during expansion of the appliance 700 until the predefined expansion length. That is, the two tabs 722 of the connection member 720 provide mechanical force on the transpalatal element 704 of the shell 702 by way of the two tabs 718 of the two opposing members 716 at the predefined expansion length that is equal to and opposite of the force provided by the transpalatal element 704 of the shell 702. In other words, the two tabs 722 stop expansion of the appliance 700 at the predefined expansion length, preventing the appliance 700 from over expanding the space between the molars on each side of the patient's jaw and/or the palate of the patient.


The components of the stop mechanism (e.g., two opposing members 716, tabs 718 of the two opposing members 716, connection member 720, and tabs 722 of the connection member 720) can be assembled by a one piece direct fabrication process. Alternatively, the components of the stop mechanism can be fabricated separately and then assembled.


The stop mechanisms can stop expansion of the appliance 700 at a predefined expansion length that can be based on a stage of a treatment plan. For example, a first appliance can include a first stop mechanism designed to stop expansion of the first appliance at a predefined expansion length based on a first stage of a treatment plan. A second appliance can include a second stop mechanism designed to stop expansion of the second appliance at a predefined expansion length based on a second stage of the treatment plan, where the predefined expansion lengths at each stage of the treatment plan can be different.


In an example embodiment, a system can include: a first appliance, of a series of appliances designed to incrementally implement a treatment plan, including a stop mechanism and a removable shell having a plurality of cavities formed therein and shaped to receive teeth of a patient and wherein the teeth include at least one molar on each side of a patient's jaw, wherein the shell includes an elastic transpalatal element with a predetermined force characteristic that spans a palate of the patient and provides force to expand at least one of a space between the molars on each side of a patient's jaw or the palate of the patient, and wherein the stop mechanism is located on the shell and provides a mechanical force on the transpalatal element of the shell of the first appliance at a predefined expansion length of the transpalatal element to reduce the force provided by the transpalatal element that expands the at least one of the space between the molars on each side of a patient's jaw or the palate of the patient. A second appliance, of the series of appliances, can include a stop mechanism and a removable shell having a plurality of cavities formed therein and shaped to receive teeth of a patient, wherein the shell includes an elastic transpalatal element with a predetermined force characteristic that spans a palate of the patient and provides force to expand at least one of the space between the molars on each side of a patient's jaw or the palate of the patient, and wherein the stop mechanism is located on the shell and provides a mechanical force on the transpalatal element of the shell of the first appliance at a predefined expansion length of the transpalatal element to reduce the force provided by the transpalatal element that expands the at least one of the space between the molars on each side of a patient's jaw or the palate of the patient.


Stop mechanisms of an arch adjustment appliance can help reduce the risk of over expansion of the space between the molars on each side of a patient's jaw or the palate of the patient. The reduced risk of over expansion can allow for different forces to be applied at stages of a treatment plan, which may shorten the length of a treatment plan and avoid discomfort and/or pain for the patient.



FIG. 8 illustrates an example of a removable arch adjustment appliance having a transpalatal element that includes a sliding stop mechanism according to a number of embodiments of the present disclosure. As illustrated by the embodiment of FIG. 8, the appliance 800 can include a removable shell 802, a transpalatal element 804, spanning member 824, and tabs 826 of the spanning member 824.


Similar to the appliance described in connection with FIG. 7, appliance 800 can include a stop mechanism. The stop mechanism can be a sliding stop mechanism. As shown in FIG. 8, the sliding stop mechanism can include a member 824 spanning, in a lingual direction, the transpalatal element 804 of the shell 802. The member 824 can include tabs 826 on opposing sides of the member 824.


The transpalatal element 804 can include holes large enough such that the spanning member 824 may fit through each of the holes of the transpalatal element 804. This connection can allow for the transpalatal element 804 to slide along/relative to the spanning member 824 during expansion of the appliance 800.


The transpalatal element 804 can slide along/relative to the spanning member 824 during expansion of the appliance 800 up until the predefined expansion length. That is, the two tabs 826 of the spanning member 824 provide mechanical force on the transpalatal element 804 of the shell 802 at the predefined expansion length that is equal to and opposite of the force provided by the transpalatal element 804 of the shell 802. In other words, the two tabs 826 stop expansion of the appliance 800 at the predefined expansion length, preventing the appliance 800 from over expanding the space between the molars on each side of the patient's jaw and/or the palate of the patient, where the predefined expansion length can be based on a stage of a treatment plan.


The components of the stop mechanism (e.g., spanning member 824 and tabs 826 of the spanning member 824) can be assembled by a one piece direct fabrication process. Alternatively, the components of the stop mechanism can be fabricated separately and then assembled.



FIG. 9 illustrates an example of a removable arch adjustment appliance having a transpalatal element that includes a tension stop mechanism according to a number of embodiments of the present disclosure. As illustrated by the embodiment of FIG. 9, the appliance 900 can include a removable shell 902, a transpalatal element 904, and flexible member 928.


Appliance 900 can include a stop mechanism, such as a tension stop mechanism. As shown in FIG. 9, the tension stop mechanism can include a flexible member 928 that spans, in a lingual direction, the transpalatal element 904 of the shell 902. The flexible member 928 can be of different materials, such as fabric (e.g., a string), polymeric, metallic (e.g., a chain), etc.


The flexible member 928 can be slack when inserted into a patient's mouth for expansion of the space between the molars on each side of the patient's jaw and/or the palate of the patient. During expansion of the appliance 900, the flexible member 928 can become taut. That is, the flexible member 928 can provide mechanical force on the transpalatal element 904 of the shell 902 at the predefined expansion length that is equal to and opposite of the force provided by the transpalatal element 904 of the shell 902. In other words, the flexible member 928 stops expansion of the appliance 900 at the predefined expansion length, preventing the appliance 900 from over expanding the space between the molars on each side of the patient's jaw and/or the palate of the patient, where the predefined expansion length can be based on a stage of a treatment plan.



FIG. 10 illustrates an example of a removable arch adjustment appliance having a transpalatal element that includes a tension stop mechanism according to a number of embodiments of the present disclosure. As illustrated by the embodiment of FIG. 10, the appliance 1000 can include a removable shell 1002, a transpalatal element 1004, and one or more hinged members 1030.


Appliance 1000 can include a stop mechanism, such as a tension stop mechanism. As shown in FIG. 10, the tension stop mechanism can include one or more hinged members 1030 that spans, in a lingual direction, the transpalatal element 1004 of the shell 1002.


The one or more hinged members 1030 can be in a hinged orientation (e.g., not straight) when inserted into a patient's mouth for expansion of the space between the molars on each side of the patient's jaw and/or the palate of the patient. During expansion of the appliance 1000, the one or more hinged members 1030 can move to an unhinged orientation (e.g., is pulled upwards and straightens out) as the appliance 1000 expands. That is, the one or more hinged members 1030 can provide mechanical force on the transpalatal element 1004 of the shell 1002 at the predefined expansion length that is equal to and opposite of the force provided by the transpalatal element 1004 of the shell 1002. In other words, the one or more hinged members 1030 stop expansion of the appliance 1000 at the predefined expansion length, preventing the appliance 1000 from over expanding the space between the molars on each side of the patient's jaw and/or the palate of the patient, where the predefined expansion length can be based on a stage of a treatment plan.



FIG. 11 illustrates an example of a removable arch adjustment appliance having a transpalatal element that includes a deflection limit stop mechanism according to a number of embodiments of the present disclosure. As illustrated by the embodiment of FIG. 11, the appliance 1100 can include a removable shell 1102, a transpalatal element 1104, first portion of transpalatal element 1104-1, second portion of transpalatal element 11-4-2, and curved stop mechanism 1132.


Appliance 1100 can include a stop mechanism, such as a deflection limit stop mechanism. As shown in FIG. 11, the deflection limit stop mechanism can include a curved stop mechanism 1132 with substantially the same shape as the transpalatal element 1104 of the shell 1102. The curved stop mechanism 1132 can be located at the apex of the transpalatal element 1104 and on the side of the transpalatal element 1104 facing the palate of the patient. The curved stop mechanism 1132 can be of the same material as the transpalatal element 1104, or of a different material.


Prior to expansion of the appliance 1100 (e.g., as shown in FIG. 11), the transpalatal element 1104 does not lie next to (e.g., adjacent to) the curved stop mechanism 1132. During expansion of the appliance 1100, a first portion 1104-1 of the transpalatal element 1104 can become adjacent to the curved stop mechanism 1132, while a second portion 1104-2 of the transpalatal element 1104 can continue to expand. That is, the curved stop mechanism 1132 can provide mechanical force on the first portion 1104-1 of the transpalatal element 1104 of the shell 1102 at the predefined expansion length that is equal to and opposite of the force provided by the first portion 1104-1 of the transpalatal element 1104 of the shell 1102, where the second portion 1104-2 of the transpalatal element 1104 is uninhibited by the curved stop mechanism 1132. In other words, the curved stop mechanism 1132 stops expansion of the first portion 1104-1 of the transpalatal element 1104, while the second portion 1104-2 of the transpalatal element 1104 can continue to expand. The curved stop mechanism 1132 can stop expansion of the first portion 1104-1 at a predefined expansion length based on a stage of a treatment plan.


Allowing the second portion 1104-2 to continue to expand once the curved stop mechanism 1132 has prevented the first portion 1104-1 from expanding can allow for different force characteristics for the transpalatal element 1104. For example, the force provided by the second portion 1104-2 may be higher as the appliance 1100 continues to expand, which may be beneficial based on a stage of a treatment plan.


The first portion 1104-1 and the second portion 1104-2 can be the same length, or can be different lengths. For example, the first portion 1104-1 can be longer than the second portion 1104-2, or, alternatively, the first portion 1104-1 can be shorter than the second portion 1104-2. The lengths of the first portion 1104-1 and the second portion 1104-2 can depend on the force characteristic needed for expansion of the space between the molars on each side of the patient's jaw and/or the palate of the patient, and/or can be based on a stage of a treatment plan.


Although not shown in FIG. 11 for clarity and so as not to obscure embodiments of the present disclosure, the stop mechanism 1132 can be substantially planar in a lingual direction. The stop mechanism 1132 can include two protruding members on opposite sides of the planar stop mechanism, where the two protruding members are normal to the planar stop mechanism.


Prior to expansion of the appliance, the transpalatal element 1104 does not contact either of the protruding members. During expansion of the appliance 1100, a first portion 1104-1 of the transpalatal element 1104 can come into contact with the protruding members, while a second portion 1104-2 of the transpalatal element 1104 can continue to expand. That is, the protruding members can provide mechanical force on the first portion 1104-1 of the transpalatal element 1104 of the shell 1102 at the predefined expansion length that is equal to and opposite of the force provided by the first portion 1104-1 of the transpalatal element 1104 of the shell 1102, where the second portion 1104-2 of the transpalatal element 1104 is uninhibited by the protruding members. In other words, the protruding members can stop expansion of the first portion 1104-1 of the transpalatal element 1104, while the second portion 1104-2 of the transpalatal element 1104 can continue to expand. The protruding members can stop expansion of the first portion 1104-1 at a predefined expansion length based on a stage of a treatment plan.



FIG. 12 illustrates an example of a removable arch adjustment appliance having a transpalatal element that includes a deflection limit stop mechanism according to a number of embodiments of the present disclosure. As illustrated by the embodiment of FIG. 12, the appliance 1200 can include a removable shell 1202, a transpalatal element 1204, and curved stop mechanism 1234.


Appliance 1200 can include a stop mechanism, such as a deflection limit stop mechanism. As shown in FIG. 12, the deflection limit stop mechanism can include a curved stop mechanism 1234 with substantially the same shape as the transpalatal element 1204 of the shell 1202. The curved stop mechanism 1234 can be located at the apex of the transpalatal element 1204 and on the side of the transpalatal element 1204 facing the palate of the patient. The curved stop mechanism 1234 can be of the same material as the transpalatal element 1204, or of a different material.


Prior to expansion of the appliance 1200 (e.g., as shown in FIG. 12), the transpalatal element 1204 does not lie next to (e.g., adjacent to) the curved stop mechanism 1234. During expansion of the appliance 1200, the transpalatal element 1204 can gradually become adjacent to the curved stop mechanism 1234. That is, the curved stop mechanism 1234 can gradually provide mechanical force on the transpalatal element 1204 that is equal to and opposite of the force provided by the transpalatal element 1204 as the transpalatal element 1204 gradually becomes adjacent to the curved stop mechanism 1234. The mechanical force from the curved stop mechanism 1234 increases as the transpalatal element 1204 of the shell 1202 expands. In other words, the curved stop mechanism 1234 gradually stops expansion of the transpalatal element 1204 at the predefined expansion length, preventing the appliance 1200 from over expanding the space between the molars on each side of the patient's jaw and/or the palate of the patient, where the predefined expansion length can be based on a stage of a treatment plan.


Each of the stop mechanisms can be used in different stages of a treatment plan. For example, a sliding stop mechanism may be used in a first stage of a treatment plan, and a tension stop mechanism may be used in a second stage of the treatment plan. In other examples, different combinations of stop mechanisms (e.g., sliding stop mechanisms, tension stop mechanisms, and/or deflection limit stop mechanisms) may be used in different stages of a treatment plan.



FIGS. 13A, 13B, 13C, 13D, and 13E illustrate examples of removable arch adjustment appliances according to a number of embodiments of the present disclosure. FIG. 13A illustrates a removable arch adjustment appliance including a regulating structure for a plurality of tooth engagement structures according to a number of embodiments of the present disclosure. As illustrated in FIG. 13A, the removable arch adjustment appliance 1300 does not have a shell with a plurality of cavities for the placement of teeth therein, but rather has a transpalatal element 1304, a first plurality of tooth engagement structures 1336-1 shaped to mate with molars of a patient along a first side of a dental arch of a patient, and a second plurality of tooth engagement structures 1336-2 shaped to mate with molars of a patient along a second side of the dental arch. Each of the individual tooth engagement structures is shaped to mate with a respective molar of the patient. As illustrated in FIG. 13A, each of the first plurality of tooth engagement structures 1336-1 and the second plurality of tooth engagement structures 1336-2 (referred to collectively as tooth engagement structures 1336) may extend along a portion of a side surface of a respective tooth of a patient. See FIGS. 13B-13C for contrasting examples of tooth engagement structures 1336.


The transpalatal element 1304 of the removable arch adjustment appliance 1300 can be configured to apply an expansion force via the tooth engagement structures 1336. The force can be applied outwardly from the transpalatal element 1304 in opposite directions via the first plurality of tooth engagement structures 1336-1 and via the second plurality of tooth engagement structures 1336-2 to expand a dental arch. The transpalatal element 1304 can expand across a surface of the mouth of the patient when the removable arch adjustment appliance 1300 is worn by the patient.


The transpalatal element 1304 can be shaped to span at least a portion of the surface of a patient's palate. In some embodiments, the transpalatal element 1304 can follow contours of a surface of the mouth of the patient when the removable arch adjustment appliance 1300 is worn by the patient. For example, the transpalatal element 1304 can be shaped to substantially follow the contours of the palate of the patient. This can be accomplished, for example, by scanning a mold of the surface of the palate of the patient or scanning the surface of the palate directly and then forming the surface of transpalatal element 1304 to substantially match the surface of the palate. The surfaces may not be identical, as the transpalatal element 1304 may be designed to be wider than the dental arch and therefore is not an identical copy of the scan data. As such, the surfaces may substantially match, but may not be identical.


The transpalatal element 1304 can be designed to expand a dental arch by applying an expansion force via the tooth engagement structures 1336. For example, such expansion can include moving the teeth of the patient to a wider position within the jaw, by expanding the palate of the patient, or a combination of the two. As indicated, some embodiments discussed herein may also expand the palate to a degree, but the dental expansion may be more gradual than some previous approaches (e.g., on the order of 0.5 mm per month as opposed to 0.5 mm per day). For instance, the width of the transpalatal element 1304 can be wider than the actual width of the dental arch in order to define the desired width of the dental arch. A width of a dental arch can be from molar to molar, from premolar to premolar, from canine to canine, or from any tooth on the left side to any tooth on the right side. For example, the width of the dental arch can include a distance between teeth of the left posterior side of the patient's dentition and teeth of the right posterior side of the patient's dentition. As an example, the transpalatal element 1304 can be 0.25 millimeters wider than the width of the dental arch. By the transpalatal element 1304 being wider than the width of the dental arch, it can apply force outwardly to the dental arch when worn by the patient.


The transpalatal element 1304 can have a width specific to a stage of a treatment plan. The transpalatal element 1304 can be designed to expand a dental arch to that specified width, which may be less than the full width to which the dental arch is to be expanded. The dental arch expansion can be incrementally accomplished by expanding the dental arch a little at a time over the use of several differently designed arch adjustment appliances according to the treatment plan. Or the dental arch may be over-expanded to compensate for incomplete biological response to the desired outcome, where the actual width of the dental arch is less than the width programmed or built into the stage(s) of the treatment plan which can provide a constant transverse expansion force to achieve slow palatal expansion.


The removable arch adjustment appliance 1300 can be flexible allowing it to be compressed enough such that the transpalatal element 1304 will fit within the dental arch and then begin to apply force via the tooth engagement structures 1336 once the compression is relaxed. For example, the patient can squeeze the removable arch adjustment appliance 1300 during insertion and then release the removable arch adjustment appliance 1300 after insertion, allowing force to be applied via the tooth engagement structures 1336.


The contours of the transpalatal element 1304 may be shaped in anticipation of a stretching of the palate during the expansion in order to better accommodate the seating of the removable arch adjustment appliance 1300 in the patient's mouth. The shape of the removable arch adjustment appliance 1300 can be designed to include an expected stretching of the patient's palate during dental expansion and/or a movement of the teeth. Such shaping can be achieved through treatment planning, as described herein, that accounts for expansion of the dental arch and/or movement of the teeth of the patient.


One side of the transpalatal element 1304 can be adjacent to and/or in contact with a tongue of the patient. The other side of the transpalatal element 1304 can be adjacent to and/or in contact with a surface of the patient's mouth (e.g., the palate of the patient's mouth). Using the scan data, the transpalatal element 1304 may be designed to contact the palate (e.g., if more support is desired) or it may be designed not to contact the palate (e.g., for patient comfort).


Design and fabrication of the removable arch adjustment appliance 1300 for some embodiments that include a transpalatal element 1304 that does not contact the palate can include raising the palatal contours in a vertical direction in a virtual or physical model of the palate so that any appliance which is formed over the physical model is slightly raised in comparison to the actual contours of the palate. In other words, a slight gap between the actual palate and the transpalatal element 1304 can be designed to be present. This gap allows the transpalatal element 1304 to apply force via the tooth engagement structures while not necessarily requiring an exact fit of the transpalatal element 1304 to the contours of the palate. Such a slight offset in the vertical dimension can reduce any disruption in speech, swallowing, or feel due to changes in tongue position that may otherwise result from wearing the removable arch adjustment appliance 1300. Raising the vertical dimension of the transpalatal element 1304 has the benefit of not needing perfect modeling of any non-linear stretching that might take place in the palate. This can greatly reduce the risk of uncomfortable pressure spots and sores caused by the removable arch adjustment appliance 1300. Having to relieve pressure spots in the appliance can be very time consuming for the doctor, and if the appliance is thin to begin with, such adjustments can lead to weakened areas in the appliance.


The removable arch adjustment appliance 1300 can include a regulating structure 1338. In FIG. 13A, the removable arch adjustment appliance 1300 includes a regulating structure on only one side of the removable arch adjustment appliance 1300. The regulating structure 1338 is illustrated generically in FIGS. 13A-13E and specifically in FIGS. 14-19. The discussion of the regulating structure 1338 with respect to FIGS. 13A-13E applies to each of the embodiments illustrated and described with respect to FIGS. 13A-19. The discussion of the regulating structures in FIGS. 14-19 may be specific to those individual embodiments.



FIG. 13B illustrates a removable arch adjustment appliance including regulating structures for a plurality of tooth engagement structures according to a number of embodiments of the present disclosure. The removable arch adjustment appliance 1300 can include a first regulating structure 1338-1 and a second regulating structure 1338-2 (referred to collectively as regulating structures 1338). In contrast to FIG. 13A, the removable arch adjustment appliance 1300 in FIG. 13B includes more than one regulating structure 1338. Although the remainder of the figures illustrate appliances with more than one regulating structure 1338, embodiments are not so limited as the removable arch adjustment appliance 1300 can include only one regulating structure 1338 in any embodiment.


The first regulating structure 1338-1 connected between the transpalatal element 1304 and the first plurality of tooth engagement structures 1336-1 is configured to balance and direct the expansion force from the transpalatal element 1304 to the first plurality of tooth engagement structures 1336-1. The second regulating structure 1338-2 connected between the transpalatal element 1304 and the second plurality of tooth engagement structures 1336-2 is configured to balance and direct the expansion force from the transpalatal element 1304 to the first plurality of tooth engagement structures 1336-2. The tooth engagement structures 1336 can contact at least one of a surface of a tooth or a surface of the patient's gingiva and impart a force thereto. The force imparted to the teeth or gingiva can originate from the transpalatal element 1304 and be balanced and directed to the tooth engagement structures 1336 via the regulating structures 1338. The first plurality of tooth engagement structures 1336-1 can be collectively connected to the first regulating structure 1338-1 and the second plurality of tooth engagement structures 1336-2 can be collectively connected to the second regulating structure 1338-2.


As noted above, applying an expansion force to more than one tooth on each side of the dental arch can result in uneven movement of the teeth, which may yield an undesired dental arch shape during the dental arch expansion process. For example, the roots of the teeth that are to be moved during the expansion process may begin to shift under different amounts of pressure (e.g., some teeth may be more strongly rooted than others). The regulating structures 1338 can balance and direct the expansion force so that the teeth move more evenly and the dental arch expansion process maintains a proper or desired shape of the dental arch. Such a balanced and directed application of the force generated by the transpalatal element 1304 can help prevent different teeth from moving differently in the first place. Furthermore, even if one tooth starts to move before the other teeth to which the expansion force is being applied, a regulating structure 1338 can balance the portion of the expansion force that is being generated by the transpalatal element 1304 for one side of the dental arch such that it is applied more evenly to the teeth.


In some embodiments, the tooth engagement structures 1336, the regulating structures 1338, and the transpalatal element 1304 of the removable arch adjustment appliance 1300 can comprise a unitary body. In this manner, a removable arch adjustment appliance 1300 can be formed that has two or more distinct material properties, but is unitary in nature (e.g., forms a single body that can be used by the patient even though it is formed of two or more materials). A material property can be a chemical property such as that of a composition or mixture or a physical property, such as a weight, elasticity, strength, etc. In various embodiments, the tooth engagement structures 1336, the regulating structures 1338, and the transpalatal element 1304 of the removable arch adjustment appliance 1300 can be fabricated from one material. In some embodiments, the removable arch adjustment appliance 1300 can be fabricated from multiple materials or can be manufactured in parts wherein the parts are made from different materials and are attached together to create the removable arch adjustment appliance 1300. Portions of the removable arch adjustment appliance 1300 may not be visible to people when they see the removable arch adjustment appliance 1300 in the patient's mouth and as such the material does not have to be clear, and this therefore allows for more options with regard to the choice of material that can be utilized.


In some embodiments, the transpalatal element 1304 can be formed of a first material and from a second material that is a different than the first material in at least one physical property. For example, the first material may be a polyurethane material and the second material may also be a polyurethane material with the same chemical formula, but of different hardness or rigidity due to greater crosslinking. Or, the first material can be of one chemical composition (e.g., polyurethane), and the second material of an entirely different chemical composition (e.g., polyvinyl chloride). In some embodiments, the second material is more resilient than the first material. This can be beneficial in embodiments, for example, where there is an initial need for a more rigid transpalatal element 1304 and then a more resilient transpalatal element 1304 later in treatment, among other situations where such an embodiment may be utilized.


In some embodiments, the second material can include, for instance, a more rigid material than the first material designed to provide greater resistance and/or force in a transverse direction against the posterior teeth (e.g., molars and bicuspids) of the dental arch. In various embodiments, this second material can be designed to impart force to the molars and/or other teeth on the jaw of the patient in order to either help preserve or change the transverse dimensions of the dental arch.


Rather than providing a strong force, such as 10 to 50 N for a short period of a few days to a few weeks, embodiments of the present disclosure can provide a lesser force, such as 3 to 9 N via the transpalatal element 1304, for a longer period, such as a month to six months. This force can be used, for example, to move palatal plates, move teeth outward, and/or maintain the teeth and/or jaw in a particular orientation while musculature and bone are adjusting to the orientation and to prevent movement of the teeth or jaw back toward their initial orientation. For example, a challenge of such an appliance is the need to retain the expansion while the bone is filling into the suture, long after the active expansion has taken place. The active expansion process may be completed within 2 or 3 weeks' time, but the retention period can last around 6 months while waiting for the gap between the maxillary halves to fill in with new bony tissue.


In some embodiments, a plurality of removable arch adjustment appliances 1300 can be worn by a patient successively to achieve gradual expansion (or constriction) of the dental arch. For instance, each of a plurality of arch adjustment appliances can include an incrementally wider width to expand the dental arch in incremental distances. In some such embodiments, since this dental arch expansion technique can be accomplished concurrently with other orthodontic treatments, the dental arch expansion can be accomplished over a series of removable arch adjustment appliances 1300 that will be utilized, for example, over a period of less than six months, thereby making any pain and/or discomfort of the patient more consistent and less arbitrary without prolonging the overall time for orthodontic treatment.


A physical model of the patient's oral anatomy can be created from a virtual model of the patient's oral anatomy. The patient's oral anatomy can include, for example, a number of teeth and interconnecting tissue, such as gingiva and/or the palate. The virtual model can be created from data obtained from scanning the patient's oral anatomy directly or from scanning a mold (e.g., a plaster mold) of the patient's oral anatomy. The virtual model can be modified to create a treatment plan that can identify the patient, define various stages of the treatment plan and corresponding variations of the virtual model specific to each stage.


In some embodiments, the physical model can be manufactured by using a Computer-aided Design (CAD) virtual model file in a rapid prototyping process, such as, for example, a Computer-aided manufacturing (CAM) milling, stereolithography, 3D printing, fused deposition modeling (FDM), selective laser sintering (SLS), and/or photolithography process. Advantages of such techniques can include, for example, that multiple materials can be used in a single build, various cross sectional thickness's can be designed and built for rigidity, and easy fabrication of a complex geometry of the oral anatomy. The virtual model can be hollowed out or “shelled” before it is sent for manufacturing to save on material cost if printed, for example.


In some embodiments, the removable arch adjustment appliance 1300, or a portion thereof, can be formed using a thermoforming and/or vacuum forming process. For example, one or more sheets of polymeric material can be thermoformed and/or vacuum formed over the physical model. A sheet may be heated and multiple sheets may be heated to different temperatures. In some examples, the sheets may be layered. A sheet can have varying thicknesses (beyond natural variations in thickness during the shaping process as it conforms to the mold shape) in some portions to provide increased or reduced strength or other physical material properties across the removable arch adjustment appliance 1300. The removable arch adjustment appliance 1300 and/or parts thereof may be transparent, semi-transparent, or opaque in such a way as to emulate a natural tooth shade.


In some embodiments, the removable arch adjustment appliance 1300, or a portion thereof, can be formed by a rapid prototyping process, such as, for example, by a Computer-aided manufacturing (CAM) milling, stereolithography, 3D printing, fused deposition modeling (FDM), selective laser sintering (SLS), and/or photolithography. Advantages of such techniques can include, for example, that multiple materials can be used in a single build, various cross sectional thickness's can be designed and built for rigidity, and easy fabrication of a complex organic geometry.



FIG. 13C illustrates a removable arch adjustment appliance including regulating structures for a plurality of tooth engagement structures according to a number of embodiments of the present disclosure. The removable arch adjustment appliance 1300 illustrated and described with respect to FIG. 13C is analogous to the removable arch adjustment appliance 1300 illustrated and described with respect to FIG. 13B, except that the tooth engagement structures 1336 are slightly different. In the embodiment illustrated in FIG. 13C, the first plurality of tooth engagement structures 1336-1 are shaped to mate with the molars of the patient along the first side of the dental arch by extending substantially around the side surfaces of the molars. Likewise, the second plurality of tooth engagement structures 1336-2 are shaped to mate with the molars of the patient along the second side of the dental arch by extending substantially around the side surfaces of the molars. For example, the tooth engagement structures 1336 can extend around the entire side surfaces of the molars to surround the molars. Such embodiments may provide a more secure fit for the removable arch adjustment appliance 1300 in the mouth of the patient, may be able to impart more force, and may be able to control application of that force in one or more directions with respect to a particular tooth. This may, in some instances, allow the position or orientation of a tooth to be adjusted while the removable arch adjustment appliance 1300 is expanding the palate of the patient.



FIG. 13D illustrates a removable arch adjustment appliance including regulating structures for a plurality of tooth engagement structures according to a number of embodiments of the present disclosure. The removable arch adjustment appliance 1300 illustrated and described with respect to FIG. 13D is analogous to the removable arch adjustment appliance 1300 illustrated and described with respect to FIG. 13B, except that the tooth engagement structures 1336 are slightly different. In the embodiment illustrated in FIG. 13D, the first plurality of tooth engagement structures 1336-1 comprise cavities that are shaped to mate with the molars of the patient along the first side of the dental arch. Each of the cavities can be shaped to receive a respective molar and to mate with side surfaces and an occlusal surface of the molar. Such embodiments may provide a more secure fit for the removable arch adjustment appliance 1300 in the mouth of the patient, may be able to impart more force, and may be able to control application of that force in one or more directions with respect to a particular tooth. This may, in some instances, allow the position or orientation of a tooth to be adjusted while the removable arch adjustment appliance 1300 is expanding the palate of the patient.


In some embodiments, the removable arch adjustment appliance 1300 can be overlaid over an existing appliance used to adjust tooth positioning and/or orientation. For example, in an embodiment such as the one illustrated in FIG. 13D, the tooth engagement structures 1336 (cavities) can be sized to fit over cavities of an aligner appliance used for aligning one or more teeth or a retainer appliance used to maintain the position of one or more teeth. The aligner appliance and/or the removable arch adjustment appliance 1300 may have features thereon to lock the two appliances together or they may be affixed together by other means (e.g., frictionally and/or via adhesives, etc.).



FIG. 13E illustrates a removable arch adjustment appliance including cavities and regulating structures for a plurality of tooth engagement structures according to a number of embodiments of the present disclosure. The removable arch adjustment appliance 1300 illustrated and described with respect to FIG. 13E is analogous to the removable arch adjustment appliance 1300 illustrated and described with respect to FIG. 13D, except that the removable arch adjustment appliance 1300 further comprises a shell including a plurality of cavities 1303 shaped to receive other teeth of the patient (e.g., premolars, canines, incisors). The plurality of cavities 1303, the first plurality of tooth engagement structures 1336-1, and the second plurality of tooth engagement structures 1336-2, which are also cavities in this embodiment, form an arch of the removable arch adjustment appliance 1300 that corresponds to the dental arch. In this embodiment, the tooth engagement structures 1336 are part of the shell along with the plurality of cavities.


The shell can be formed of a material having resilient properties that generally conforms to the other teeth of the patient, but is slightly out of alignment with a current tooth configuration of the patient to provide force to change the current tooth configuration. The shell may be designed to fit over a number of, or in many instances all, teeth present in the jaw. The shell can include an interior surface (e.g., adjacent to a surface of the teeth place therein) and an exterior surface. The interior surface is configured to receive and a apply forces to the teeth therein to reposition a number of teeth of the patient, for example. Force can also be applied outwardly from the transpalatal element 1304 in opposite directions via the tooth engagement structures 1336 as balanced and directed by the regulating structures 1338 to expand a dental arch. In some embodiments, the removable arch adjustment appliance 1300 can be used for repositioning the number of teeth of the patient concurrently with expansion of the dental arch.


The simultaneous treatment of misalignment of a patient's dental arch in conjunction with teeth alignment issues (e.g., rotation, tipping, etc.) can, for example, potentially eliminate a second phase of what would otherwise be a two phase treatment protocol, make the second phase less complex or a little more comfortable for the patient, or shorten treatment times when compared to current linear two-phase treatment protocols that first treat the misalignment of a patient's dental arch followed by treatment of misalignment of the patient's teeth. The transpalatal element 1304 can, in accordance with a number of embodiments, avoid and/or not interfere with engagement of the shell with the teeth therein and thereby allow for correction of various tooth misalignment issues during the dental arch expansion process so that both dental arch expansion and alignment correction occurs in tandem rather than as separate phases.


In some embodiments of the present disclosure, a particular removable arch adjustment appliance 1300 can be specific to a stage of a treatment plan. For instance, the treatment plan can call for a series of removable arch adjustment appliance 1300 designed to incrementally implement the treatment plan. Each of the series of removable arch adjustment appliance 1300 can be specific to a stage of the incremental treatment plan, for instance. The series can be used for treating misalignment of teeth of a patient and/or misalignment of one or more dental arches. In some such embodiments, one dental arch can be expanded while the other dental arch is not expanded or both dental arches can be expanded simultaneously. Or one dental arch can be expanded while the other one is contracted.


A system of removable arch adjustment appliances 1300 can include a shell having a plurality of cavities 1303 shaped to receive teeth of a patient, a transpalatal element 1304 configured to apply an expansion force via the shell in a transverse direction, and a regulating structure 1338 connected between the transpalatal element 1304 and the shell and configured to balance and direct the expansion force from the transpalatal element 1304 to the shell according to a particular stage of a treatment plan.


The transpalatal element 1304 can have a width specific to a particular stage of a treatment plan. For example, a system can include a plurality of removable arch adjustment appliances 1300 designed to incrementally implement the treatment plan. The transpalatal element 1304 of a first removable arch adjustment appliance 1300 can have a width specific to a first stage of the treatment plan and the transpalatal element 1304 of a second removable arch adjustment appliance 1300 can have a width specific to a second stage of the treatment plan. For example, the second removable arch adjustment appliance 1300 can be designed to provide force to move at least one of the teeth and to apply the expansion force via the shell concurrently. The regulating structure 1338 of the second removable arch adjustment appliance 1300 can be a same type or a different type of regulating structure 1338 as that of the first removable arch adjustment appliance 1300. FIGS. 14-19 illustrate some specific examples of different types of regulating structures 1338.


In some embodiments, a removable arch adjustment appliance 1300 can be formed by thermoforming. For example, a removable shell can be formed over a set of molded teeth. The removable shell can include a plurality of cavities 103 formed therein, as well as the tooth engagement structures 1336. The regulating structures 1338 and the transpalatal element 1304 can be formed of the same material as the removable shell or different materials. The regulating structures 1338 and the transpalatal element 1304 can be connected to the removable shell to form the removable arch adjustment appliance 1300.


The connection can be achieved by thermoforming the removable shell over the set of molded teeth with at least a portion of the regulating structures 1338 placed within the set of molded teeth (e.g., encapsulated). The connection can be achieved via direct fabrication of the regulating structures 1338 and the transpalatal element 1304 from a virtual model, then by fusing the components together (e.g., ultrasonic welding). The connection can be achieved by adhering the regulating structures 1338 and the transpalatal element 1304 using an agent (e.g., a binding material) subsequent to forming the regulating structures 1338, the transpalatal element 1304, and the removable shell. In some embodiments, the regulating structures 1338 can be thermoformed with the material removable shell and later have portions of the material removed to provide the functionality of the regulating structures (e.g., as in the embodiment illustrated in FIGS. 18A-18B).



FIGS. 14-19 illustrate arch adjustment appliances that are analogous to the removable arch adjustment appliances 1300 illustrated in FIGS. 13A-13E, except that specific examples of the regulating structures are illustrated. For ease of illustration and explanation, the appliances illustrated in FIGS. 14-18 are shown including tooth engagement structures analogous to those illustrated in FIG. 13B. However, embodiments are not so limited, as the embodiments of FIGS. 14-19 can include tooth engagement structures analogous to those illustrated in FIGS. 13C-13D. Likewise, the embodiments of FIGS. 14-19 can include a shell analogous to that illustrated and described with respect to FIG. 13E.



FIG. 14 illustrates an arch adjustment appliance including a regulating structure comprising a ball joint according to a number of embodiments of the present disclosure. As illustrated in FIG. 14, the removable arch adjustment appliance 1400 includes a transpalatal element 1404, a first plurality of tooth engagement structures 1436-1, a second plurality of tooth engagement structures 1436-2, a first regulating structure 1438-1, and a second regulating structure 1438-2. In the embodiment of FIG. 14, the regulating structures 1438 comprise ball joints 1440.


The regulating structures 1438 can balance and direct the expansion force so that the teeth move more evenly and the dental arch expansion process maintains a proper or desired shape of the dental arch. The ball joints 1440 add three degrees of freedom (rotation) for the regulating structures 1438 versus a solid plane between the transpalatal element 1404 and the tooth engagement structures 1436. This allows rolling, pitching, and yawing of the tooth engagement structures 1436 relative to the transpalatal element 1404 to apply force more evenly to the patient's teeth.



FIG. 15 illustrates an arch adjustment appliance including a regulating structure comprising a universal joint according to a number of embodiments of the present disclosure. As illustrated in FIG. 15, the removable arch adjustment appliance 1500 includes a transpalatal element 1504, a first plurality of tooth engagement structures 1536-1, a second plurality of tooth engagement structures 1536-2, a first regulating structure 1538-1, and a second regulating structure 1538-2. In the embodiment of FIG. 15, the regulating structures 1538 comprise universal joints 1542.


The regulating structures 1538 can balance and direct the expansion force so that the teeth move more evenly and the dental arch expansion process maintains a proper or desired shape of the dental arch. The universal joints 1542 add three degrees of freedom (rotation) for the regulating structures 1538 versus a solid plane between the transpalatal element 1504 and the tooth engagement structures 1536. This allows rolling, pitching, and yawing of the tooth engagement structures 1536 relative to the transpalatal element 1504 to apply force more evenly to the patient's teeth.



FIG. 16 illustrates an arch adjustment appliance including a regulating structure comprising an arm according to a number of embodiments of the present disclosure. As illustrated in FIG. 16, the removable arch adjustment appliance 1600 includes a transpalatal element 1604, a first plurality of tooth engagement structures 1636-1, a second plurality of tooth engagement structures 1636-2, a first regulating structure 1638-1, and a second regulating structure 1638-2. In the embodiment of FIG. 16, the regulating structures 1638 each comprise an arm 1644. The arms 1644 can be pinned to the toot engagement structures 1636 and fixed to the transpalatal element 1604.


The regulating structures 1638 can balance and direct the expansion force so that the teeth move more evenly and the dental arch expansion process maintains a proper or desired shape of the dental arch. The arms 1644 add one degree of freedom (rotation) for the regulating structures 1638 versus a solid plane between the transpalatal element 1604 and the tooth engagement structures 1636. This allows for rotation of the tooth engagement structures 1636 relative to the transpalatal element 1604 to apply force more evenly to the patient's teeth.



FIG. 17 illustrates an arch adjustment appliance including a regulating structure comprising a mesh of arms according to a number of embodiments of the present disclosure. As illustrated in FIG. 17, the removable arch adjustment appliance 1700 includes a transpalatal element 1704, a first plurality of tooth engagement structures 1736-1, a second plurality of tooth engagement structures 1736-2, a first regulating structure 1736-1, and a second regulating structure 1736-2. In the embodiment of FIG. 17, the regulating structures 1736 comprise meshes of arms 1746. The meshes of arms 1746 can have pinned connections between the arms.


The regulating structures 1736 can balance and direct the expansion force so that the teeth move more evenly and the dental arch expansion process maintains a proper or desired shape of the dental arch. The meshes of arms 1746 add two degrees of freedom (one translation and one rotation) for the regulating structures 1736 versus a solid plane between the transpalatal element 1704 and the tooth engagement structures 1736. This allows for rotation and translation of the tooth engagement structures 1736 relative to the transpalatal element 1704 to apply force more evenly to the patient's teeth.



FIG. 18A illustrates an arch adjustment appliance including a regulating structure comprising a horizontal accordion spring according to a number of embodiments of the present disclosure. FIG. 18B illustrates a removable arch adjustment appliance including a regulating structure comprising a vertical accordion spring according to a number of embodiments of the present disclosure. As illustrated in FIGS. 18A-18B, the removable arch adjustment appliance 1800 includes a transpalatal element 1804, a first plurality of tooth engagement structures 1836-1, a second plurality of tooth engagement structures 1836-2, a first regulating structure 1838-1, and a second regulating structure 1838-2. In the embodiment of FIG. 18A, the regulating structures 1838 comprise a portion of the removable arch adjustment appliance 1800 with areas of material removed therefrom yielding a shape and functionality of a horizontal accordion spring 1848. In the embodiment of FIG. 18B, the regulating structures 1838 comprise a portion of the removable arch adjustment appliance 1800 with areas of material removed therefrom yielding a shape and functionality of a vertical accordion spring 1850.


The regulating structures 1838 can balance and direct the expansion force so that the teeth move more evenly and the dental arch expansion process maintains a proper or desired shape of the dental arch. The horizontal accordion springs 1848 or the vertical accordion springs 1850 add two degrees of freedom (one translation and one rotation) for the regulating structures 1838 versus a solid plane between the transpalatal element 1804 and the tooth engagement structures 1836. This allows for rotation and translation of the tooth engagement structures 1836 relative to the transpalatal element 1804 to apply force more evenly to the patient's teeth.



FIG. 19 illustrates a removable arch adjustment appliance including a regulating structure comprising a coupling spring according to a number of embodiments of the present disclosure. As illustrated in FIG. 19, the removable arch adjustment appliance 1900 includes a transpalatal element 1904, a first plurality of tooth engagement structures 1936-1, a second plurality of tooth engagement structures 1936-2, a first regulating structure 1938-1, and a second regulating structure 1938-2. In the embodiment of FIG. 19, the regulating structures 1938 comprise coupling springs 1952.


The regulating structures 1938 can balance and direct the expansion force so that the teeth move more evenly and the dental arch expansion process maintains a proper or desired shape of the dental arch. The transpalatal arch element 1904 can terminate in a first shaft proximal to the first regulating structure 1938-1. The first plurality of tooth engagement structures 1936-1 can terminate in a second shaft proximal to the first regulating structure 1938-1. The coupling spring 1952 can dampen misalignment between the first shaft and the second shaft.



FIG. 20 illustrates a removable arch adjustment appliance including regulating structures for individual tooth engagement structures according to a number of embodiments of the present disclosure. The removable arch adjustment appliance 2000 can include a first plurality of tooth engagement structures 2036-1 shaped to mate with molars of a patient along a first side of a dental arch. The removable arch adjustment appliance 2000 can include a second plurality of tooth engagement structures 2036-2 shaped to mate with molars of the patient along a second side of the dental arch. The tooth engagement structures 2036 are analogous to the tooth engagement structures 1336 illustrated and described with respect to FIGS. 13A-13D. Although illustrated as being analogous to those in FIGS. 13A-13B, the tooth engagement structures of FIGS. 13C-13D can alternatively be a part of the removable arch adjustment appliance 2000 in FIG. 20. Likewise, although not specifically illustrated, the appliance 2000 can include a shell analogous to that illustrated and described with respect to FIG. 13E.


The removable arch adjustment appliance 2000 includes a transpalatal element 2004 configured to apply an expansion force via the first plurality of tooth engagement structures 2036-1 and to the second plurality of tooth engagement structures 2036-2. The transpalatal element 2004 is analogous to the transpalatal element illustrated and described with respect to FIGS. 13A-13E.


The removable arch adjustment appliance 2000 can include a first plurality of regulating structures 2054-1 each connected between the transpalatal element 2004 and a respective one of the first plurality of tooth engagement structures 2036-1. Each of the first plurality of tooth engagement structures 2054-1 is configured to balance and direct the expansion force from the transpalatal element 2004 via a respective one of the first plurality of tooth engagement structures 2036-1 to a respective tooth of the patient.


The removable arch adjustment appliance 2000 can include a second plurality of regulating structures 2054-2 each connected between the transpalatal element 2004 and a respective one of the second plurality of tooth engagement structures 2036-2. Each of the second plurality of tooth engagement structures 2054-2 is configured to balance and direct the expansion force from the transpalatal element 2004 via a respective one of the second plurality of tooth engagement structures 2036-2 to a respective tooth of the patient.


The first plurality of regulating structures 2054-1 are individually connected to the first plurality of tooth engagement structures 2036-1 and the second plurality of regulating structures 2054-2 are individually connected to the second plurality of tooth engagement structures 2036-2. Thus, the removable arch adjustment appliance 2000 is analogous to the removable arch adjustment appliance 1300 illustrated and described with respect to FIGS. 13A-13E, except that the first plurality of regulating structures 2054-1 and the second plurality of regulating structures 2054-2 (referred to collectively as regulating structures 2054) are individually connected to respective tooth engagement structures 2036 in the removable arch adjustment appliance 2000 as opposed to being collectively connected to the tooth engagement structures 1336 on either side of the dental arch in the removable arch adjustment appliance 1300. Individually connecting the regulating structures 2054 to the tooth engagement structures 2036 can allow for more individualized application of the force from the transpalatal element 2004 via the tooth engagement structures 2036 to the teeth of the patient versus having a single regulating structure for the tooth engagement structures 2036.


The regulating structures 2054 are illustrated generically in FIG. 20 and specifically in FIGS. 21-25. The discussion of the regulating structures 2054 with respect to FIG. 20 applies to each of the embodiments illustrated and described with respect to FIGS. 21-25. The discussion of the regulating structures in FIGS. 21-25 may be specific to those individual embodiments.



FIGS. 21-25 illustrate arch adjustment appliances that are analogous to the removable arch adjustment appliance 2000 illustrated and described with respect to FIG. 20, except that specific examples of the regulating structures are illustrated. For ease of illustration and explanation, the appliances illustrated in FIGS. 21-25 are shown including tooth engagement structures analogous to those illustrated in FIGS. 13A-13B. However, embodiments are not so limited, as the embodiments of FIGS. 21-25 can include tooth engagement structures analogous to those illustrated in FIGS. 13C-13D. Likewise, the embodiments of FIGS. 21-25 can include a shell analogous to that illustrated and described with respect to FIG. 13E.



FIG. 21 illustrates a removable arch adjustment appliance including regulating structures for individual tooth engagement structures comprising ball joint s according to a number of embodiments of the present disclosure. As illustrated in FIG. 21, the removable arch adjustment appliance 2100 includes a transpalatal element 2104, a first plurality of tooth engagement structures 2136-1, a second plurality of tooth engagement structures 2136-2, a first plurality of regulating structures 2154-1, and a second plurality of regulating structures 2154-2. In the embodiment of FIG. 21, the regulating structures 2154 each comprise a ball joint 2153.


The regulating structures 2154 can balance and direct the expansion force so that the teeth move more evenly and the dental arch expansion process maintains a proper or desired shape of the dental arch. The ball joints 2153 add three degrees of freedom (rotation) for the regulating structures 2154 versus a solid plane between the transpalatal element 2104 and the tooth engagement structures 2136. This allows rolling, pitching, and yawing of the tooth engagement structures 2136 relative to the transpalatal element 2104 to apply force more evenly to the patient's teeth.



FIG. 22 illustrates a removable arch adjustment appliance including regulating structures for individual tooth engagement structures comprising universal joints according to a number of embodiments of the present disclosure. As illustrated in FIG. 22, the removable arch adjustment appliance 2200 includes a transpalatal element 2204, a first plurality of tooth engagement structures 2236-1, a second plurality of tooth engagement structures 2236-2, a first plurality of regulating structures 2254-1, and a second plurality of regulating structures 2254-2. In the embodiment of FIG. 22, the regulating structures 2254 each comprise a universal joint 2242.


The regulating structures 2254 can balance and direct the expansion force so that the teeth move more evenly and the dental arch expansion process maintains a proper or desired shape of the dental arch. The universal joints 2242 add three degrees of freedom (rotation) for the regulating structures 2254 versus a solid plane between the transpalatal element 2204 and the tooth engagement structures 2236. This allows rolling, pitching, and yawing of the tooth engagement structures 2236 relative to the transpalatal element 2204 to apply force more evenly to the patient's teeth.



FIG. 23 illustrates a removable arch adjustment appliance including regulating structures for individual tooth engagement structures comprising arms according to a number of embodiments of the present disclosure. As illustrated in FIG. 23, the removable arch adjustment appliance 2300 includes a transpalatal element 2304, a first plurality of tooth engagement structures 2336-1, a second plurality of tooth engagement structures 2336-2, a first plurality of regulating structures 2354-1, and a second plurality of regulating structures 2354-2. In the embodiment of FIG. 23, the regulating structures 2354 each comprise an arm 2344. Each of the arms 2344 can be pinned to a respective one of the tooth engagement structures 2336 and fixed to the transpalatal element 2304.


The regulating structures 2354 can balance and direct the expansion force so that the teeth move more evenly and the dental arch expansion process maintains a proper or desired shape of the dental arch. The arms 2344 add one degree of freedom (rotation) for the regulating structures 2354 versus a solid plane between the transpalatal element 2304 and the tooth engagement structures 2336. This allows for rotation of the tooth engagement structures 2336 relative to the transpalatal element 2304 to apply force more evenly to the patient's teeth.



FIG. 24A illustrates a removable arch adjustment appliance including regulating structures for individual tooth engagement structures comprising horizontal accordion springs according to a number of embodiments of the present disclosure. FIG. 24B illustrates a removable arch adjustment appliance including regulating structures for individual tooth engagement structures comprising vertical accordion springs according to a number of embodiments of the present disclosure. As illustrated in FIGS. 24A-24B, the removable arch adjustment appliance 2400 includes a transpalatal element 2404, a first plurality of tooth engagement structures 2436-1, a second plurality of tooth engagement structures 2436-2, a first plurality of regulating structures 2454-1, and a second plurality of regulating structures 2454-2. In the embodiment of FIG. 24A, each of the regulating structures 2454 comprise a portion of the removable arch adjustment appliance 2400 with areas of material removed therefrom yielding a shape and functionality of horizontal accordion springs 2448. In the embodiment of FIG. 24B, each of the regulating structures 2454 comprise a portion of the removable arch adjustment appliance 2400 with areas of material removed therefrom yielding a shape and functionality of horizontal accordion springs 2450.


The regulating structures 2454 can balance and direct the expansion force so that the teeth move more evenly and the dental arch expansion process maintains a proper or desired shape of the dental arch. The horizontal accordion springs 2448 or vertical accordion springs 2450 add two degrees of freedom (one translation and one rotation) for the regulating structures 2454 versus a solid plane between the transpalatal element 2404 and the tooth engagement structures 2436. This allows for rotation and translation of the tooth engagement structures 2436 relative to the transpalatal element 2404 to apply force more evenly to the patient's teeth.



FIG. 25 illustrates a removable arch adjustment appliance including regulating structures for individual tooth engagement structures comprising coupling springs according to a number of embodiments of the present disclosure. As illustrated in FIG. 25, the removable arch adjustment appliance 2500 includes a transpalatal element 2504, a first plurality of tooth engagement structures 2536-1, a second plurality of tooth engagement structures 2536-2, a first plurality of regulating structures 2554-1, and a second plurality of regulating structures 2554-2. In the embodiment of FIG. 25, the regulating structures 2554 each comprise a coupling spring 2552.


The regulating structures 2554 can balance and direct the expansion force so that the teeth move more evenly and the dental arch expansion process maintains a proper or desired shape of the dental arch. The transpalatal arch element 2504 can terminate in a first shaft proximal to the first plurality of regulating structures 2554-1. The first plurality of tooth engagement structures 2536-1 can terminate in a second shaft proximal to the first plurality of regulating structure 2554-1. The coupling spring 2552 can dampen misalignment between the first shaft and the second shaft.



FIG. 26 illustrates an example computing device readable medium 2656 having executable instructions that can be executed by a processor to perform a method according to one or more embodiments of the present disclosure. For instance, a computing device 2658 can have a number of components coupled thereto. The computing device 2658 can include a processor 2660 and a memory 2662. The memory 2662 can have various types of information including data 2664 and executable instructions 2666, as discussed herein.


The processor 2660 can execute instructions 2666 that are stored on an internal or external non-transitory computer device readable medium (CRM). A non-transitory CRM, as used herein, can include volatile and/or non-volatile memory. Volatile memory can include memory that depends upon power to store information, such as various types of dynamic random access memory (DRAM), among others. Non-volatile memory can include memory that does not depend upon power to store information.


Memory 2662 and/or the processor 2660 may be located on the computing device 2658 or off the computing device 2658, in some embodiments. As such, as illustrated in the embodiment of FIG. 26, the computing device 2658 can include a network interface 2668. Such an interface 2668 can allow for processing on another networked computing device, can be used to obtain information about the patient, and/or can be used to obtain data and/or executable instructions for use with various embodiments provided herein.


As illustrated in the embodiment of FIG. 26, the computing device 2658 can include one or more input and/or output interfaces 2670. Such interfaces 2670 can be used to connect the computing device 2658 with one or more input and/or output devices 2672, 2674, 2676, 2678, 2680.


For example, in the embodiment illustrated in FIG. 26, the input and/or output devices can include a scanning device 2672, a camera dock 2674, an input device 2676 (e.g., a mouse, a keyboard, etc.), a display device 2678 (e.g., a monitor), a printer 2680, and/or one or more other input devices. The input/output interfaces 2670 can receive executable instructions and/or data, storable in the data storage device (e.g., memory), representing a virtual dental model of a patient's dentition.


In some embodiments, the scanning device 2672 can be configured to scan one or more physical dental models of a patient's dentition. In one or more embodiments, the scanning device 2672 can be configured to scan the patient's dentition and/or dental appliance directly. The scanning device 2672 can be configured to input data into the computing device 2658.


In some embodiments, the camera dock 2674 can receive an input from an imaging device (e.g., a 2D or 3D imaging device) such as a virtual camera, a printed photograph scanner, and/or other suitable imaging device. The input from the imaging device can, for example, be stored in memory 2662.


The processor 2660 can execute instructions to provide a visual indication of a treatment plan, a dental appliance, and/or a portion of a transpalatal element or stop mechanism on the display 2678. The computing device 2658 can be configured to allow a treatment professional or other user to input treatment goals. Input received can be sent to the processor 2660 as data 2664 and/or can be stored in memory 2662.


Such connectivity can allow for the input and/or output of data and/or instructions among other types of information. Some embodiments may be distributed among various computing devices within one or more networks, and such systems as illustrated in FIG. 26 can be beneficial in allowing for the capture, calculation, and/or analysis of information discussed herein.


The processor 2660, in association with the data storage device (e.g., memory 2662), can be associated with the data 2664. The processor 2660, in association with the memory 2662, can store and/or utilize data 2664 and/or execute instructions 2666 for designing a virtual appliance, including a transpalatal element, a regulating structure, a stop mechanism for a specific stage of a treatment plan and/or a series of virtual appliances for a treatment plan. Such data can include the virtual dental model and/or virtual model of a surface of a patient's mouth (e.g., palate and/or floor of the mouth).


The processor 2660 coupled to the memory 2662 can cause the computing device 2658 to determine a treatment plan to expand at least one of a space between the molars on each side of a patient's jaw or the palate of the patient. The treatment plan can include expanding at least one of the space between the molars on each side of a patient's jaw or palate of the patient by a first incremental distance (e.g., first incremental expansion length) using a first virtual appliance, wherein the first virtual appliance includes a shell having a plurality of cavities formed therein and shaped to receive teeth of the patient. The shell of the first virtual appliance can include an elastic transpalatal element with a predetermined force characteristic that spans the space between the molars on each side of the patient's jaw and provides force to expand at least one of the spaces between the molars on each side of the patient's jaw or the palate of the patient. The transpalatal element of the first virtual appliance can include a number of force control elements and/or regulating structures to control the force provided by the transpalatal element. The first virtual appliance can, in addition or alternatively, include a stop mechanism located on the shell to provide a mechanical force on the transpalatal element of the shell of the first appliance to reduce the force provided by the transpalatal element that expands the at least one of the space between the molars on each side of the patient's jaw or the palate of the patient. The transpalatal element of the shell of the first appliance, the force control elements, and/or the stop mechanism can be specific to a stage of a treatment plan and can be shaped based on physical data of the space between the molars on each side of the patient's jaw or the palate of the patient.


The treatment plan can include expanding at least one of the space between the molars on each side of a patient's jaw or palate of the patient by a second incremental distance (e.g., second incremental expansion length) using a second virtual appliance, wherein the second virtual appliance includes a shell having a plurality of cavities formed therein and shaped to receive teeth of the patient. The shell of the second virtual appliance can include an elastic transpalatal element with a predetermined force characteristic that spans the space between the molars on each side of the patient's jaw and provides force to expand at least one of the spaces between the molars on each side of the patient's jaw or the palate of the patient. The transpalatal element of the second virtual appliance can include a number of force control elements and/or regulating structures to control the force provided by the transpalatal element. The second virtual appliance can, in addition or alternatively, include a stop mechanism located on the shell to provide a mechanical force on the transpalatal element of the shell of the second appliance to reduce the force provided by the transpalatal element that expands the at least one of the space between the molars on each side of the patient's jaw or the palate of the patient. The transpalatal element of the shell of the second appliance, the force control elements, and/or the stop mechanism can be specific to a stage of a treatment plan and can be shaped based on physical data of the space between the molars on each side of the patient's jaw or the palate of the patient.


The virtual model of the dental appliance can, in some embodiments, be used to create a physical dental appliance. For example, dental appliance structural data can be stored in memory and used by an appliance manufacturing device to fabricate an appliance based upon the dental structural data. For instance, the memory can contain executable instructions to operate a thermoforming or direct fabrication device to form a dental appliance using those techniques.


In some embodiments, in order to direct force from the transpalatal element to other portions of the shell, a more rigid material may be applied between the transpalatal element and other portions of the shell (e.g., a rigid material is applied over and/or under the shell material or encapsulated within layers of shell material). Additionally, the rigid material used to form the transpalatal element can be reinforced by a reinforcement material (e.g., a metallic sheet or wire material).


As noted herein in some embodiments, the virtual appliance or data therefrom can be used to fabricate a physical appliance to be used in a patient's mouth. For example, in some embodiments, a method can include forming a physical transpalatal element based on the virtual transpalatal element.


It should be noted that when first and second are used to describe items in this disclosure, it is only meant that one item comes before the next and does not indicate that the items be the first and second items in a series of multiple items. For example, a first item may be the third item in a series of items and the second item may be the sixth item in a series and the terms first and second are used to indicate that the first comes before the second in the series even though there may be more items in the series.


Although specific embodiments have been illustrated and described herein, those of ordinary skill in the art will appreciate that any arrangement calculated to achieve the same techniques can be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments of the disclosure.


It is to be understood that the above description has been made in an illustrative fashion, and not a restrictive one. Combination of the above embodiments, and other embodiments not specifically described herein will be apparent to those of skill in the art upon reviewing the above description. The scope of the various embodiments of the disclosure includes any other applications in which the above structures and methods are used. Therefore, the scope of various embodiments of the disclosure should be determined with reference to the appended claims, along with the full range of equivalents to which such claims are entitled.


In the foregoing Detailed Description, various features are grouped together in example embodiments illustrated in the figures for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the embodiments of the disclosure require more features than are expressly recited in each claim.


Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment.

Claims
  • 1. A removable arch adjustment appliance comprising: a removable shell having a plurality of cavities shaped to receive a corresponding plurality of teeth of a patient's dental arch, the removable shell including an interior surface configured to apply forces to the teeth therein to reposition misaligned teeth within the patient's dental arch according to a stage of a treatment plan; anda transpalatal element comprising a sheet of material coupled to the removable shell, the sheet of material shaped to follow the contours of the patient's palate and arranged to span the patient's palate, wherein the sheet of material includes folds extending a length of multiple of the plurality of cavities in an anterior to posterior direction, wherein the folds have folding radiuses that are configured to provide a non-linear force that expands a space between posterior teeth on each side of the patient's jaw or palate.
  • 2. The removable arch adjustment appliance of claim 1, wherein the folds are configured to activate in different steps of expansion of the transpalatal element.
  • 3. The removable arch adjustment appliance of claim 2, wherein: the folds include four folds, wherein the four folds are located substantially near an apex of the transpalatal element.
  • 4. The removable arch adjustment appliance of claim 2, wherein: the folds include two folds, wherein the two folds are located substantially near the removable shell, and wherein the two folds are located substantially between an apex of the transpalatal element and the plurality of cavities of the shell.
  • 5. The removable arch adjustment appliance of claim 1, wherein the forces applied to the teeth by the shell are configured to rotate, tip, or rotate and tip the misaligned teeth within the patient's dental arch.
  • 6. The removable arch adjustment appliance of claim 1, wherein the folds extend in a direction toward the tongue of the patient when the appliance is placed in the patient's oral cavity during use.
  • 7. The removable arch adjustment appliance of claim 1, wherein the folds extend in a direction towards the palate of the patient when the appliance is placed in the patient's oral cavity during use.
  • 8. The removable arch adjustment appliance of claim 1, wherein the transpalatal element continuously spans the removable shell in a lingual direction from a first side of the removable shell to a second side of the removable shell.
  • 9. The removable arch adjustment appliance of claim 1, wherein the removable shell is made of the same material as the sheet of material of the transpalatal element.
  • 10. The removable arch adjustment appliance of claim 1, wherein the sheet of material is a polymeric material.
  • 11. The removable arch adjustment appliance of claim 1, wherein the removable shell, the sheet of material, and the folds form a unitary body.
  • 12. The removable arch adjustment appliance of claim 1, wherein the removable shell and the sheet of material include different materials.
  • 13. The removable arch adjustment appliance of claim 1, wherein different folds the folds have one or more of the following characteristics: different thicknesses, different lengths, and different bending curvatures.
  • 14. The removable arch adjustment appliance of claim 1, wherein the non-linear force decreases as the space between the posterior teeth on each side of the patient's jaw or palate increases.
  • 15. The removable arch adjustment appliance of claim 1, wherein the transpalatal element is configured to provide a gap between the patient's palate and at least a portion of the transpalatal element.
PCT Information
Filing Document Filing Date Country Kind
PCT/US2017/064340 12/1/2017 WO 00
Publishing Document Publishing Date Country Kind
WO2018/102770 6/7/2018 WO A
US Referenced Citations (1105)
Number Name Date Kind
2098867 Baxter Nov 1937 A
2171695 Harper Sep 1939 A
2194790 Gluck Mar 1940 A
2467432 Kesling Apr 1949 A
2531222 Kesling Nov 1950 A
2818065 Freed Dec 1957 A
3089487 Enicks et al. May 1963 A
3092907 Traiger Jun 1963 A
3162948 Gerber Dec 1964 A
3178820 Kesling Apr 1965 A
3211143 Grossberg Oct 1965 A
3277892 Tepper Oct 1966 A
3379193 Monsghan Apr 1968 A
3385291 Martin May 1968 A
3407500 Kesling Oct 1968 A
3478742 Bohlmann Nov 1969 A
3496936 Gores Feb 1970 A
3533163 Kirschenbaum Oct 1970 A
3556093 Quick Jan 1971 A
3600808 Reeve Aug 1971 A
3660900 Andrews May 1972 A
3683502 Wallshein Aug 1972 A
3724075 Kesling Apr 1973 A
3738005 Cohen et al. Jun 1973 A
3797115 Silverman et al. Mar 1974 A
3860803 Levine Jan 1975 A
3885310 Northcutt May 1975 A
3916526 Schudy Nov 1975 A
3922786 Lavin Dec 1975 A
3949477 Cohen et al. Apr 1976 A
3950851 Bergersen Apr 1976 A
3955282 McNall May 1976 A
3983628 Acevedo Oct 1976 A
4014096 Dellinger Mar 1977 A
4055895 Huge Nov 1977 A
4094068 Schinhammer Jun 1978 A
4117596 Wallshein Oct 1978 A
4129946 Kennedy Dec 1978 A
4134208 Pearlman Jan 1979 A
4139944 Bergersen Feb 1979 A
4179811 Hinz Dec 1979 A
4179812 White Dec 1979 A
4183141 Dellinger Jan 1980 A
4195046 Kesling Mar 1980 A
4204325 Kaelble May 1980 A
4253828 Coles et al. Mar 1981 A
4255138 Frohn Mar 1981 A
4299568 Crowley Nov 1981 A
4324546 Heitlinger et al. Apr 1982 A
4324547 Arcan et al. Apr 1982 A
4348178 Kurz Sep 1982 A
4368040 Weissman Jan 1983 A
4419992 Chorbajian Dec 1983 A
4433956 Witzig Feb 1984 A
4433960 Garito et al. Feb 1984 A
4439154 Mayclin Mar 1984 A
4449928 von Weissenfluh May 1984 A
4478580 Barrut Oct 1984 A
4500294 Lewis Feb 1985 A
4505672 Kurz Mar 1985 A
4505673 Yoshii Mar 1985 A
4519386 Sullivan May 1985 A
4523908 Drisaldi et al. Jun 1985 A
4526540 Dellinger Jul 1985 A
4553936 Wang Nov 1985 A
4575330 Hull Mar 1986 A
4575805 Moermann et al. Mar 1986 A
4591341 Andrews May 1986 A
4592725 Goshgarian Jun 1986 A
4608021 Barrett Aug 1986 A
4609349 Cain Sep 1986 A
4611288 Duret et al. Sep 1986 A
4629424 Lauks et al. Dec 1986 A
4638145 Sakuma et al. Jan 1987 A
4656860 Orthuber et al. Apr 1987 A
4663720 Duret et al. May 1987 A
4664626 Kesling May 1987 A
4665621 Ackerman et al. May 1987 A
4676747 Kesling Jun 1987 A
4755139 Abbatte et al. Jul 1988 A
4757824 Chaumet Jul 1988 A
4763791 Halverson et al. Aug 1988 A
4764111 Knierim Aug 1988 A
4790752 Cheslak Dec 1988 A
4793803 Martz Dec 1988 A
4798534 Breads Jan 1989 A
4830612 Bergersen May 1989 A
4836778 Baumrind et al. Jun 1989 A
4837732 Brandestini et al. Jun 1989 A
4850864 Diamond Jul 1989 A
4850865 Napolitano Jul 1989 A
4856991 Breads et al. Aug 1989 A
4877398 Kesling Oct 1989 A
4880380 Martz Nov 1989 A
4886451 Cetlin Dec 1989 A
4889238 Batchelor Dec 1989 A
4890608 Steer Jan 1990 A
4901737 Toone Feb 1990 A
4932866 Guis Jun 1990 A
4935635 O'Harra Jun 1990 A
4936862 Walker et al. Jun 1990 A
4937928 van der Zel Jul 1990 A
4941826 Loran et al. Jul 1990 A
4952928 Carroll et al. Aug 1990 A
4964770 Steinbichler et al. Oct 1990 A
4971557 Martin Nov 1990 A
4975052 Spencer et al. Dec 1990 A
4976614 Tepper Dec 1990 A
4983334 Adell Jan 1991 A
4997369 Shafir Mar 1991 A
5002485 Aagesen Mar 1991 A
5011405 Lemchen Apr 1991 A
5015183 Fenick May 1991 A
5017133 Miura May 1991 A
5018969 Andreiko et al. May 1991 A
5027281 Rekow et al. Jun 1991 A
5035613 Breads et al. Jul 1991 A
5037295 Bergersen Aug 1991 A
5055039 Abbatte et al. Oct 1991 A
5061839 Matsuno et al. Oct 1991 A
5083919 Quachi Jan 1992 A
5094614 Wildman Mar 1992 A
5100316 Wildman Mar 1992 A
5103838 Yousif Apr 1992 A
5114339 Guis May 1992 A
5121333 Riley et al. Jun 1992 A
5123425 Shannon et al. Jun 1992 A
5128870 Erdman et al. Jul 1992 A
5130064 Smalley et al. Jul 1992 A
5131843 Hilgers et al. Jul 1992 A
5131844 Marinaccio et al. Jul 1992 A
5139419 Andreiko et al. Aug 1992 A
5145364 Martz et al. Sep 1992 A
5176517 Truax Jan 1993 A
5194003 Garay et al. Mar 1993 A
5204670 Stinton Apr 1993 A
5222499 Allen et al. Jun 1993 A
5224049 Mushabac Jun 1993 A
5238404 Andreiko Aug 1993 A
5242304 Truax et al. Sep 1993 A
5245592 Kuemmel et al. Sep 1993 A
5273429 Rekow et al. Dec 1993 A
5278756 Lemchen et al. Jan 1994 A
5306144 Hibst et al. Apr 1994 A
5312247 Sachdeva May 1994 A
5314335 Fung May 1994 A
5324186 Bakanowski Jun 1994 A
5328362 Watson et al. Jul 1994 A
5335657 Terry et al. Aug 1994 A
5338198 Wu et al. Aug 1994 A
5340309 Robertson Aug 1994 A
5342202 Deshayes Aug 1994 A
5344315 Hanson Sep 1994 A
5368478 Andreiko et al. Nov 1994 A
5372502 Massen et al. Dec 1994 A
D354355 Hilgers Jan 1995 S
5382164 Stern Jan 1995 A
5395238 Andreiko et al. Mar 1995 A
5415542 Kesling May 1995 A
5431562 Andreiko et al. Jul 1995 A
5440326 Quinn Aug 1995 A
5440496 Andersson et al. Aug 1995 A
5447432 Andreiko et al. Sep 1995 A
5449703 Mitra et al. Sep 1995 A
5452219 Dehoff et al. Sep 1995 A
5454717 Andreiko et al. Oct 1995 A
5456600 Andreiko et al. Oct 1995 A
5474448 Andreiko et al. Dec 1995 A
5487662 Kipke et al. Jan 1996 A
RE35169 Lemchen et al. Mar 1996 E
5499633 Fenton Mar 1996 A
5522725 Jordan et al. Jun 1996 A
5528735 Strasnick et al. Jun 1996 A
5533895 Andreiko et al. Jul 1996 A
5540732 Testerman Jul 1996 A
5542842 Andreiko et al. Aug 1996 A
5543780 McAuley et al. Aug 1996 A
5549476 Stern Aug 1996 A
5562448 Mushabac Oct 1996 A
5570182 Nathel et al. Oct 1996 A
5575655 Darnell Nov 1996 A
5583977 Seidl Dec 1996 A
5587912 Andersson et al. Dec 1996 A
5588098 Chen et al. Dec 1996 A
5605459 Kuroda et al. Feb 1997 A
5607305 Andersson et al. Mar 1997 A
5614075 Andre Mar 1997 A
5621648 Crump Apr 1997 A
5626537 Danyo et al. May 1997 A
5636736 Jacobs et al. Jun 1997 A
5645420 Bergersen Jul 1997 A
5645421 Slootsky Jul 1997 A
5651671 Seay et al. Jul 1997 A
5655653 Chester Aug 1997 A
5659420 Wakai et al. Aug 1997 A
5683243 Andreiko et al. Nov 1997 A
5683244 Truax Nov 1997 A
5691539 Pfeiffer Nov 1997 A
5692894 Schwartz et al. Dec 1997 A
5711665 Adam et al. Jan 1998 A
5711666 Hanson Jan 1998 A
5725376 Poirier Mar 1998 A
5725378 Wang Mar 1998 A
5730151 Summer et al. Mar 1998 A
5737084 Ishihara Apr 1998 A
5740267 Echerer et al. Apr 1998 A
5742700 Yoon et al. Apr 1998 A
5769631 Williams Jun 1998 A
5774425 Ivanov et al. Jun 1998 A
5790242 Stern et al. Aug 1998 A
5799100 Clarke et al. Aug 1998 A
5800162 Shimodaira et al. Sep 1998 A
5800174 Andersson Sep 1998 A
5813854 Nikodem Sep 1998 A
5816800 Brehm et al. Oct 1998 A
5818587 Devaraj et al. Oct 1998 A
5823778 Schmitt et al. Oct 1998 A
5848115 Little et al. Dec 1998 A
5857853 van Nifterick et al. Jan 1999 A
5866058 Batchelder et al. Feb 1999 A
5876199 Bergersen Mar 1999 A
5879158 Doyle et al. Mar 1999 A
5880961 Crump Mar 1999 A
5880962 Andersson et al. Mar 1999 A
5882192 Bergersen Mar 1999 A
5886702 Migdal et al. Mar 1999 A
5890896 Padial Apr 1999 A
5904479 Staples May 1999 A
5934288 Avila et al. Aug 1999 A
5957686 Anthony Sep 1999 A
5964587 Sato Oct 1999 A
5971754 Sondhi et al. Oct 1999 A
5975893 Chishti et al. Nov 1999 A
5975906 Knutson Nov 1999 A
5980246 Ramsay et al. Nov 1999 A
5989023 Summer et al. Nov 1999 A
6002706 Staver et al. Dec 1999 A
6018713 Coli et al. Jan 2000 A
6044309 Honda Mar 2000 A
6049743 Baba Apr 2000 A
6053731 Heckenberger Apr 2000 A
6068482 Snow May 2000 A
6070140 Tran May 2000 A
6099303 Gibbs et al. Aug 2000 A
6099314 Kopelman et al. Aug 2000 A
6102701 Engeron Aug 2000 A
6120287 Chen Sep 2000 A
6123544 Cleary Sep 2000 A
6152731 Jordan et al. Nov 2000 A
6154676 Levine Nov 2000 A
6183248 Chishti et al. Feb 2001 B1
6183249 Brennan et al. Feb 2001 B1
6186780 Hibst et al. Feb 2001 B1
6190165 Andreiko et al. Feb 2001 B1
6200133 Kittelsen Mar 2001 B1
6201880 Elbaum et al. Mar 2001 B1
6210162 Chishti et al. Apr 2001 B1
6212435 Lattner et al. Apr 2001 B1
6213767 Dixon et al. Apr 2001 B1
6217334 Hultgren Apr 2001 B1
6227850 Chishti et al. May 2001 B1
6230142 Benigno et al. May 2001 B1
6231338 de Josselin de Jong et al. May 2001 B1
6239705 Glen May 2001 B1
6243601 Wist Jun 2001 B1
6263234 Engelhardt et al. Jul 2001 B1
6283761 Joao Sep 2001 B1
6288138 Yamamoto Sep 2001 B1
6299438 Sahagian et al. Oct 2001 B1
6299440 Phan Oct 2001 B1
6309215 Phan et al. Oct 2001 B1
6313432 Nagata et al. Nov 2001 B1
6315553 Sachdeva et al. Nov 2001 B1
6328745 Ascherman Dec 2001 B1
6332774 Chikami Dec 2001 B1
6334073 Levine Dec 2001 B1
6350120 Sachdeva et al. Feb 2002 B1
6364660 Durbin et al. Apr 2002 B1
6382975 Poirier May 2002 B1
6386878 Pavlovskaia et al. May 2002 B1
6394802 Hahn May 2002 B1
6402510 Williams Jun 2002 B1
6402707 Ernst Jun 2002 B1
6405729 Thornton Jun 2002 B1
6406292 Chishti et al. Jun 2002 B1
6409504 Jones et al. Jun 2002 B1
6413086 Womack Jul 2002 B1
6414264 von Falkenhausen Jul 2002 B1
6414708 Carmeli et al. Jul 2002 B1
6435871 Inman Aug 2002 B1
6436058 Krahner et al. Aug 2002 B1
6441354 Seghatol et al. Aug 2002 B1
6450167 David et al. Sep 2002 B1
6450807 Chishti et al. Sep 2002 B1
6462301 Scott et al. Oct 2002 B1
6470338 Rizzo et al. Oct 2002 B1
6471511 Chishti et al. Oct 2002 B1
6471512 Sachdeva et al. Oct 2002 B1
6471970 Fanara et al. Oct 2002 B1
6482002 Jordan et al. Nov 2002 B2
6482298 Bhatnagar Nov 2002 B1
6496814 Busche Dec 2002 B1
6496816 Thiesson et al. Dec 2002 B1
6499026 Rivette et al. Dec 2002 B1
6499995 Schwartz Dec 2002 B1
6507832 Evans et al. Jan 2003 B1
6514074 Chishti et al. Feb 2003 B1
6515593 Stark et al. Feb 2003 B1
6516288 Bagne Feb 2003 B2
6516805 Thornton Feb 2003 B1
6520772 Williams Feb 2003 B2
6523009 Wilkins Feb 2003 B1
6523019 Borthwick Feb 2003 B1
6524101 Phan et al. Feb 2003 B1
6526168 Ornes et al. Feb 2003 B1
6526982 Strong Mar 2003 B1
6529891 Heckerman Mar 2003 B1
6529902 Kanevsky et al. Mar 2003 B1
6532455 Martin et al. Mar 2003 B1
6535865 Skaaning et al. Mar 2003 B1
6540512 Sachdeva et al. Apr 2003 B1
6540707 Stark et al. Apr 2003 B1
6542593 Bowman Amuah Apr 2003 B1
6542881 Meidan et al. Apr 2003 B1
6542894 Lee et al. Apr 2003 B1
6542903 Hull et al. Apr 2003 B2
6551243 Bocionek et al. Apr 2003 B2
6554837 Hauri et al. Apr 2003 B1
6556659 Bowman Amuah Apr 2003 B1
6556977 Lapointe et al. Apr 2003 B1
6560592 Reid et al. May 2003 B1
6564209 Dempski et al. May 2003 B1
6567814 Bankier et al. May 2003 B1
6571227 Agrafiotis et al. May 2003 B1
6572372 Phan Jun 2003 B1
6573998 Cohen Sabban Jun 2003 B2
6574561 Alexander et al. Jun 2003 B2
6578003 Camarda et al. Jun 2003 B1
6580948 Haupert et al. Jun 2003 B2
6587529 Staszewski et al. Jul 2003 B1
6587828 Sachdeva Jul 2003 B1
6592368 Weathers Jul 2003 B1
6594539 Geng Jul 2003 B1
6595342 Maritzen et al. Jul 2003 B1
6597934 de Jong et al. Jul 2003 B1
6598043 Baclawski Jul 2003 B1
6599250 Webb et al. Jul 2003 B2
6602070 Miller et al. Aug 2003 B2
6604527 Palmisano Aug 2003 B1
6606744 Mikurak Aug 2003 B1
6607382 Kuo et al. Aug 2003 B1
6611783 Kelly et al. Aug 2003 B2
6611867 Bowman Amuah Aug 2003 B1
6613001 Dworkin Sep 2003 B1
6615158 Wenzel et al. Sep 2003 B2
6616447 Rizoiu et al. Sep 2003 B1
6616579 Reinbold et al. Sep 2003 B1
6621491 Baumrind et al. Sep 2003 B1
6623698 Kuo Sep 2003 B2
6624752 Klitsgaard et al. Sep 2003 B2
6626180 Kittelsen Sep 2003 B1
6626569 Reinstein et al. Sep 2003 B2
6626669 Zegarelli Sep 2003 B2
6633772 Ford et al. Oct 2003 B2
6640128 Vilsmeier et al. Oct 2003 B2
6643646 Su et al. Nov 2003 B2
6647383 August et al. Nov 2003 B1
6650944 Goedeke et al. Nov 2003 B2
6671818 Mikurak Dec 2003 B1
6675104 Paulse et al. Jan 2004 B2
6678669 Lapointe et al. Jan 2004 B2
6682346 Chishti et al. Jan 2004 B2
6685469 Chishti et al. Feb 2004 B2
6689055 Mullen et al. Feb 2004 B1
6690761 Lang et al. Feb 2004 B2
6691110 Wang et al. Feb 2004 B2
6694234 Lockwood et al. Feb 2004 B2
6697164 Babayoff et al. Feb 2004 B1
6697793 McGreevy Feb 2004 B2
6702765 Robbins et al. Mar 2004 B2
6702804 Ritter et al. Mar 2004 B1
6705863 Phan et al. Mar 2004 B2
6729876 Chishti et al. May 2004 B2
6733289 Manemann et al. May 2004 B2
6736638 Sachdeva et al. May 2004 B1
6739869 Taub et al. May 2004 B1
6744932 Rubbert et al. Jun 2004 B1
6749414 Hanson et al. Jun 2004 B1
6769913 Hurson Aug 2004 B2
6772026 Bradbury et al. Aug 2004 B2
6790036 Graham Sep 2004 B2
6802713 Chishti et al. Oct 2004 B1
6814574 Abolfathi et al. Nov 2004 B2
6830450 Knopp et al. Dec 2004 B2
6832912 Mao Dec 2004 B2
6832914 Bonnet et al. Dec 2004 B1
6843370 Tuneberg Jan 2005 B2
6845175 Kopelman et al. Jan 2005 B2
6885464 Pfeiffer et al. Apr 2005 B1
6890285 Rahman et al. May 2005 B2
6951254 Morrison Oct 2005 B2
6976841 Osterwalder Dec 2005 B1
6978268 Thomas et al. Dec 2005 B2
6983752 Garabadian Jan 2006 B2
6984128 Breining et al. Jan 2006 B2
6988893 Haywood Jan 2006 B2
7016952 Mullen et al. Mar 2006 B2
7020963 Cleary et al. Apr 2006 B2
7036514 Heck May 2006 B2
7040896 Pavlovskaia et al. May 2006 B2
7106233 Schroeder et al. Sep 2006 B2
7112065 Kopelman et al. Sep 2006 B2
7121825 Chishti et al. Oct 2006 B2
7134874 Chishti et al. Nov 2006 B2
7137812 Cleary et al. Nov 2006 B2
7138640 Delgado et al. Nov 2006 B1
7140877 Kaza Nov 2006 B2
7142312 Quadling et al. Nov 2006 B2
7155373 Jordan et al. Dec 2006 B2
7156655 Sachdeva et al. Jan 2007 B2
7156661 Choi et al. Jan 2007 B2
7166063 Rahman et al. Jan 2007 B2
7184150 Quadling et al. Feb 2007 B2
7191451 Nakagawa Mar 2007 B2
7192273 McSurdy Mar 2007 B2
7217131 Vuillemot May 2007 B2
7220122 Chishti May 2007 B2
7220124 Taub et al. May 2007 B2
7229282 Andreiko et al. Jun 2007 B2
7234937 Sachdeva et al. Jun 2007 B2
7241142 Abolfathi et al. Jul 2007 B2
7244230 Duggirala et al. Jul 2007 B2
7245753 Squilla et al. Jul 2007 B2
7257136 Mori et al. Aug 2007 B2
7286954 Kopelman et al. Oct 2007 B2
7292759 Boutoussov et al. Nov 2007 B2
7294141 Bergersen Nov 2007 B2
7302842 Biester et al. Dec 2007 B2
7320592 Chishti et al. Jan 2008 B2
7328706 Barach et al. Feb 2008 B2
7329122 Scott Feb 2008 B1
7338327 Sticker et al. Mar 2008 B2
D565509 Fechner et al. Apr 2008 S
7351116 Dold Apr 2008 B2
7354270 Abolfathi et al. Apr 2008 B2
7357637 Liechtung Apr 2008 B2
7435083 Chishti et al. Oct 2008 B2
7450231 Johs et al. Nov 2008 B2
7458810 Bergersen Dec 2008 B2
7460230 Johs et al. Dec 2008 B2
7462076 Walter et al. Dec 2008 B2
7463929 Simmons Dec 2008 B2
7476100 Kuo Jan 2009 B2
7500851 Williams Mar 2009 B2
D594413 Palka et al. Jun 2009 S
7543511 Kimura et al. Jun 2009 B2
7544103 Walter et al. Jun 2009 B2
7553157 Abolfathi et al. Jun 2009 B2
7561273 Stautmeister et al. Jul 2009 B2
7577284 Wong et al. Aug 2009 B2
7596253 Wong et al. Sep 2009 B2
7597594 Stadler et al. Oct 2009 B2
7609875 Liu et al. Oct 2009 B2
D603796 Sticker et al. Nov 2009 S
7616319 Woollam et al. Nov 2009 B1
7626705 Altendorf Dec 2009 B2
7632216 Rahman et al. Dec 2009 B2
7633625 Woollam et al. Dec 2009 B1
7637262 Bailey Dec 2009 B2
7637740 Knopp Dec 2009 B2
7641473 Sporbert et al. Jan 2010 B2
7668355 Wong et al. Feb 2010 B2
7670179 Müller Mar 2010 B2
7695327 Bäuerle et al. Apr 2010 B2
7698068 Babayoff Apr 2010 B2
7711447 Lu et al. May 2010 B2
7724378 Babayoff May 2010 B2
D618619 Walter Jun 2010 S
7728848 Petrov et al. Jun 2010 B2
7731508 Borst Jun 2010 B2
7735217 Borst Jun 2010 B2
7740476 Rubbert et al. Jun 2010 B2
7744369 Imgrund et al. Jun 2010 B2
7746339 Matov et al. Jun 2010 B2
7780460 Walter Aug 2010 B2
7787132 Körner et al. Aug 2010 B2
7791810 Powell Sep 2010 B2
7796243 Choo-Smith et al. Sep 2010 B2
7806687 Minagi et al. Oct 2010 B2
7806727 Dold et al. Oct 2010 B2
7813787 de Josselin de Jong et al. Oct 2010 B2
7824180 Abolfathi et al. Nov 2010 B2
7828601 Pyczak Nov 2010 B2
7841464 Cinader et al. Nov 2010 B2
7845969 Stadler et al. Dec 2010 B2
7854609 Chen et al. Dec 2010 B2
7862336 Kopelman et al. Jan 2011 B2
7869983 Raby et al. Jan 2011 B2
7872760 Ertl Jan 2011 B2
7874836 McSurdy Jan 2011 B2
7874837 Chishti et al. Jan 2011 B2
7874849 Sticker et al. Jan 2011 B2
7878801 Abolfathi et al. Feb 2011 B2
7878805 Moss et al. Feb 2011 B2
7880751 Kuo et al. Feb 2011 B2
7892474 Shkolnik et al. Feb 2011 B2
7904308 Arnone et al. Mar 2011 B2
7907280 Johs et al. Mar 2011 B2
7929151 Liang et al. Apr 2011 B2
7930189 Kuo Apr 2011 B2
7947508 Tricca et al. May 2011 B2
7959308 Freeman et al. Jun 2011 B2
7963766 Cronauer Jun 2011 B2
7970627 Kuo et al. Jun 2011 B2
7985414 Knaack et al. Jul 2011 B2
7986415 Thiel et al. Jul 2011 B2
7987099 Kuo et al. Jul 2011 B2
7991485 Zakim Aug 2011 B2
8017891 Nevin Sep 2011 B2
8026916 Wen Sep 2011 B2
8027709 Arnone et al. Sep 2011 B2
8029277 Imgrund et al. Oct 2011 B2
8038444 Kitching et al. Oct 2011 B2
8045772 Kosuge et al. Oct 2011 B2
8054556 Chen et al. Nov 2011 B2
8070490 Roetzer et al. Dec 2011 B1
8075306 Kitching et al. Dec 2011 B2
8077949 Liang et al. Dec 2011 B2
8083556 Stadler et al. Dec 2011 B2
D652799 Mueller Jan 2012 S
8092215 Stone-Collonge et al. Jan 2012 B2
8095383 Arnone et al. Jan 2012 B2
8099268 Kitching et al. Jan 2012 B2
8099305 Kuo et al. Jan 2012 B2
8108189 Chelnokov et al. Jan 2012 B2
8118592 Tortorici Feb 2012 B2
8126025 Takeda Feb 2012 B2
8136529 Kelly Mar 2012 B2
8144954 Quadling et al. Mar 2012 B2
8152518 Kuo Apr 2012 B2
8160334 Thiel et al. Apr 2012 B2
8172569 Matty et al. May 2012 B2
8197252 Harrison Jun 2012 B1
8201560 Dembro Jun 2012 B2
8215312 Garabadian et al. Jul 2012 B2
8240018 Walter et al. Aug 2012 B2
8275180 Kuo Sep 2012 B2
8279450 Oota et al. Oct 2012 B2
8292617 Brandt et al. Oct 2012 B2
8294657 Kim et al. Oct 2012 B2
8296952 Greenberg Oct 2012 B2
8297286 Smernoff Oct 2012 B2
8306608 Mandells et al. Nov 2012 B2
8314764 Kim et al. Nov 2012 B2
8332015 Ertl Dec 2012 B2
8354588 Sticker et al. Jan 2013 B2
8401826 Cheng et al. Mar 2013 B2
8419428 Lawrence Apr 2013 B2
8433083 Abolfathi et al. Apr 2013 B2
8439672 Matov et al. May 2013 B2
8465280 Sachdeva et al. Jun 2013 B2
8477320 Stock et al. Jul 2013 B2
8488113 Thiel et al. Jul 2013 B2
8517726 Kakavand et al. Aug 2013 B2
8520922 Wang et al. Aug 2013 B2
8520925 Duret et al. Aug 2013 B2
8523565 Matty et al. Sep 2013 B2
8545221 Stone-Collonge et al. Oct 2013 B2
8556625 Lovely Oct 2013 B2
8570530 Liang Oct 2013 B2
8573224 Thornton Nov 2013 B2
8577212 Thiel Nov 2013 B2
8366479 Borst et al. Dec 2013 B2
8601925 Coto Dec 2013 B1
8639477 Chelnokov et al. Jan 2014 B2
8650586 Lee et al. Feb 2014 B2
8675706 Seurin et al. Mar 2014 B2
8723029 Pyczak et al. May 2014 B2
8738394 Kuo May 2014 B2
8743923 Geske et al. Jun 2014 B2
8753114 Vuillemot Jun 2014 B2
8767270 Curry et al. Jul 2014 B2
8768016 Pan et al. Jul 2014 B2
8771149 Rahman et al. Jul 2014 B2
8839476 Adachi Sep 2014 B2
8843381 Kuo et al. Sep 2014 B2
8856053 Mah Oct 2014 B2
8870566 Bergersen Oct 2014 B2
8874452 Kuo Oct 2014 B2
8878905 Fisker et al. Nov 2014 B2
8899976 Chen et al. Dec 2014 B2
8936463 Mason et al. Jan 2015 B2
8944812 Kuo Feb 2015 B2
8948482 Levin Feb 2015 B2
8956058 Rösch Feb 2015 B2
8992216 Karazivan Mar 2015 B2
9004915 Moss et al. Apr 2015 B2
9022792 Sticker et al. May 2015 B2
9039418 Rubbert May 2015 B1
9084535 Girkin et al. Jul 2015 B2
9084657 Matty et al. Jul 2015 B2
9108338 Sirovskiy et al. Aug 2015 B2
9144512 Wagner Sep 2015 B2
9192305 Levin Nov 2015 B2
9204952 Lampalzer Dec 2015 B2
9211166 Kuo et al. Dec 2015 B2
9214014 Levin Dec 2015 B2
9220580 Borovinskih et al. Dec 2015 B2
9241774 Li et al. Jan 2016 B2
9242118 Brawn Jan 2016 B2
9261358 Atiya et al. Feb 2016 B2
9277972 Brandt et al. Mar 2016 B2
9336336 Deichmann et al. May 2016 B2
9351810 Moon May 2016 B2
9375300 Matov et al. Jun 2016 B2
9403238 Culp Aug 2016 B2
9408743 Wagner Aug 2016 B1
9414897 Wu et al. Aug 2016 B2
9433476 Khardekar et al. Sep 2016 B2
9439568 Atiya et al. Sep 2016 B2
9444981 Bellis et al. Sep 2016 B2
9463287 Lorberbaum et al. Oct 2016 B1
9492243 Kuo Nov 2016 B2
9500635 Islam Nov 2016 B2
9506808 Jeon et al. Nov 2016 B2
9510918 Sanchez Dec 2016 B2
9545331 Ingemarsson-Matzen Jan 2017 B2
9566132 Stone-Collonge et al. Feb 2017 B2
9584771 Mandelis et al. Feb 2017 B2
9589329 Levin Mar 2017 B2
9675427 Kopelman Jun 2017 B2
9675430 Verker et al. Jun 2017 B2
9693839 Atiya et al. Jul 2017 B2
9730769 Chen et al. Aug 2017 B2
9744006 Ross Aug 2017 B2
9820829 Kuo Nov 2017 B2
9830688 Levin Nov 2017 B2
9844421 Moss et al. Dec 2017 B2
9848985 Yang et al. Dec 2017 B2
9861451 Davis Jan 2018 B1
9936186 Jesenko et al. Apr 2018 B2
10123706 Elbaz et al. Nov 2018 B2
10123853 Moss et al. Nov 2018 B2
10154889 Chen et al. Dec 2018 B2
10159541 Bindayel Dec 2018 B2
10172693 Brandt et al. Jan 2019 B2
10195690 Culp Feb 2019 B2
10231801 Korytov et al. Mar 2019 B2
10238472 Levin Mar 2019 B2
10248883 Borovinskih et al. Apr 2019 B2
10258432 Webber Apr 2019 B2
10275862 Levin Apr 2019 B2
20010002310 Chishti et al. May 2001 A1
20010032100 Mahmud et al. Oct 2001 A1
20010038705 Rubbert et al. Nov 2001 A1
20010041320 Phan et al. Nov 2001 A1
20020004727 Knaus et al. Jan 2002 A1
20020007284 Schurenberg et al. Jan 2002 A1
20020010568 Rubbert et al. Jan 2002 A1
20020015934 Rubbert et al. Feb 2002 A1
20020025503 Chapoulaud et al. Feb 2002 A1
20020026105 Drazen Feb 2002 A1
20020028417 Chapoulaud et al. Mar 2002 A1
20020035572 Takatori et al. Mar 2002 A1
20020064752 Durbin et al. May 2002 A1
20020064759 Durbin et al. May 2002 A1
20020087551 Hickey et al. Jul 2002 A1
20020107853 Hofmann et al. Aug 2002 A1
20020188478 Breeland et al. Dec 2002 A1
20020192617 Phan Dec 2002 A1
20030000927 Kanaya et al. Jan 2003 A1
20030009252 Pavlovskaia et al. Jan 2003 A1
20030019848 Nicholas et al. Jan 2003 A1
20030021453 Weise et al. Jan 2003 A1
20030035061 Iwaki et al. Feb 2003 A1
20030049581 Deluke Mar 2003 A1
20030057192 Patel Mar 2003 A1
20030059736 Lai et al. Mar 2003 A1
20030060532 Subelka et al. Mar 2003 A1
20030068598 Vallittu et al. Apr 2003 A1
20030095697 Wood et al. May 2003 A1
20030101079 McLaughlin May 2003 A1
20030103060 Anderson et al. Jun 2003 A1
20030120517 Eida et al. Jun 2003 A1
20030139834 Nikolskiy et al. Jul 2003 A1
20030144886 Taira Jul 2003 A1
20030172043 Guyon et al. Sep 2003 A1
20030190575 Hilliard Oct 2003 A1
20030192867 Yamazaki et al. Oct 2003 A1
20030207224 Lotte Nov 2003 A1
20030215764 Kopelman et al. Nov 2003 A1
20030224311 Cronauer Dec 2003 A1
20030224313 Bergersen Dec 2003 A1
20030224314 Bergersen Dec 2003 A1
20040002873 Sachdeva Jan 2004 A1
20040009449 Mah Jan 2004 A1
20040013994 Goldberg et al. Jan 2004 A1
20040013996 Sapian Jan 2004 A1
20040019262 Perelgut Jan 2004 A1
20040029078 Marshall Feb 2004 A1
20040038168 Choi et al. Feb 2004 A1
20040054304 Raby Mar 2004 A1
20040054358 Cox et al. Mar 2004 A1
20040058295 Bergersen Mar 2004 A1
20040068199 Echauz et al. Apr 2004 A1
20040078222 Khan et al. Apr 2004 A1
20040080621 Fisher et al. Apr 2004 A1
20040094165 Cook May 2004 A1
20040107118 Harnsberger et al. Jun 2004 A1
20040133083 Comaniciu et al. Jul 2004 A1
20040152036 Abolfathi Aug 2004 A1
20040158194 Wolff et al. Aug 2004 A1
20040166463 Wen et al. Aug 2004 A1
20040167646 Jelonek et al. Aug 2004 A1
20040170941 Phan et al. Sep 2004 A1
20040193036 Zhou et al. Sep 2004 A1
20040197728 Abolfathi et al. Oct 2004 A1
20040214128 Sachdeva et al. Oct 2004 A1
20040219479 Malin et al. Nov 2004 A1
20040220691 Hofmeister et al. Nov 2004 A1
20040229185 Knopp Nov 2004 A1
20040259049 Kopelman et al. Dec 2004 A1
20050003318 Choi et al. Jan 2005 A1
20050023356 Wiklof et al. Feb 2005 A1
20050031196 Moghaddam et al. Feb 2005 A1
20050037312 Uchida Feb 2005 A1
20050038669 Sachdeva et al. Feb 2005 A1
20050040551 Biegler et al. Feb 2005 A1
20050042569 Plan et al. Feb 2005 A1
20050042577 Kvitrud et al. Feb 2005 A1
20050048433 Hilliard Mar 2005 A1
20050074717 Cleary et al. Apr 2005 A1
20050089822 Geng Apr 2005 A1
20050100333 Kerschbaumer et al. May 2005 A1
20050108052 Omaboe May 2005 A1
20050131738 Morris Jun 2005 A1
20050144150 Ramamurthy et al. Jun 2005 A1
20050171594 Machan et al. Aug 2005 A1
20050171630 Dinauer et al. Aug 2005 A1
20050181333 Karazivan et al. Aug 2005 A1
20050186524 Abolfathi Aug 2005 A1
20050186526 Stewart et al. Aug 2005 A1
20050216314 Secor Sep 2005 A1
20050233276 Kopelman et al. Oct 2005 A1
20050239013 Sachdeva Oct 2005 A1
20050244781 Abels et al. Nov 2005 A1
20050244791 Davis et al. Nov 2005 A1
20050271996 Sporbert et al. Dec 2005 A1
20060056670 Hamadeh Mar 2006 A1
20060057533 McGann Mar 2006 A1
20060063135 Mehl Mar 2006 A1
20060078842 Sachdeva et al. Apr 2006 A1
20060084024 Farrell Apr 2006 A1
20060093982 Wen May 2006 A1
20060098007 Rouet et al. May 2006 A1
20060099545 Lia et al. May 2006 A1
20060099546 Bergersen May 2006 A1
20060110698 Robson May 2006 A1
20060111631 Kelliher et al. May 2006 A1
20060115785 Li et al. Jun 2006 A1
20060137813 Robrecht et al. Jun 2006 A1
20060147872 Andreiko Jul 2006 A1
20060154198 Durbin et al. Jul 2006 A1
20060154207 Kuo Jul 2006 A1
20060173715 Wang Aug 2006 A1
20060183082 Quadling et al. Aug 2006 A1
20060188834 Hilliard Aug 2006 A1
20060188848 Tricca et al. Aug 2006 A1
20060194163 Tricca et al. Aug 2006 A1
20060199153 Liu et al. Sep 2006 A1
20060204078 Orth et al. Sep 2006 A1
20060223022 Solomon Oct 2006 A1
20060223023 Lai et al. Oct 2006 A1
20060223032 Fried et al. Oct 2006 A1
20060223342 Borst et al. Oct 2006 A1
20060234179 Wen et al. Oct 2006 A1
20060257815 De Dominicis Nov 2006 A1
20060275729 Fornoff Dec 2006 A1
20060275731 Wen et al. Dec 2006 A1
20060275736 Wen et al. Dec 2006 A1
20060277075 Salwan Dec 2006 A1
20060290693 Zhou et al. Dec 2006 A1
20060292520 Dillon et al. Dec 2006 A1
20070031775 Andreiko Feb 2007 A1
20070037111 Mailyan Feb 2007 A1
20070037112 Mailyan Feb 2007 A1
20070046865 Umeda et al. Mar 2007 A1
20070053048 Kumar et al. Mar 2007 A1
20070054237 Neuschafer Mar 2007 A1
20070065768 Nadav Mar 2007 A1
20070087300 Willison et al. Apr 2007 A1
20070087302 Reising et al. Apr 2007 A1
20070106138 Beiski et al. May 2007 A1
20070122592 Anderson et al. May 2007 A1
20070128574 Kuo et al. Jun 2007 A1
20070141525 Cinader, Jr. Jun 2007 A1
20070141526 Eisenberg et al. Jun 2007 A1
20070143135 Lindquist et al. Jun 2007 A1
20070168152 Matov et al. Jul 2007 A1
20070172112 Paley et al. Jul 2007 A1
20070172291 Yokoyama Jul 2007 A1
20070178420 Keski-Nisula et al. Aug 2007 A1
20070183633 Hoffmann Aug 2007 A1
20070184402 Boutoussov et al. Aug 2007 A1
20070185732 Hicks et al. Aug 2007 A1
20070192137 Ombrellaro Aug 2007 A1
20070199929 Rippl et al. Aug 2007 A1
20070215582 Roeper et al. Sep 2007 A1
20070218422 Ehrenfeld Sep 2007 A1
20070231765 Phan et al. Oct 2007 A1
20070238065 Sherwood et al. Oct 2007 A1
20070239488 DeRosso Oct 2007 A1
20070263226 Kurtz et al. Nov 2007 A1
20080013727 Uemura Jan 2008 A1
20080020350 Matov et al. Jan 2008 A1
20080045053 Stadler et al. Feb 2008 A1
20080057461 Cheng et al. Mar 2008 A1
20080057467 Gittelson Mar 2008 A1
20080057479 Grenness Mar 2008 A1
20080059238 Park et al. Mar 2008 A1
20080090208 Rubbert Apr 2008 A1
20080094389 Rouet et al. Apr 2008 A1
20080113317 Kemp et al. May 2008 A1
20080115791 Heine May 2008 A1
20080118882 Su May 2008 A1
20080118886 Liang et al. May 2008 A1
20080141534 Hilliard Jun 2008 A1
20080169122 Shiraishi et al. Jul 2008 A1
20080171934 Greenan et al. Jul 2008 A1
20080176448 Muller et al. Jul 2008 A1
20080233530 Cinader Sep 2008 A1
20080242144 Dietz Oct 2008 A1
20080248443 Chishti et al. Oct 2008 A1
20080254402 Hilliard Oct 2008 A1
20080254403 Hilliard Oct 2008 A1
20080268400 Moss et al. Oct 2008 A1
20080306724 Kitching et al. Dec 2008 A1
20090029310 Pumphrey et al. Jan 2009 A1
20090030290 Kozuch et al. Jan 2009 A1
20090030347 Cao Jan 2009 A1
20090040740 Muller et al. Feb 2009 A1
20090061379 Yamamoto et al. Mar 2009 A1
20090061381 Durbin et al. Mar 2009 A1
20090075228 Kumada et al. Mar 2009 A1
20090087050 Gandyra Apr 2009 A1
20090098502 Andreiko Apr 2009 A1
20090099445 Burger Apr 2009 A1
20090103579 Ushimaru et al. Apr 2009 A1
20090105523 Kassayan et al. Apr 2009 A1
20090130620 Yazdi et al. May 2009 A1
20090130635 Tortorici May 2009 A1
20090136890 Kang et al. May 2009 A1
20090136893 Zegarelli May 2009 A1
20090148809 Kuo et al. Jun 2009 A1
20090170050 Marcus Jul 2009 A1
20090181346 Orth Jul 2009 A1
20090191502 Cao Jul 2009 A1
20090210032 Beiski et al. Aug 2009 A1
20090218514 Klunder et al. Sep 2009 A1
20090281433 Saadat et al. Nov 2009 A1
20090286195 Sears et al. Nov 2009 A1
20090298017 Boerjes et al. Dec 2009 A1
20090305540 Stadler et al. Dec 2009 A1
20090316966 Marshall et al. Dec 2009 A1
20090317757 Lemchen Dec 2009 A1
20100015565 Carrillo Gonzalez et al. Jan 2010 A1
20100019170 Hart et al. Jan 2010 A1
20100028825 Lemchen Feb 2010 A1
20100045902 Ikeda et al. Feb 2010 A1
20100047732 Park Feb 2010 A1
20100062394 Jones et al. Mar 2010 A1
20100068676 Mason et al. Mar 2010 A1
20100075268 Duran Von Arx Mar 2010 A1
20100138025 Morton et al. Jun 2010 A1
20100142789 Chang et al. Jun 2010 A1
20100145664 Hultgren et al. Jun 2010 A1
20100145898 Malfliet et al. Jun 2010 A1
20100152599 DuHamel et al. Jun 2010 A1
20100165275 Tsukamoto et al. Jul 2010 A1
20100167225 Kuo Jul 2010 A1
20100179789 Sachdeva et al. Jul 2010 A1
20100193482 Ow et al. Aug 2010 A1
20100196837 Farrell Aug 2010 A1
20100216085 Kopelman Aug 2010 A1
20100217130 Weinlaender Aug 2010 A1
20100231577 Kim et al. Sep 2010 A1
20100268363 Karim et al. Oct 2010 A1
20100268515 Vogt et al. Oct 2010 A1
20100279243 Cinader et al. Nov 2010 A1
20100280798 Pattijn Nov 2010 A1
20100281370 Rohaly et al. Nov 2010 A1
20100303316 Bullis et al. Dec 2010 A1
20100312484 DuHamel et al. Dec 2010 A1
20100327461 Co et al. Dec 2010 A1
20110007920 Abolfathi et al. Jan 2011 A1
20110012901 Kaplanyan Jan 2011 A1
20110027743 Cinader, Jr. Feb 2011 A1
20110045428 Boltunov et al. Feb 2011 A1
20110056350 Gale et al. Mar 2011 A1
20110065060 Teixeira et al. Mar 2011 A1
20110081625 Fuh Apr 2011 A1
20110091832 Kim et al. Apr 2011 A1
20110102549 Takahashi May 2011 A1
20110102566 Zakian et al. May 2011 A1
20110104630 Matov et al. May 2011 A1
20110136072 Li et al. Jun 2011 A1
20110136090 Kazemi Jun 2011 A1
20110143300 Villaalba Jun 2011 A1
20110143673 Landesman et al. Jun 2011 A1
20110159452 Huang Jun 2011 A1
20110164810 Zang et al. Jul 2011 A1
20110207072 Schiemann Aug 2011 A1
20110212420 Vuillemot Sep 2011 A1
20110220623 Beutler Sep 2011 A1
20110235045 Koerner et al. Sep 2011 A1
20110262881 Mauclaire Oct 2011 A1
20110269092 Kuo et al. Nov 2011 A1
20110316994 Lemchen Dec 2011 A1
20120028210 Hegyi et al. Feb 2012 A1
20120029883 Heinz et al. Feb 2012 A1
20120040311 Nilsson Feb 2012 A1
20120064477 Schmitt Mar 2012 A1
20120081786 Mizuyama et al. Apr 2012 A1
20120086681 Kim et al. Apr 2012 A1
20120115107 Adams May 2012 A1
20120129117 McCance May 2012 A1
20120147912 Moench et al. Jun 2012 A1
20120150494 Anderson et al. Jun 2012 A1
20120166213 Arnone et al. Jun 2012 A1
20120172678 Logan et al. Jul 2012 A1
20120281293 Gronenborn et al. Nov 2012 A1
20120295216 Dykes et al. Nov 2012 A1
20120322025 Ozawa et al. Dec 2012 A1
20130029284 Teasdale Jan 2013 A1
20130081272 Johnson et al. Apr 2013 A1
20130089828 Borovinskih et al. Apr 2013 A1
20130095446 Andreiko et al. Apr 2013 A1
20130103176 Kopelman et al. Apr 2013 A1
20130110469 Kopelman May 2013 A1
20130150689 Shaw-Klein Jun 2013 A1
20130163627 Seurin et al. Jun 2013 A1
20130201488 Ishihara Aug 2013 A1
20130204599 Matov et al. Aug 2013 A1
20130209952 Kuo et al. Aug 2013 A1
20130235165 Gharib et al. Sep 2013 A1
20130252195 Popat Sep 2013 A1
20130266326 Joseph et al. Oct 2013 A1
20130278396 Kimmel Oct 2013 A1
20130280671 Brawn et al. Oct 2013 A1
20130286174 Urakabe Oct 2013 A1
20130293824 Yoneyama et al. Nov 2013 A1
20130323664 Parker Dec 2013 A1
20130323671 Dillon et al. Dec 2013 A1
20130323674 Hakomori et al. Dec 2013 A1
20130325431 See et al. Dec 2013 A1
20130337412 Kwon Dec 2013 A1
20140061974 Tyler Mar 2014 A1
20140081091 Abolfathi et al. Mar 2014 A1
20140093160 Porikli et al. Apr 2014 A1
20140100495 Haseley Apr 2014 A1
20140106289 Kozlowski Apr 2014 A1
20140122027 Andreiko et al. May 2014 A1
20140136222 Arnone et al. May 2014 A1
20140142902 Chelnokov et al. May 2014 A1
20140178829 Kim Jun 2014 A1
20140220520 Salamini Aug 2014 A1
20140265034 Dudley Sep 2014 A1
20140272774 Dillon et al. Sep 2014 A1
20140280376 Kuo Sep 2014 A1
20140294273 Jaisson Oct 2014 A1
20140313299 Gebhardt et al. Oct 2014 A1
20140329194 Sachdeva et al. Nov 2014 A1
20140342299 Jung Nov 2014 A1
20140342301 Fleer et al. Nov 2014 A1
20140350354 Stenzler et al. Nov 2014 A1
20140363778 Parker Dec 2014 A1
20150002649 Nowak et al. Jan 2015 A1
20150004553 Li et al. Jan 2015 A1
20150021210 Kesling Jan 2015 A1
20150031940 Floyd Jan 2015 A1
20150079530 Bergersen Mar 2015 A1
20150079531 Heine Mar 2015 A1
20150094564 Tashman et al. Apr 2015 A1
20150097315 DeSimone et al. Apr 2015 A1
20150097316 DeSimone et al. Apr 2015 A1
20150102532 DeSimone et al. Apr 2015 A1
20150132708 Kuo May 2015 A1
20150140502 Brawn et al. May 2015 A1
20150150501 George et al. Jun 2015 A1
20150164335 Van Der Poel et al. Jun 2015 A1
20150173856 Iowe et al. Jun 2015 A1
20150182303 Abraham et al. Jul 2015 A1
20150216626 Ranjbar Aug 2015 A1
20150216716 Anitua Aldecoa Aug 2015 A1
20150230885 Wucher Aug 2015 A1
20150238280 Wu et al. Aug 2015 A1
20150238283 Tanugula et al. Aug 2015 A1
20150306486 Logan et al. Oct 2015 A1
20150320320 Kopelman et al. Nov 2015 A1
20150320532 Matty et al. Nov 2015 A1
20150325044 Lebovitz Nov 2015 A1
20150338209 Knüttel Nov 2015 A1
20150351638 Amato Dec 2015 A1
20150374469 Konno et al. Dec 2015 A1
20160000332 Atiya et al. Jan 2016 A1
20160003610 Lampert et al. Jan 2016 A1
20160022185 Agarwal et al. Jan 2016 A1
20160042509 Andreiko et al. Feb 2016 A1
20160051345 Levin Feb 2016 A1
20160064898 Atiya et al. Mar 2016 A1
20160067013 Morton et al. Mar 2016 A1
20160081768 Kopelman Mar 2016 A1
20160081769 Kimura Mar 2016 A1
20160095668 Kuo et al. Apr 2016 A1
20160100924 Wilson et al. Apr 2016 A1
20160106520 Borovinskih et al. Apr 2016 A1
20160120621 Li et al. May 2016 A1
20160135924 Choi et al. May 2016 A1
20160135925 Mason et al. May 2016 A1
20160163115 Furst Jun 2016 A1
20160217708 Levin et al. Jul 2016 A1
20160220105 Durent Aug 2016 A1
20160220200 Sandholm et al. Aug 2016 A1
20160225151 Cocco et al. Aug 2016 A1
20160228213 Tod et al. Aug 2016 A1
20160242871 Morton et al. Aug 2016 A1
20160246936 Kahn Aug 2016 A1
20160287358 Nowak et al. Oct 2016 A1
20160296303 Parker Oct 2016 A1
20160302885 Matov et al. Oct 2016 A1
20160328843 Graham et al. Nov 2016 A1
20160338799 Wu et al. Nov 2016 A1
20160346063 Schulhof et al. Dec 2016 A1
20160367188 Malik et al. Dec 2016 A1
20160367339 Khardekar et al. Dec 2016 A1
20170007365 Kopelman et al. Jan 2017 A1
20170007366 Kopelman et al. Jan 2017 A1
20170007367 Li et al. Jan 2017 A1
20170007368 Boronkay Jan 2017 A1
20170020633 Stone-Collonge et al. Jan 2017 A1
20170049326 Alfano et al. Feb 2017 A1
20170056131 Alauddin et al. Mar 2017 A1
20170071705 Kuo Mar 2017 A1
20170079747 Graf Mar 2017 A1
20170086943 Mah Mar 2017 A1
20170100209 Wen Apr 2017 A1
20170100212 Sherwood et al. Apr 2017 A1
20170100213 Kuo Apr 2017 A1
20170100214 Wen Apr 2017 A1
20170105815 Matov et al. Apr 2017 A1
20170135792 Webber May 2017 A1
20170135793 Webber et al. May 2017 A1
20170156821 Kopelman et al. Jun 2017 A1
20170165032 Webber et al. Jun 2017 A1
20170215739 Miyasato Aug 2017 A1
20170251954 Lotan et al. Sep 2017 A1
20170258555 Kopelman Sep 2017 A1
20170265970 Verker Sep 2017 A1
20170319054 Miller et al. Nov 2017 A1
20170319296 Webber et al. Nov 2017 A1
20170325690 Salah et al. Nov 2017 A1
20170340411 Akselrod Nov 2017 A1
20170340415 Choi et al. Nov 2017 A1
20180000563 Shanjani et al. Jan 2018 A1
20180000565 Shanjani et al. Jan 2018 A1
20180028064 Elbaz et al. Feb 2018 A1
20180028065 Elbaz et al. Feb 2018 A1
20180055602 Kopelman et al. Mar 2018 A1
20180071054 Ha Mar 2018 A1
20180071055 Kuo Mar 2018 A1
20180085059 Lee Mar 2018 A1
20180125610 Carrier et al. May 2018 A1
20180153648 Shanjani et al. Jun 2018 A1
20180153649 Wu et al. Jun 2018 A1
20180153733 Kuo Jun 2018 A1
20180168788 Fernie Jun 2018 A1
20180192877 Atiya et al. Jul 2018 A1
20180228359 Meyer et al. Aug 2018 A1
20180280118 Cramer Oct 2018 A1
20180280125 Longley Oct 2018 A1
20180284727 Cramer et al. Oct 2018 A1
20180318042 Baek et al. Nov 2018 A1
20180318043 Li et al. Nov 2018 A1
20180353264 Riley et al. Dec 2018 A1
20180360567 Xue et al. Dec 2018 A1
20180368961 Shanjani et al. Dec 2018 A1
20190019187 Miller et al. Jan 2019 A1
20190021817 Sato et al. Jan 2019 A1
20190026599 Salah et al. Jan 2019 A1
20190029522 Sato et al. Jan 2019 A1
20190029784 Moalem et al. Jan 2019 A1
20190046296 Kopelman et al. Feb 2019 A1
20190046297 Kopelman et al. Feb 2019 A1
20190069975 Cam et al. Mar 2019 A1
20190076026 Elbaz et al. Mar 2019 A1
20190076214 Nyukhtikov et al. Mar 2019 A1
20190076216 Moss et al. Mar 2019 A1
20190090983 Webber et al. Mar 2019 A1
20190095539 Elbaz et al. Mar 2019 A1
20190099129 Kopelman et al. Apr 2019 A1
20190105130 Grove et al. Apr 2019 A1
20190125494 Li et al. May 2019 A1
20190314119 Kopelman et al. Oct 2019 A1
20200046463 Kimura et al. Feb 2020 A1
20210068926 Wu et al. Mar 2021 A1
Foreign Referenced Citations (140)
Number Date Country
517102 Nov 1977 AU
3031677 Nov 1977 AU
1121955 Apr 1982 CA
1655732 Aug 2005 CN
1655733 Aug 2005 CN
201101586 Aug 2008 CN
101426449 May 2009 CN
101677842 Mar 2010 CN
102017658 Apr 2011 CN
103889364 Jun 2014 CN
104000662 Aug 2014 CN
204092220 Jan 2015 CN
104379087 Feb 2015 CN
105266907 Jan 2016 CN
105496575 Apr 2016 CN
105997274 Oct 2016 CN
106667594 May 2017 CN
2749802 May 1978 DE
3526198 Feb 1986 DE
4207169 Sep 1993 DE
69327661 Jul 2000 DE
102005043627 Mar 2007 DE
102009023357 Dec 2010 DE
202010017014 Mar 2011 DE
102011051443 Jan 2013 DE
202012011899 Jan 2013 DE
102014225457 Jun 2016 DE
0428152 May 1991 EP
490848 Jun 1992 EP
541500 May 1993 EP
714632 May 1997 EP
774933 Dec 2000 EP
731673 May 2001 EP
1941843 Jul 2008 EP
2211753 Aug 2010 EP
2437027 Apr 2012 EP
2447754 May 2012 EP
1989764 Jul 2012 EP
2332221 Nov 2012 EP
2596553 Dec 2013 EP
2612300 Feb 2015 EP
2848229 Mar 2015 EP
463897 Jan 1980 ES
2455066 Apr 2014 ES
2369828 Jun 1978 FR
2867377 Sep 2005 FR
2930334 Oct 2009 FR
1550777 Aug 1979 GB
53-058191 May 1978 JP
04-028359 Jan 1992 JP
08-508174 Sep 1996 JP
09-19443 Jan 1997 JP
2003245289 Sep 2003 JP
2000339468 Sep 2004 JP
2005527320 Sep 2005 JP
2005527321 Sep 2005 JP
2006043121 Feb 2006 JP
2007151614 Jun 2007 JP
2007260158 Oct 2007 JP
2007537824 Dec 2007 JP
2008067732 Mar 2008 JP
2008523370 Jul 2008 JP
04184427 Nov 2008 JP
2009000412 Jan 2009 JP
2009018173 Jan 2009 JP
2009078133 Apr 2009 JP
2009101386 May 2009 JP
2009205330 Sep 2009 JP
2010017726 Jan 2010 JP
2011087733 May 2011 JP
2012045143 Mar 2012 JP
2013007645 Jan 2013 JP
2013192865 Sep 2013 JP
201735173 Feb 2017 JP
10-20020062793 Jul 2002 KR
10-20070108019 Nov 2007 KR
10-20090065778 Jun 2009 KR
10-1266966 May 2013 KR
10-2016-041632 Apr 2016 KR
10-2016-0071127 Jun 2016 KR
10-1675089 Nov 2016 KR
20160133921 Nov 2016 KR
480166 Mar 2002 TW
WO91004713 Apr 1991 WO
WO9203102 Mar 1992 WO
WO94010935 May 1994 WO
9623452 Aug 1996 WO
WO98032394 Jul 1998 WO
WO98044865 Oct 1998 WO
WO0108592 Feb 2001 WO
0180762 Nov 2001 WO
WO0185047 Nov 2001 WO
WO02017776 Mar 2002 WO
WO02062252 Aug 2002 WO
WO02095475 Nov 2002 WO
WO03003932 Jan 2003 WO
WO2006096558 Sep 2006 WO
WO2006100700 Sep 2006 WO
WO2006133548 Dec 2006 WO
WO2007019709 Feb 2007 WO
WO2007071341 Jun 2007 WO
WO2007103377 Sep 2007 WO
WO2008115654 Sep 2008 WO
WO2009016645 Feb 2009 WO
WO2009085752 Jul 2009 WO
WO2009089129 Jul 2009 WO
WO2009146788 Dec 2009 WO
WO2009146789 Dec 2009 WO
WO2010059988 May 2010 WO
WO2010123892 Oct 2010 WO
WO2012007003 Jan 2012 WO
2012042547 Apr 2012 WO
WO2012064684 May 2012 WO
WO2012074304 Jun 2012 WO
WO2012078980 Jun 2012 WO
WO2012083968 Jun 2012 WO
WO2012140021 Oct 2012 WO
WO2013058879 Apr 2013 WO
WO2014068107 May 2014 WO
WO2014091865 Jun 2014 WO
WO2014143911 Sep 2014 WO
WO2015015289 Feb 2015 WO
WO2015063032 May 2015 WO
WO2015112638 Jul 2015 WO
WO2015176004 Nov 2015 WO
WO2016004415 Jan 2016 WO
WO2016028106 Feb 2016 WO
WO2016042393 Mar 2016 WO
WO2016061279 Apr 2016 WO
WO2016084066 Jun 2016 WO
WO2016099471 Jun 2016 WO
WO2016113745 Jul 2016 WO
WO2016116874 Jul 2016 WO
WO2016200177 Dec 2016 WO
WO2017006176 Jan 2017 WO
WO2017182654 Oct 2017 WO
WO2018057547 Mar 2018 WO
WO2018085718 May 2018 WO
WO2018232113 Dec 2018 WO
WO2019018784 Jan 2019 WO
Non-Patent Literature Citations (274)
Entry
US 8,553,966 B1, 10/2013, Alpern et al. (withdrawn)
Invitation to Pay Additional Fees and Partial Search Report from related PCT Application No. US2017/064340, dated Feb. 26, 2018, 13 pages.
Bernabe et al.; Are the lower incisors the best predictors for the unerupted canine and premolars sums? An analysis of peruvian sample; The Angle Orthodontist; 75(2); pp. 202-207; Mar. 2005.
Collins English Dictionary; Teeth (definition); 9 pages; retrieved from the internet (https:www.collinsdictionary.com/us/dictionary/english/teeth) on May 13, 2019.
Dental Monitoring; Basics: How to put the cheek retractor?; 1 page (Screenshot); retrieved from the interenet (https://www.youtube.com/watch?v=6K1HXw4Kq3c); May 27, 2016.
Dental Monitoring; Dental monitoring tutorial; 1 page (Screenshot); retrieved from the internet (https:www.youtube.com/watch?v=Dbe3udOf9_c); Mar. 18, 2015.
dictionary.com; Plural (definition); 6 pages; retrieved from the internet ( https://www.dictionary.com/browse/plural#) on May 13, 2019.
dictionary.com; Quadrant (definition); 6 pages; retrieved from the internet ( https://www.dictionary.com/browse/quadrant?s=t) on May 13, 2019.
Ecligner Selfie; Change your smile; 1 page (screenshot); retrieved from the internet (https:play.google.com/store/apps/details?id=parklict.ecligner); on Feb. 13, 2018.
Martinelli et al.; Prediction of lower permanent canine and premolars width by correlation methods; The Angle Orthodontist; 75(5); pp. 805-808; Sep. 2005.
Nourallah et al.; New regression equations for prediciting the size of unerupted canines and premolars in a contemporary population; The Angle Orthodontist; 72(3); pp. 216-221; Jun. 2002.
Paredes et al.; A new, accurate and fast digital method to predict unerupted tooth size; The Angle Orthodontist; 76(1); pp. 14-19; Jan. 2006.
Sobral De Agular et al.; The gingival crevicular fluid as a source of biomarkers to enhance efficiency of orthodontic and functional treatment of growing patients; Bio. Med. Research International; vol. 2017; pp. 1-7; Article ID 3257235; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2017.
Levin; U.S. Appl. No. 16/282,431 entitled “Estimating a surface texture of a tooth,” filed Feb. 2, 2019.
Chen et al.; U.S. Appl. No. 16/223,019 entitled “Release agent receptacle,” filed Dec. 17, 2018.
International Search Report and Written Opinion from related PCT Application No. PCT/US2017/064340, dated May 24, 2018 (17 pages).
AADR. American Association for Dental Research; Summary of Activities; Los Angeles, CA; p. 195; March 20-23,(year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1980.
Alcaniz et al.; An Advanced System for the Simulation and Planning of Orthodontic Treatments; Karl Heinz Hohne and Ron Kikinis (eds.); Visualization in Biomedical Computing, 4th Intl. Conf, VBC '96, Hamburg, Germany; Springer-Verlag; pp. 511-520; Sep. 22-25, 1996.
Alexander et al.; The DigiGraph Work Station Part 2 Clinical Management; J. Clin. Orthod.; pp. 402-407; (Author Manuscript); Jul. 1990.
Align Technology; Align technology announces new teen solution with introduction of invisalign teen with mandibular advancement; 2 pages; retrieved from the internet (http://investor.aligntech.com/static-files/eb4fa6bb-3e62-404f-b74d-32059366a01b); Mar. 6, 2017.
Allesee Orthodontic Appliance: Important Tip About Wearing the Red White & Blue Active Clear Retainer System; Allesee Orthodontic Appliances—Pro Lab; 1 page; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 1998.
Allesee Orthodontic Appliances: DuraClearTM; Product information; 1 page; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1997.
Allesee Orthodontic Appliances; The Choice Is Clear: Red, White & Blue . . . The Simple, Affordable, No-Braces Treatment; ( product information for doctors); retrieved from the internet (http://ormco.com/aoa/appliancesservices/RWB/doctorhtml); 5 pages on May 19, 2003.
Allesee Orthodontic Appliances; The Choice Is Clear: Red, White & Blue . . . The Simple, Affordable, No-Braces Treatment; (product information), 6 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2003.
Allesee Orthodontic Appliances; The Choice is Clear: Red, White & Blue . . . The Simple, Affordable, No-Braces Treatment;(Patient Information); retrieved from the internet (http://ormco.com/aoa/appliancesservices/RWB/patients.html); 2 pages on May 19, 2003.
Allesee Orthodontic Appliances; The Red, White & Blue Way to Improve Your Smile; (information for patients), 2 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1992.
Allesee Orthodontic Appliances; You may be a candidate for this invisible no-braces treatment; product information for patients; 2 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2002.
Altschuler et al.; Analysis of 3-D Data for Comparative 3-D Serial Growth Pattern Studies of Oral-Facial Structures; AADR Abstracts, Program and Abstracts of Papers, 57th General Session, IADR Annual Session, Mar. 29, 1979-Apr. 1, 1979, New Orleans Marriot; Journal of Dental Research; vol. 58, Special Issue A, p. 221; Jan. 1979.
Altschuler et al.; Laser Electro-Optic System for Rapid Three-Dimensional (3D) Topographic Mapping of Surfaces; Optical Engineering; 20(6); pp. 953-961; Dec. 1981.
Altschuler et al.; Measuring Surfaces Space-Coded by a Laser-Projected Dot Matrix; SPIE Imaging q Applications for Automated Industrial Inspection and Assembly; vol. 182; pp. 187-191; Oct. 10, 1979.
Altschuler; 3D Mapping of Maxillo-Facial Prosthesis; AADR Abstract #607; 2 pages total, (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1980.
Alves et al.; New trends in food allergens detection: toward biosensing strategies; Critical Reviews in Food Science and Nutrition; 56(14); pp. 2304-2319; doi: 10.1080/10408398.2013.831026; Oct. 2016.
Andersson et al.; Clinical Results with Titanium Crowns Fabricated with Machine Duplication and Spark Erosion; Acta Odontologica Scandinavica; 47(5); pp. 279-286; Oct. 1989.
Andrews, The Six Keys to Optimal Occlusion Straight Wire, Chapter 3, L.A. Wells; pp. 13-24; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1989.
Arakawa et al; Mouthguard biosensor with telemetry system for monitoring of saliva glucose: A novel cavitas sensor; Biosensors and Bioelectronics; 84; pp. 106-111; Oct. 2016.
Bandodkar et al.; All-printed magnetically self-healing electrochemical devices; Science Advances; 2(11); 11 pages; e1601465; Nov. 2016.
Bandodkar et al.; Self-healing inks for autonomous repair of printable electrochemical devices; Advanced Electronic Materials; 1(12); 5 pages; 1500289; Dec. 2015.
Bandodkar et al.; Wearable biofuel cells: a review; Electroanalysis; 28(6); pp. 1188-1200; Jun. 2016.
Bandodkar et al.; Wearable chemical sensors: present challenges and future prospects; Acs Sensors; 1(5); pp. 464-482; May 11, 2016.
Barone et al.; Creation of 3D multi-body orthodontic models by using independent imaging sensors; Sensors; 13(2); pp. 2033-2050; Feb. 5, 2013.
Bartels et al.; An Introduction to Splines for Use in Computer Graphics and Geometric Modeling; Morgan Kaufmann Publishers; pp. 422-425 Jan. 1, 1987.
Baumrind et al, “Mapping the Skull in 3-D,” reprinted from J. Calif. Dent. Assoc, 48(2), 11 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) Fall Issue 1972.
Baumrind et al.; A Stereophotogrammetric System for the Detection of Prosthesis Loosening in Total Hip Arthroplasty; NATO Symposium on Applications of Human Biostereometrics; SPIE; vol. 166; pp. 112-123; Jul. 9-13, 1978.
Baumrind; A System for Cranio facial Mapping Through the Integration of Data from Stereo X-Ray Films and Stereo Photographs; an invited paper submitted to the 1975 American Society of Photogram Symposium on Close-Range Photogram Systems; University of Illinois; pp. 142-166; Aug. 26-30, 1975.
Baumrind; Integrated Three-Dimensional Craniofacial Mapping: Background, Principles, and Perspectives; Seminars in Orthodontics; 7(4); pp. 223-232; Dec. 2001.
beautyworlds.com; Virtual plastic surgery—beautysurge.com announces launch of cosmetic surgery digital imaging services; 5 pages; retrieved from the internet (http://www.beautyworlds.com/cosmossurgdigitalimagning.htm); Mar. 2004.
Begole et al.; A Computer System for the Analysis of Dental Casts; The Angle Orthodontist; 51(3); pp. 252-258; Jul. 1981.
Berland; The use of smile libraries for cosmetic dentistry; Dental Tribunne: Asia pacfic Edition; pp. 16-18; Mar. 29, 2006.
Bernard et al; Computerized Diagnosis in Orthodontics for Epidemiological Studies: A ProgressReport; (Abstract Only), J. Dental Res. Special Issue, vol. 67, p. 169, paper presented at International Association for Dental Research 66th General Session, Montreal Canada; Mar. 9-13, 1988.
Bhatia et al.; A Computer-Aided Design for Orthognathic Surgery; British Journal of Oral and Maxillofacial Surgery; 22(4); pp. 237-253; Aug. 1, 1984.
Biggerstaff et al.; Computerized Analysis of Occlusion in the Postcanine Dentition; American Journal of Orthodontics; 61(3); pp. 245-254; Mar. 1972.
Biggerstaff; Computerized Diagnostic Setups and Simulations; Angle Orthodontist; 40(I); pp. 28-36; Jan. 1970.
Biostar Operation & Training Manual. Great Lakes Orthodontics, Ltd. 199 Fire Tower Drive,Tonawanda, New York. 14150-5890, 20 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1990.
Blu et al.; Linear interpolation revitalized; IEEE Transactions on Image Processing; 13(5); pp. 710-719; May 2004.
Bookstein; Principal warps: Thin-plate splines and decomposition of deformations; IEEE Transactions on pattern analysis and machine intelligence; 11(6); pp. 567-585; Jun. 1989.
Bourke, Coordinate System Transformation; 1 page; retrived from the internet (http://astronomy.swin.edu.au/' pbourke/prolection/coords) on Nov. 5, 2004; Jun. 1996.
Boyd et al.; Three Dimensional Diagnosis and Orthodontic Treatment of Complex Malocclusions With the Invisalipn Appliance; Seminars in Orthodontics; 7(4); pp. 274-293; Dec. 2001.
Brandestini et al.; Computer Machined Ceramic Inlays: In Vitro Marginal Adaptation; J. Dent. Res. Special Issue; (Abstract 305); vol. 64; p. 208; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1985.
Brook et al.; An Image Analysis System for the Determination of Tooth Dimensions from Study Casts: Comparison with Manual Measurements of Mesio-distal Diameter; Journal of Dental Research; 65(3); pp. 428-431; Mar. 1986.
Burstone et al.; Precision Adjustment of the Transpalatal Lingual Arch: Computer Arch Form Predetermination; American Journal of Orthodontics; 79(2);pp. 115-133; Feb. 1981.
Burstone; Dr. Charles J. Burstone on The Uses of the Computer in Orthodontic Practice (Part 1); Journal of Clinical Orthodontics; 13(7); pp. 442-453; (interview); Jul. 1979.
Burstone; Dr. Charles J. Burstone on The Uses of the Computer in Orthodontic Practice (Part 2); journal of Clinical Orthodontics; 13(8); pp. 539-551 (interview); Aug. 1979.
Cadent Inc.; OrthoCAD ABO user guide; 38 pages; Dec. 21, 2005.
Cadent Inc.; Reviewing and modifying an orthoCAD case; 4 pages; Feb. 14, 2005.
Cardinal Industrial Finishes; Powder Coatings; 6 pages; retrieved from the internet (http://www.cardinalpaint.com) on Aug. 25, 2000,.
Carnaghan, An Alternative to Holograms for the Portrayal of Human Teeth; 4th Int'l. Conf. on Holographic Systems, Components and Applications; pp. 228-231; Sep. 15, 1993.
Chaconas et al,; The DigiGraph Work Station, Part 1, Basic Concepts; Journal of Clinical Orthodontics; 24(6); pp. 360-367; (Author Manuscript); Jun. 1990.
Chafetz et al.; Subsidence of the Femoral Prosthesis, A Stereophotogrammetric Evaluation; Clinical Orthopaedics and Related Research; No. 201; pp. 60-67; Dec. 1985.
Chiappone; Constructing the Gnathologic Setup and Positioner; Journal of Clinical Orthodontics; 14(2); pp. 121-133; Feb. 1980.
Chishti et al.; U.S. Appl. No. 60/050,342 entitled “Procedure for moving teeth using a seires of retainers,” filed Jun. 20, 1997.
Cottingham; Gnathologic Clear Plastic Positioner; American Journal of Orthodontics; 55(1); pp. 23-31; Jan. 1969.
Crawford; CAD/CAM in the Dental Office: Does It Work?; Canadian Dental Journal; 57(2); pp. 121-123 Feb. 1991.
Crawford; Computers in Dentistry: Part 1: CAD/CAM: The Computer Moves Chairside, Part 2: F. Duret A Man With A Vision, Part 3: The Computer Gives New Vision—Literally, Part 4: Bytes 'N Bites The Computer Moves From The Front Desk To The Operatory; Canadian Dental Journal; 54(9); pp. 661-666 Sep. 1988.
Crooks; CAD/CAM Comes to USC; USC Dentistry; pp. 14-17; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) Spring 1990.
CSI Computerized Scanning and Imaging Facility; What is a maximum/minimum intensity projection (MIP/MinIP); 1 page; retrived from the internet (http://csi.whoi.edu/content/what-maximumminimum-intensity-projection-mipminip); Jan. 4, 2010.
Cureton; Correcting Malaligned Mandibular Incisors with Removable Retainers; Journal of Clinical Orthodontics; 30(7); pp. 390-395; Jul. 1996.
Curry et al.; Integrated Three-Dimensional Craniofacial Mapping at the Craniofacial Research InstrumentationLaboratory/University of the Pacific; Seminars in Orthodontics; 7(4); pp. 258-265; Dec. 2001.
Cutting et al.; Three-Dimensional Computer-Assisted Design of Craniofacial Surgical Procedures: Optimization and Interaction with Cephalometric and CT-Based Models; Plastic and Reconstructive Surgery; 77(6); pp. 877-885; Jun. 1986.
Daniels et al.; The development of the index of complexity outcome and need (ICON); British Journal of Orthodontics; 27(2); pp. 149-162; Jun. 2000.
DCS Dental AG; The CAD/CAM ‘DCS Titan System’ for Production of Crowns/Bridges; DSC Production; pp. 1-7; Jan. 1992.
Defranco et al.; Three-Dimensional Large Displacement Analysis of Orthodontic Appliances; Journal of Biomechanics; 9(12); pp. 793-801; Jan. 1976.
Dental Institute University of Zurich Switzerland; Program for International Symposium on Computer Restorations: State of the Art of the CEREC-Method; 2 pages; May 1991.
Dentrac Corporation; Dentrac document; pp. 4-13; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1992.
Dentrix; Dentrix G3, new features; 2 pages; retrieved from the internet (http://www.dentrix.com/g3/new_features/index.asp); on Jun. 6, 2008.
Dent-X; Dentsim . . . Dent-x's virtual reality 3-D training simulator . . . A revolution in dental education; 6 pages; retrieved from the internet (http://www.dent-x.com/DentSim.htm); on Sep. 24, 1998.
Dicom to surgical guides; (Screenshot)1 page; retrieved from the internet at YouTube (https://youtu.be/47KtOmCEFQk); Published Apr. 4, 2016.
Di Giacomo et al.; Clinical application of sterolithographic surgical guides for implant placement: Preliminary results; Journal Periodontolgy; 76(4); pp. 503-507; Apr. 2005.
Di Muzio et al.; Minimum intensity projection (MinIP); 6 pages; retrieved from the internet (https://radiopaedia.org/articles/minimum-intensity-projection-minip) on Sep. 6, 2018.
Doruk et al.; The role of the headgear timer in extraoral co-operation; European Journal of Orthodontics; 26; pp. 289-291; Jun. 1, 2004.
Doyle; Digital Dentistry; Computer Graphics World; pp. 50-52 andp. 54; Oct. 2000.
Dummer et al.; Computed Radiography Imaging Based on High-Density 670 nm VCSEL Arrays; International Society for Optics and Photonics; vol. 7557; p. 75570H; 7 pages; (Author Manuscript); Feb. 24, 2010.
Duret et al.; CAD/CAM Imaging in Dentistry; Current Opinion in Dentistry; 1(2); pp. 150-154; Apr. 1991.
Duret et al; CAD-CAM in Dentistry; Journal of the American Dental Association; 117(6); pp. 715-720; Nov. 1988.
Duret; The Dental CAD/CAM, General Description of the Project; Hennson International Product Brochure, 18 pages; Jan. 1986.
Duret; Vers Une Prosthese Informatisee; Tonus; 75(15); pp. 55-57; (English translation attached); 23 pages; Nov. 15, 1985.
Economides; The Microcomputer in the Orthodontic Office; Journal of Clinical Orthodontics; 13(11); pp. 767-772; Nov. 1979.
Ellias et al.; Proteomic analysis of saliva identifies potential biomarkers for orthodontic tooth movement; The Scientific World Journal; vol. 2012; Article ID 647240; dio:10.1100/2012/647240; 7 pages; Jul. 2012.
Elsasser; Some Observations on the History and Uses of the Kesling Positioner; American Journal of Orthodontics; 36(5); pp. 368-374; May 1, 1950.
English translation of Japanese Laid-Open Publication No. 63-11148 to inventor T. Ozukuri (Laid-Open on Jan. 18, 1998) pp. 1-7.
Faber et al.; Computerized Interactive Orthodontic Treatment Planning; American Journal of Orthodontics; 73(1); pp. 36-46; Jan. 1978.
Farooq et al.; Relationship between tooth dimensions and malocclusion; JPMA: The Journal of the Pakistan Medical Association; 64(6); pp. 670-674; Jun. 2014.
Felton et al.; A Computerized Analysis of the Shape and Stability of Mandibular Arch Form; American Journal of Orthodontics and Dentofacial Orthopedics; 92(6); pp. 478-483; Dec. 1987.
Florez-Moreno; Time-related changes in salivary levels of the osteotropic factors sRANKL and OPG through orthodontic tooth movement; American Journal of Orthodontics and Dentofacial Orthopedics; 143(1); pp. 92-100; Jan. 2013.
Friede et al.; Accuracy of Cephalometric Prediction in Orthognathic Surgery; Journal of Oral and Maxillofacial Surgery; 45(9); pp. 754-760; Sep. 1987.
Friedrich et al; Measuring system for in vivo recording of force systems in orthodontic treatment-concept and analysis of accuracy; J. Biomech.; 32(1); pp. 81-85; (Abstract Only) Jan. 1999.
Futterling et al.; Automated Finite Element Modeling of a Human Mandible with Dental Implants; JS WSCG '98—Conference Program; 8 pages; retrieved from the Internet (https://dspace5.zcu.cz/bitstream/11025/15851/1/Strasser_98.pdf); on Aug. 21, 2018.
Gansky; Dental data mining: potential pitfalls and practical issues; Advances in Dental Research; 17(1); pp. 109-114; Dec. 2003.
Gao et al.; 3-D element Generation for Multi-Connected Complex Dental and Mandibular Structure; IEEE Proceedings International Workshop in Medical Imaging and Augmented Reality; pp. 267-271; Jun. 12, 2001.
Geomagic; Dental reconstruction; 1 page; retrieved from the internet (http://geomagic.com/en/solutions/industry/detal_desc.php) on Jun. 6, 2008.
Gim-Alldent Deutschland, “Das DUX System: Die Technik,” 3 pages; (English Translation Included); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 2002.
Gottleib et al.; JCO Interviews Dr. James A. McNamura, Jr., on the Frankel Appliance: Part 2: Clinical 1-1 Management; Journal of Clinical Orthodontics; 16(6); pp. 390-407; retrieved from the internet (http://www.jco-online.com/archive/print_article.asp?Year=1982&Month=06&ArticleNum+); 21 pages; Jun. 1982.
Gottschalk et al.; OBBTree: A hierarchical structure for rapid interference detection; 12 pages; (http://www.cs.unc.edu/?geom/OBB/OBBT.html); relieved from te internet (https://www.cse.iitk.ac.in/users/amit/courses/RMP/presentations/dslamba/presentation/sig96.pdf) on Apr. 25, 2019.
gpsdentaire.com; Get a realistic smile simulation in 4 steps with GPS; a smile management software; 10 pages; retrieved from the internet (http://www.gpsdentaire.com/en/preview/) on Jun. 6, 2008.
Grayson; New Methods for Three Dimensional Analysis of Craniofacial Deformity, Symposium: Computerized Facial Imaging in Oral and Maxillofacial Surgery; American Association of Oral and Maxillofacial Surgeons; 48(8) suppl 1; pp. 5-6; Sep. 13, 1990.
Grest, Daniel; Marker-Free Human Motion Capture in Dynamic Cluttered Environments from a Single View-Point, PhD Thesis; 171 pages; Dec. 2007.
Guess et al.; Computer Treatment Estimates In Orthodontics and Orthognathic Surgery; Journal of Clinical Orthodontics; 23(4); pp. 262-268; 11 pages; (Author Manuscript); Apr. 1989.
Heaven et al.; Computer-Based Image Analysis of Artificial Root Surface Caries; Abstracts of Papers #2094; Journal of Dental Research; 70:528; (Abstract Only); Apr. 17-21, 1991.
Highbeam Research; Simulating stress put on jaw. (ANSYS Inc.'s finite element analysis software); 2 pages; retrieved from the Internet (http://static.highbeam.eom/t/toolingampproduction/november011996/simulatingstressputonfa . . . ); on Nov. 5, 2004.
Hikage; Integrated Orthodontic Management System for Virtual Three-Dimensional Computer Graphic Simulation and Optical Video Image Database for Diagnosis and Treatment Planning; Journal of Japan KA Orthodontic Society; 46(2); pp. 248-269; 56 pages; (English Translation Included); Feb. 1987.
Hoffmann et al.; Role of Cephalometry for Planning of Jaw Orthopedics and Jaw Surgery Procedures; Informatbnen, pp. 375-396; (English Abstract Included); Mar. 1991.
Hojjatie et al.; Three-Dimensional Finite Element Analysis of Glass-Ceramic Dental Crowns; Journal of Biomechanics; 23(11); pp. 1157-1166; Jan. 1990.
Huckins; CAD-CAM Generated Mandibular Model Prototype from MRI Data; AAOMS, p. 96; (Abstract Only); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1999.
Imani et al.; A wearable chemical-electrophysiological hybrid biosensing system for real-time health and fitness monitoring; Nature Communications; 7; 11650. doi 1038/ncomms11650; 7 pages; May 23, 2016.
Invisalign; You were made to move. There's never been a better time to straighten your teeth with the most advanced clear aligner in the world; Product webpage; 2 pages; retrieved from the internet (www.invisalign.com/) on Dec. 28, 2017.
JCO Interviews; Craig Andreiko , DDS, MS on the Elan and Orthos Systems; Interview by Dr. Larry W. White; Journal of Clinical Orthodontics; 28(8); pp. 459-468; 14 pages; (Author Manuscript); Aug. 1994.
JCO Interviews; Dr. Homer W. Phillips on Computers in Orthodontic Practice, Part 2; Journal of Clinical Orthodontics; 17(12); pp. 819-831; 19 pages; (Author Manuscript); Dec. 1983.
Jeerapan et al.; Stretchable biofuel cells as wearable textile-based self-powered sensors; Journal of Materials Chemistry A; 4(47); pp. 18342-18353; Dec. 21, 2016.
Jerrold; The Problem, Electronic Data Transmission and the Law; American Journal of Orthodontics and Dentofacial Orthopedics; 113(4); pp. 478-479; 5 pages; (Author Manuscript); Apr. 1998.
Jia et al.; Epidermal biofuel cells: energy harvesting from human perspiration; Angewandle Chemie International Edition; 52(28); pp. 7233-7236; Jul. 8, 2013.
Jia et al.; Wearable textile biofuel cells for powering electronics; Journal of Materials Chemistry A; 2(43); pp. 18184-18189; Oct. 14, 2014.
Jones et al.; An Assessment of the Fit of a Parabolic Curve to Pre- and Post-Treatment Dental Arches; British Journal of Orthodontics; 16(2); pp. 85-93; May 1989.
Kamada et.al.; Case Reports On Tooth Positioners Using LTV Vinyl Silicone Rubber; J. Nihon University School of Dentistry; 26(1); pp. 11-29; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1984.
Kamada et.al.; Construction of Tooth Positioners with LTV Vinyl Silicone Rubber and Some Case KJ Reports; J. Nihon University School of Dentistry; 24(1); pp. 1-27; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1982.
Kanazawa et al.; Three-Dimensional Measurements of the Occlusal Surfaces of Upper Molars in a Dutch Population; Journal of Dental Research; 63(11); pp. 1298-1301; Nov. 1984.
Karaman et al.; A practical method of fabricating a lingual retainer; Am. Journal of Orthodontic and Dentofacial Orthopedics; 124(3); pp. 327-330; Sep. 2003.
Kesling et al.; The Philosophy of the Tooth Positioning Appliance; American Journal of Orthodontics and Oral surgery; 31(6); pp. 297-304; Jun. 1945.
Kesling; Coordinating the Predetermined Pattern and Tooth Positioner with Conventional Treatment; American Journal of Orthodontics and Oral Surgery; 32(5); pp. 285-293; May 1946.
Kim et al.; A wearable fingernail chemical sensing platform: pH sensing at your fingertips; Talanta; 150; pp. 622-628; Apr. 2016.
Kim et al.; Advanced materials for printed wearable electrochemical devices: A review; Advanced Electronic Materials; 3(1); 15 pages; 1600260; Jan. 2017.
Kim et al.; Noninvasive alcohol monitoring using a wearable tatto-based iontophoretic-biosensing system; Acs Sensors; 1(8); pp. 1011-1019; Jul. 22, 2016.
Kim et al.; Non-invasive mouthguard biosensor for continuous salivary monitoring of metabolites; Analyst; 139(7); pp. 1632-1636; Apr. 7, 2014.
Kim et al.; Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics; Biosensors and Bioelectronics; 74; pp. 1061-1068; 19 pages; (Author Manuscript); Dec. 2015.
Kleeman et al.; The Speed Positioner; J. Clin. Orthod.; 30(12); pp. 673-680; Dec. 1996.
Kochanek; Interpolating Splines with Local Tension, Continuity and Bias Control; Computer Graphics; 18(3); pp. 33-41; Jan. 1, 1984.
Kumar et al.; All-printed, stretchable Zn—Ag2o rechargeable battery via, hyperelastic binder for self-powering wearable electronics; Advanced Energy Materials; 7(8); 8 pages; 1602096; Apr. 2017.
Kumar et al.; Biomarkers in orthodontic tooth movement; Journal of Pharmacy Bioallied Sciences; 7(Suppl 2); pp. S325-S330; 12 pages; (Author Manuscript); Aug. 2015.
Kumar et al.; Rapid maxillary expansion: A unique treatment modality in dentistry; J. Clin. Diagn. Res.; 5(4); pp. 906-911; Aug. 2011.
Kunii et al.; Articulation Simulation for an Intelligent Dental Care System; Displays; 15(3); pp. 181-188; Jul. 1994.
Kuroda et al.; Three-Dimensional Dental Cast Analyzing System Using Laser Scanning; American Journal of Orthodontics and Dentofacial Orthopedics; 110(4); pp. 365-369; Oct. 1996.
Laurendeau et al.; A Computer-Vision Technique for the Acquisition and Processing of 3-D Profiles of 7 Dental Imprints: An Application in Orthodontics; IEEE Transactions on Medical Imaging; 10(3); pp. 453-461; Sep. 1991.
Leinfelder et al.; A New Method for Generating Ceramic Restorations: a CAD-CAM System; Journal of the American Dental Association; 118(6); pp. 703-707; Jun. 1989.
Manetti et al.; Computer-Aided Cefalometry and New Mechanics in Orthodontics; Fortschr Kieferorthop; 44; pp. 370-376; 8 pages; (English Article Summary Included); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1983.
Mantzikos et al.; Case report: Forced eruption and implant site development; The Angle Orthodontist; 68(2); pp. 179-186; Apr. 1998.
Mccann; Inside the ADA; J. Amer. Dent. Assoc, 118:286-294; Mar. 1989.
Mcnamara et al.; Invisible Retainers; J. Clin Orthod.; pp. 570-578; 11 pages; (Author Manuscript); Aug. 1985.
Mcnamara et al.; Orthodontic and Orthopedic Treatment in the Mixed Dentition; Needham Press; pp. 347-353; Jan. 1993.
Methot; Get the picture with a gps for smile design in 3 steps; Spectrum; 5(4); pp. 100-105; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2006.
Moermann et al, Computer Machined Adhesive Porcelain Inlays: Margin Adaptation after Fatigue Stress; IADR Abstract 339; J. Dent. Res.; 66(a):763; (Abstract Only); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1987.
Moles; Correcting Mild Malalignments—As Easy As One, Two, Three; AOA/Pro Corner; 11(2); 2 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2002.
Mormann et al.; Marginale Adaptation von adhasuven Porzellaninlays in vitro; Separatdruck aus:Schweiz. Mschr. Zahnmed.; 95; pp. 1118-1129; 8 pages; (Machine Translated English Abstract); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 1985.
Nahoum; The Vacuum Formed Dental Contour Appliance; N. Y. State Dent. J.; 30(9); pp. 385-390; Nov. 1964.
Nash; CEREC CAD/CAM Inlays: Aesthetics and Durability in a Single Appointment; Dentistry Today; 9(8); pp. 20, 22-23 and 54; Oct. 1990.
Nedelcu et al.; “Scanning Accuracy and Precision in 4 Intraoral Scanners: An In Vitro Comparison Based on 3-Dimensional Analysis”; J. Prosthet. Dent.; 112(6); pp. 1461-1471; Dec. 2014.
Newcombe; DTAM: Dense tracking and mapping in real-time; 8 pages; retrieved from the internet (http://www.doc.ic.ac.uk/?ajd/Publications/newcombe_etal_iccv2011.pdf; on Dec. 2011.
Nishiyama et al.; A New Construction of Tooth Repositioner by LTV Vinyl Silicone Rubber; The Journal of Nihon University School of Dentistry; 19(2); pp. 93-102 (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1977.
Ogawa et al.; Mapping, profiling and clustering of pressure pain threshold (PPT) in edentulous oral muscosa; Journal of Dentistry; 32(3); pp. 219-228; Mar. 2004.
Ogimoto et al.; Pressure-pain threshold determination in the oral mucosa; Journal of Oral Rehabilitation; 29(7); pp. 620-626; Jul. 2002.
ormco.com; Increasing clinical performance with 3D interactive treatment planning and patient-specific appliances; 8 pages; retrieved from the internet (http://www.konsident.com/wp-content/files_mf/1295385693http_ormco.com_index_cmsfilesystemaction_fileOrmcoPDF_whitepapers.pdf) on Feb. 27, 2019.
OrthoCAD downloads; retrieved Jun. 27, 2012 from the internet (www.orthocad.com/download/downloads.asp); 2 pages; Feb. 14, 2005.
Page et al.; Validity and accuracy of a risk calculator in predicting periodontal disease; Journal of the American Dental Association; 133(5); pp. 569-576; May 2002.
Parrilla et al.; A textile-based stretchable multi-ion potentiometric sensor; Advanced Healthcare Materials; 5(9); pp. 996-1001; May 2016.
Patterson Dental; Cosmetic imaging; 2 pages retrieved from the internet (http://patterson.eaglesoft.net/cnt_di_cosimg.html) on Jun. 6, 2008.
Paul et al.; Digital Documentation of Individual Human Jaw and Tooth Forms for Applications in Orthodontics; Oral Surgery and Forensic Medicine Proc, of the 24th Annual Conf, of the IEEE Industrial Electronics Society (IECON '98); vol. 4; pp. 2415-2418; Sep. 4, 1998.
Pinkham; Foolish Concept Propels Technology; Dentist, 3 pages , Jan./Feb. 1989.
Pinkham; Inventor's CAD/CAM May Transform Dentistry; Dentist; pp. 1 and 35, Sep. 1990.
Ponitz; Invisible retainers; Am. J. Orthod.; 59(3); pp. 266-272; Mar. 1971.
Procera Research Projects; Procera Research Projects 1993 Abstract Collection; 23 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1993.
Proffit et al.; The first stage of comprehensive treatment alignment and leveling; Contemporary Orthodontics, 3rd Ed.; Chapter 16; Mosby Inc.; pp. 534-537; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2000.
Proffit et al.; The first stage of comprehensive treatment: alignment and leveling; Contemporary Orthodontics; (Second Ed.); Chapter 15, MosbyYear Book; St. Louis, Missouri; pp. 470-533 Oct. 1993.
Raintree Essix & ARS Materials, Inc., Raintree Essix, Technical Magazine Table of contents and Essix Appliances, 7 pages; retrieved from the internet (http://www.essix.com/magazine/defaulthtml) on Aug. 13, 1997.
Redmond et al.; Clinical Implications of Digital Orthodontics; American Journal of Orthodontics and Dentofacial Orthopedics; 117(2); pp. 240-242; Feb. 2000.
Rekow et al.; CAD/CAM for Dental Restorations—Some of the Curious Challenges; IEEE Transactions on Biomedical Engineering; 38(4); pp. 314-318; Apr. 1991.
Rekow et al.; Comparison of Three Data Acquisition Techniques for 3-D Tooth Surface Mapping; Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 13(1); pp. 344-345 (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1991.
Rekow; A Review of the Developments in Dental CAD/CAM Systems; Current Opinion in Dentistry; 2; pp. 25-33; Jun. 1992.
Rekow; CAD/CAM in Dentistry: A Historical Perspective and View of the Future; Journal Canadian Dental Association; 58(4); pp. 283, 287-288; Apr. 1992.
Rekow; Computer-Aided Design and Manufacturing in Dentistry: A Review of the State of the Art; Journal of Prosthetic Dentistry; 58(4); pp. 512-516; Dec. 1987.
Rekow; Dental CAD-CAM Systems: What is the State of the Art?; The Journal of the American Dental Association; 122(12); pp. 43-48; Dec. 1991.
Rekow; Feasibility of an Automated System for Production of Dental Restorations, Ph.D. Thesis; Univ. of Minnesota, 250 pages, Nov. 1988.
Richmond et al.; The Development of the PAR Index (Peer Assessment Rating): Reliability and Validity.; The European Journal of Orthodontics; 14(2); pp. 125-139; Apr. 1992.
Richmond et al.; The Development of a 3D Cast Analysis System; British Journal of Orthodontics; 13(1); pp. 53-54; Jan. 1986.
Richmond; Recording The Dental Cast In Three Dimensions; American Journal of Orthodontics and Dentofacial Orthopedics; 92(3); pp. 199-206; Sep. 1987.
Rose et al.; The role of orthodontics in implant dentistry; British Dental Journal; 201(12); pp. 753-764; Dec. 23, 2006.
Rubin et al.; Stress analysis of the human tooth using a three-dimensional finite element model; Journal of Dental Research; 62(2); pp. 82-86; Feb. 1983.
Rudge; Dental Arch Analysis: Arch Form, A Review of the Literature; The European Journal of Orthodontics; 3(4); pp. 279-284; Jan. 1981.
Sahm et al.; “Micro-Electronic Monitoring of Functional Appliance Wear”; Eur J Orthod.; 12(3); pp. 297-301; Aug. 1990.
Sahm; Presentation of a wear timer for the clarification of scientific questions in orthodontic orthopedics; Fortschritte der Kieferorthopadie; 51 (4); pp. 243-247; (Translation Included) Jul. 1990.
Sakuda et al.; Integrated Information-Processing System In Clinical Orthodontics: An Approach with Use of a Computer Network System; American Journal of Orthodontics and Dentofacial Orthopedics; 101(3); pp. 210-220; 20 pages; (Author Manuscript) Mar. 1992.
Sarment et al.; Accuracy of implant placement with a sterolithographic surgical guide; journal of Oral and Maxillofacial Implants; 118(4); pp. 571-577; Jul. 2003.
Schafer et al.; “Quantifying patient adherence during active orthodontic treatment with removable appliances using microelectronic wear-time documentation”; Eur J Orthod.; 37(1)pp. 1-8; doi:10.1093/ejo/cju012; Jul. 3, 2014.
Schellhas et al.; Three-Dimensional Computed Tomography in Maxillofacial Surgical Planning; Archives of Otolaryngology—Head and Neck Surgery; 114(4); pp. 438-442; Apr. 1988.
Schroeder et al; Eds. The Visual Toolkit, Prentice Hall PTR, New Jersey; Chapters 6, 8 & 9, (pp. 153-210,309-354, and 355-428; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1998.
Shilliday; Minimizing finishing problems with the mini-positioner; American Journal of Orthodontics; 59(6); pp. 596-599; Jun. 1971.
Shimada et al.; Application of optical coherence tomography (OCT) for diagnosis of caries, cracks, and defects of restorations; Current Oral Health Reports; 2(2); pp. 73-80; Jun. 2015.
Siemens; CEREC—Computer-Reconstruction, High Tech in der Zahnmedizin; 15 pagesl; (Includes Machine Translation); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 2004.
Sinclair; The Readers' Corner; Journal of Clinical Orthodontics; 26(6); pp. 369-372; 5 pages; retrived from the internet (http://www.jco-online.com/archive/print_article.asp?Year=1992&Month=06&ArticleNum=); Jun. 1992.
Sirona Dental Systems GmbH, CEREC 3D, Manuel utiiisateur, Version 2.0X (in French); 114 pages; (English translation of table of contents included); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 2003.
Smalley; Implants for tooth movement: Determining implant location and orientation: Journal of Esthetic and Restorative Dentistry; 7(2); pp. 62-72; Mar. 1995.
Smart Technology; Smile library II; 1 page; retrieved from the internet (http://smart-technology.net/) on Jun. 6, 2008.
Smile-Vision_The smile-vision cosmetic imaging system; 2 pages; retrieved from the internet (http://www.smile-vision.net/cos_imaging.php) on Jun. 6, 2008.
Stoll et al.; Computer-aided Technologies in Dentistry; Dtsch Zahna'rztl Z 45, pp. 314-322; (English Abstract Included); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1990.
Sturman; Interactive Keyframe Animation of 3-D Articulated Models; Proceedings Graphics Interface '84; vol. 86; pp. 35-40; May-Jun. 1984.
Szeliski; Introduction to computer vision: Structure from motion; 64 pages; retrieved from the internet (http://robots.stanford.edu/cs223b05/notes/CS%20223-B%20L10%structurefrommotion1b.ppt, on Feb. 3, 2005.
The American Heritage, Stedman's Medical Dictionary; Gingiva; 3 pages; retrieved from the interent (http://reference.com/search/search?q=gingiva) on Nov. 5, 2004.
The Dental Company Sirona: Cerc omnicam and cerec bluecam brochure: The first choice in every case; 8 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2014.
Thera Mon; “Microsensor”; 2 pages; retrieved from the internet (www.english.thera-mon.com/the-product/transponder/index.html); on Sep. 19, 2016.
Thorlabs; Pellin broca prisms; 1 page; retrieved from the internet (www.thorlabs.com); Nov. 30, 2012.
Tiziani et al.; Confocal principle for macro and microscopic surface and defect analysis; Optical Engineering; 39(1); pp. 32-39; Jan. 1, 2000.
Truax; Truax Clasp-Less(TM) Appliance System; The Functional Orthodontist; 9(5); pp. 22-24, 26-28; Sep.-Oct. 1992.
Tru-Tatn Orthodontic & Dental Supplies, Product Brochure, Rochester, Minnesota 55902, 16 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1996.
U.S. Department of Commerce, National Technical Information Service, Holodontography: An Introduction to Dental Laser Holography; School of Aerospace Medicine Brooks AFB Tex; Mar. 1973, 40 pages; Mar. 1973.
U.S. Department of Commerce, National Technical Information Service; Automated Crown Replication Using Solid Photography SM; Solid Photography Inc., Melville NY,; 20 pages; Oct. 1977.
Vadapalli; Minimum intensity projection (MinIP) is a data visualization; 7 pages; retrieved from the internet (https://prezi.com/tdmttnmv2knw/minimum-intensity-projection-minip-is-a-data-visualization/) on Sep. 6, 2018.
Van Der Linden et al.; Three-Dimensional Analysis of Dental Casts by Means of the Optocom; Journal of Dental Research; 51(4); p. 1100; Jul.-Aug. 1972.
Van Der Linden; A New Method to Determine Tooth Positions and Dental Arch Dimensions; Journal of Dental Research; 51(4); p. 1104; Jul.-Aug. 1972.
Van Der Zel; Ceramic-Fused-to-Metal Restorations with a New CAD/CAM System; Quintessence International; 24(A); pp. 769-778; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 1993.
Van Hilsen et al.; Comparing potential early caries assessment methods for teledentistry; BMC Oral Health; 13(16); doi: 10.1186/1472-6831-13-16; 9 pages; Mar. 2013.
Varady et al.; Reverse Engineering of Geometric Models An Introduction; Computer-Aided Design; 29(4); pp. 255-268; 20 pages; (Author Manuscript); Apr. 1997.
Verstreken et al.; An Image-Guided Planning System for Endosseous Oral Implants; IEEE Transactions on Medical Imaging; 17(5); pp. 842-852; Oct. 1998.
Vevin et al.; Pose estimation of teeth through crown-shape matching; In Medical Imaging: Image Processing of International Society of Optics and Photonics; vol. 4684; pp. 955-965; May 9, 2002.
Virtual Orthodontics; Our innovative software; 2 pages; (http://www.virtualorthodontics.com/innovativesoftware.html); retrieved from the internet (https://web.archive.org/web/20070518085145/http://www.virtualorthodontics.com/innovativesoftware.html); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2005.
Warunek et al.; Physical and Mechanical Properties of Elastomers in Orthodonic Positioners; American Journal of Orthodontics and Dentofacial Orthopedics; 95(5); pp. 388-400; 21 pages; (Author Manuscript); May 1989.
Warunek et.al.; Clinical Use of Silicone Elastomer Applicances; JCO; 23(10); pp. 694-700; Oct. 1989.
Watson et al.; Pressures recorded at te denture base-mucosal surface interface in complete denture wearers; Journal of Oral Rehabilitation 14(6); pp. 575-589; Nov. 1987.
Wells; Application of the Positioner Appliance in Orthodontic Treatment; American Journal of Orthodontics; 58(4); pp. 351-366; Oct. 1970.
Wiedmann; According to the laws of harmony to find the right tooth shape with assistance of the computer; Digital Dental News; 2nd vol.; pp. 0005-0008; (English Version Included); Apr. 2008.
Wikipedia; Palatal expansion; 3 pages; retrieved from the internet (https://en.wikipedia.org/wiki/Palatal_expansion) on Mar. 5, 2018.
Williams; Dentistry and CAD/CAM: Another French Revolution; J. Dent. Practice Admin.; 4(1); pp. 2-5 Jan./Mar. 1987.
Williams; The Switzerland and Minnesota Developments in CAD/CAM; Journal of Dental Practice Administration; 4(2); pp. 50-55; Apr./Jun. 1987.
Windmiller et al.; Wearable electrochemical sensors and biosensors: a review; Electroanalysis; 25(1); pp. 29-46; Jan. 2013.
Wireless Sensor Networks Magazine; Embedded Teeth for Oral Activity Recognition; 2 pages; retrieved on Sep. 19, 2016 from the internet (www.wsnmagazine.com/embedded-teeth/); Jul. 29, 2013.
Wishan; New Advances in Personal Computer Applications for Cephalometric Analysis, Growth Prediction, Surgical Treatment Planning and Imaging Processing; Symposium: Computerized Facial Imaging in Oral and Maxilofacial Surgery; p. 5; Presented on Sep. 13, 1990.
Witt et al.; The wear-timing measuring device in orthodontics-cui bono? Reflections on the state-of-the-art in wear-timing measurement and compliance research in orthodontics; Fortschr Kieferorthop.; 52(3); pp. 117-125; (Translation Included) Jun. 1991.
Wolf; Three-dimensional structure determination of semi-transparent objects from holographic data; Optics Communications; 1(4); pp. 153-156; Sep. 1969.
Wong et al.; Computer-aided design/computer-aided manufacturing surgical guidance for placement of dental implants: Case report; Implant Dentistry; 16(2); pp. 123-130; Sep. 2007.
Wong et al.; The uses of orthodontic study models in diagnosis and treatment planning; Hong Knog Dental Journal; 3(2); pp. 107-115; Dec. 2006.
WSCG'98—Conference Program, The Sixth International Conference in Central Europe on Computer Graphics and Visualization '98; pp. 1-7; retrieved from the Internet on Nov. 5, 2004, (http://wscg.zcu.cz/wscg98/wscg98.htm); Feb. 9-13, 1998.
Xia et al.; Three-Dimensional Virtual-Reality Surgical Planning and Soft-Tissue Prediction for Orthognathic Surgery; IEEE Transactions on Information Technology in Biomedicine; 5(2); pp. 97-107; Jun. 2001.
Yaltara Software; Visual planner; 1 page; retrieved from the internet (http://yaltara.com/vp/) on Jun. 6, 2008.
Yamada et al.; Simulation of fan-beam type optical computed-tomography imaging of strongly scattering and weakly absorbing media; Applied Optics; 32(25); pp. 4808-4814; Sep. 1, 1993.
Yamamoto et al.; Optical Measurement of Dental Cast Profile and Application to Analysis of Three-Dimensional Tooth Movement in Orthodontics; Front. Med. Biol. Eng., 1(2); pp. 119-130; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 1988.
Yamamoto et al.; Three-Dimensional Measurement of Dental Cast Profiles and Its Applications to Orthodontics; Conf. Proc. IEEE Eng. Med. Biol. Soc.; 12(5); pp. 2052-2053; Nov. 1990.
Yamany et al.; A System for Human Jaw Modeling Using Intra-Oral Images; Proc. of the 20th Annual Conf, of the IEEE Engineering in Medicine and Biology Society; vol. 2; pp. 563-566; Oct. 1998.
Yoshii; Research on a New Orthodontic Appliance: The Dynamic Positioner (D.P.); 111. The General Concept of the D.P. Method and Its Therapeutic Effect, Part 1, Dental and Functional Reversed Occlusion Case Reports; Nippon Dental Review; 457; pp. 146-164; 43 pages; (Author Manuscript); Nov. 1980.
Yoshii; Research on a New Orthodontic Appliance: The Dynamic Positioner (D.P.); I. The D.P. Concept and Implementation of Transparent Silicone Resin (Orthocon); Nippon Dental Review; 452; pp. 61-74; 32 pages; (Author Manuscript); Jun. 1980.
Yoshii; Research on a New Orthodontic Appliance: The Dynamic Positioner (D.P.); II. The D.P. Manufacturing Procedure and Clinical Applications; Nippon Dental Review; 454; pp. 107-130; 48 pages; (Author Manuscript); Aug. 1980.
Yoshii; Research on a New Orthodontic Appliance: The Dynamic Positioner (D.P.); III—The General Concept of the D.P. Method and Its Therapeutic Effect, Part 2. Skeletal Reversed Occlusion Case Reports; Nippon Dental Review; 458; pp. 112-129; 40 pages; (Author Manuscript); Dec. 1980.
Zhang et al.; Visual speech features extraction for improved speech recognition; 2002 IEEE International conference on Acoustics, Speech and Signal Processing; vol. 2; 4 pages; May 13-17, 2002.
Zhou et al.; Biofuel cells for self-powered electrochemical biosensing and logic biosensing: A review; Electroanalysis; 24(2); pp. 197-209; Feb. 2012.
Zhou et al.; Bio-logic analysis of injury biomarker patterns in human serum samples; Talanta; 83(3); pp. 955-959; Jan. 15, 2011.
Morton et al.; U.S. Appl. No. 16/177,067 entitled “Dental appliance having selective occlusal loading and controlled intercuspation,” filed Oct. 31, 2018.
Akopov et al.; U.S. Appl. No. 16/178,491 entitled “Automatic treatment planning,” filed Nov. 1, 2018.
O'Leary et al.; U.S. Appl. No. 16/195,701 entitled “Orthodontic retainers,” filed Nov. 19, 2018.
Shanjani et al., U.S. Appl. No. 16/206,894 entitled “Sensors for monitoring oral appliances,” filed Nov. 28, 2019.
Shanjani et al., U.S. Appl. No. 16/231,906 entitled “Augmented reality enhancements for dental practitioners.” filed Dec. 24, 2018.
Kopleman et al., U.S. Appl. No. 16/220,381 entitled “Closed loop adaptive orthodontic treatment methods and apparatuses,” filed Dec. 14, 2018.
Sabina et al., U.S. Appl. No. 16/258,516 entitled “Diagnostic intraoral scanning” filed Jan. 25, 2019.
Sabina et al., U.S. Appl. No. 16/258,523 entitled “Diagnostic intraoral tracking” filed Jan. 25, 2019.
Sabina et al., U.S. Appl. No. 16/258,527 entitled “Diagnostic intraoral methods and apparatuses” filed Jan. 25, 2019.
Culp; U.S. Appl. No. 16/236,220 entitled “Laser cutting,” filed Dec. 28, 2018.
Culp; U.S. Appl. No. 16/265,287 entitled “Laser cutting,” filed Feb. 1, 2019.
Arnone et al.; U.S. Appl. No. 16/235,449 entitled “Method and system for providing indexing and cataloguing of orthodontic related treatment profiles and options,” filed Dec. 28, 2018.
Mason et al.; U.S. Appl. No. 16/374,648 entitled “Dental condition evaluation and treatment,” filed Apr. 3, 2019.
Brandt et al.; U.S. Appl. No. 16/235,490 entitled “Dental wire attachment,” filed Dec. 28, 2018.
Kou; U.S. Appl. No. 16/270,891 entitled “Personal data file,” filed Feb. 8, 2019.
Related Publications (1)
Number Date Country
20180368944 A1 Dec 2018 US
Provisional Applications (1)
Number Date Country
62429545 Dec 2016 US