Force-detecting input structure

Abstract
An input mechanism, such as a crown, detects amounts of applied force. In various examples, an assembly including an input mechanism has an enclosure; a stem coupled to the enclosure such that the stem is rotatable, translatable, and transversely moveable with respect to the enclosure; a sensor, coupled between the stem and the housing, to which force is transferred when the stem moves with respect to the housing; and a processing unit coupled to the sensor. The processing unit is operable to determine a measurement of the force, based on a signal from the sensor.
Description
FIELD

The described embodiments relate generally to input mechanisms such as crowns. More particularly, the present embodiments relate to an input mechanism, such as a crown, that detects the amount of force applied.


BACKGROUND

Many devices, such as wearable electronic devices, use various input mechanisms to receive user input. Many devices, particularly small form factor devices, such as watches, smart watches, wearable devices, and so on, may have a limited number of input mechanisms


For example, many watches include a crown or similar input mechanisms. Some crowns can be rotated to wind the watch. Other crowns may be translated into a time-changing position whereupon they may be rotated to change the time of the watch.


SUMMARY

The present disclosure relates to an input mechanism, such as a crown, button, key, surface, or the like, that detects applied force. The input mechanism may be included in an electronic device. A user may provide input by rotating the input mechanism, translating the input mechanism, moving the input mechanism transversely, and so on. The input mechanism may include one or more force sensors that the electronic device may use to determine a non-binary amount of the force applied to the input mechanism. As the electronic device may determine non-binary amounts of force corresponding to different types of movement, the input mechanism may be used to receive a variety of different input.


In various embodiments, an electronic device includes a housing, a collar coupled to the housing, and an input structure extending from the collar. The collar includes a moveable conductor, a conductive element, and a separation defined between the moveable conductor and the conductive element. Movement of the input structure changes a capacitance between the moveable conductor and the conductive element.


In some examples, the electronic device further includes a processing unit operative to determine an amount of force applied to the input structure based on the change in capacitance. In numerous examples, the electronic device further includes silicone disposed within the separation.


In various examples, the conductive element includes a flex circuit that extends through at least part of the collar into the housing. In some examples, the collar includes an inner core to which the conductive element is coupled and a compliant material disposed in the separation that couples the conductive element and the moveable conductor. In numerous examples, the input structure is operable to move without changing the capacitance between the moveable conductor and the conductive element.


In some embodiments, an input mechanism assembly includes an enclosure and a stem coupled to the enclosure, such that the stem is rotatable with respect to the enclosure, translatable toward and away from the enclosure, and transversely moveable with respect to the enclosure. The input mechanism assembly further includes a sensor, coupled between the stem and the enclosure, to which force is transferred when the stem moves transversely with respect to the enclosure and a processing unit, coupled to the sensor, operable to determine a measurement of the force, based on a signal from the sensor. The processing unit may also be operative to determine a direction in which the stem moves transversely.


In various examples, the sensor is a strain gauge. In other examples, the sensor includes a first conductor, a second conductor, and a dielectric separating the first and second conductors. The dielectric may be a compliant material.


In numerous examples, input mechanism assembly further includes a collar coupled to the housing and the sensor couples the stem to the collar. In various examples, input mechanism assembly further includes a wireless transmission mechanism that wirelessly couples the processing unit and the sensor. In some examples, input mechanism assembly further includes an additional sensor coupled between the stem and the processing unit and the processing unit is operable to determine a measurement of a force that translates the stem, based on a signal from the additional sensor.


In numerous embodiments, an electronic device, comprising: a body; a coupler positioned at least partially within the body; an input mechanism, connected to the coupler, operable to move with respect to the body; a capacitive sensor, coupled to the input mechanism, to which force is transferred when the input mechanism moves; and a processing unit operable to ascertain an amount of the force based on a change in a capacitance of the capacitive sensor.


In various examples, the coupler includes the capacitive sensor. In some examples, the capacitive sensor includes a first capacitive element, a second capacitive element, and a compliant material positioned between the first and second capacitive elements. In some implementations of such examples, the compliant material extends between the coupler and the body and seals the coupler to the body.


In some examples, the input mechanism moves transverse with respect to the body. In various examples, a portion of the input mechanism moves closer to the body. In numerous examples, a change in proximity between the first and second conductors is proportional to the amount of the force.





BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure will be readily understood by the following detailed description in conjunction with the accompanying drawings, wherein like reference numerals designate like structural elements.



FIG. 1 depicts an example electronic device including a force-detecting input structure.



FIG. 2A depicts a schematic cross-sectional view of the electronic device of FIG. 1, taken along A-A of FIG. 1, illustrating a first example of the force-detecting input structure.



FIG. 2B depicts the electronic device of FIG. 2A while a user is exerting force to move the input structure transversely with respect to a housing of the electronic device.



FIG. 2C depicts the electronic device of FIG. 2A while a user is exerting force to translate the input structure towards the housing of the electronic device.



FIG. 3 depicts a second example of a force-detecting input structure in accordance with further embodiments.



FIG. 4 depicts a third example of a force-detecting input structure in accordance with further embodiments.



FIG. 5 depicts a fourth example of a force-detecting input structure in accordance with further embodiments.



FIG. 6 depicts a fifth example of a force-detecting input structure in accordance with further embodiments.



FIG. 7 depicts a sixth example of a force-detecting input structure in accordance with further embodiments.



FIG. 8 depicts a seventh example of a force-detecting input structure in accordance with further embodiments.



FIG. 9 depicts an eighth example of a force-detecting input structure in accordance with further embodiments.



FIG. 10 depicts a flow chart illustrating an example method for detecting force applied to a crown. This method may be performed by the electronic devices of FIGS. 1-6.





DETAILED DESCRIPTION

Reference will now be made in detail to representative embodiments illustrated in the accompanying drawings. It should be understood that the following descriptions are not intended to limit the embodiments to one preferred embodiment. To the contrary, it is intended to cover alternatives, modifications, and equivalents as can be included within the spirit and scope of the described embodiments as defined by the appended claims.


The description that follows includes sample systems, methods, and apparatuses that embody various elements of the present disclosure. However, it should be understood that the described disclosure may be practiced in a variety of forms in addition to those described herein.


The following disclosure relates to a crown or other input mechanism or structure, such as a button, key, switch, surface, or the like, that may be included in an electronic device. The input structure may rotate, translate, move transversely, and so on. The input structure may include one or more force sensors positioned in the input structure that may be used to determine an amount of applied force applied. As the electronic device may determine applied force corresponding to different types of movement, the input structure may be used to receive a variety of different inputs.


These and other embodiments are discussed below with reference to FIGS. 1-10. However, those skilled in the art will readily appreciate that the detailed description given herein with respect to these Figures is for explanatory purposes only and should not be construed as limiting.



FIG. 1 depicts an example electronic device 100, including a force-detecting input structure 101. The electronic device 100 may be operable to receive input from a user. The electronic device 100 may also be operable to perform various actions in response to input received via the force-detecting input structure 101. The electronic device 100 may receive different inputs based on rotation of the force-detecting input structure 101, translation of the force-detecting input structure 101, transverse movement of the force-detecting input structure 101, application of force to the force-detecting input structure 101, and so on.


When force is exerted on the force-detecting input structure 101, the electronic device 100 may ascertain or measure the force. Generally, the electronic device 100 may interpret different amounts of force as different inputs.



FIG. 2A depicts a schematic cross-sectional view of the electronic device 100 of FIG. 1, taken along A-A of FIG. 1, illustrating a first example of a force-detecting input structure 101. As shown, the input structure 101 is a crown in this example. The input structure 101 includes a stem 203 that is coupled to a housing 204, body, or other enclosure of the electronic device 100. The input structure 101 is coupled to the housing 204 via a collar 208 or other coupler, bushing 207, and one or more gaskets 209.


With reference to FIGS. 2A-2C, the input mechanism assembly involving the input structure 101 will now be described in more detail. The collar 208 may be positioned an aperture defined by the housing 204 (e.g., a first aperture). A gasket 211 may be compressed between the collar 208 and the housing 204, coupling the collar 208 to the housing 204. The gasket 211 may form a seal or other barrier against passage of contaminants. The seal may be a liquid seal. The collar 208 may define an aperture (e.g., a second aperture). A portion of the stem 203 is positioned in the aperture defined by the collar 208.


The collar 208 includes an inner core 225. Flex circuits 214a, 214b or other conductors are coupled to the inner core 225. The collar 208 also includes compliant silicone 213a, 213b or other compliant dielectric material coupled to the flex circuits 214a, 214b. The compliant silicone 213a, 213b may be a portion of the gasket 211 that extends at least partially through the collar 208. The collar 208 further includes moveable conductors 212a, 212b coupled to the compliant silicone 213a, 213b.


The stem 203 is slideably coupled at least partially around the collar 208 by one or more bushings 207. The portion of the stem 203 extending from the collar 208 is further slideably coupled at least partially within the collar 208 by one or more gaskets 209 (such as one or more o-rings). These slideable couplings allows the stem 203 to rotate with respect to the housing 204 and the collar 208.


In some embodiments, the bushing 207 and/or the gasket 209 may be formed from compliant materials such as high molecular weight polyethylene, elastomer, and so on. In various embodiments, the stem 203 and/or the collar 208 may be formed of polished or coated titanium or other suitable materials that further permit the stem 203 to slide within and around the collar 208. The bushing 207 and the gasket 209 may bear the majority of the stress relating to sliding of the stem 203.


A cap 202, knob, or similar structure may be coupled to the stem 203. In some implementations, the stem 203 may snap to fit into the cap 202. In various implementations, the stem 203 may be bonded or otherwise attached to the cap 202, such as by an adhesive.


Force detection using the input structure 101 will now be described. The collar 208 includes a number of capacitive sensors formed by the flex circuits 214a, 214b, compliant silicone 213a, 213b, and the moveable conductors 212a, 212b. A capacitance of these respective capacitive sensors may be dependent on the proximity of the respective capacitive elements (e.g., the moveable conductors 212a, 212b and the flex circuits 214a, 214b) across separations defined between the respective capacitive elements. Compliant silicone 213a, 213b is positioned within the separations. The compliant silicone 213a, 213b deforms under the application of force to allow the moveable conductors 212a, 212b to move closer to and further away from the flex circuits 214a, 214b, altering the capacitance between these respective capacitive elements.


The movement of the moveable conductors 212a, 212b with respect to the flex circuits 214a, 214b may be proportional to the force exerted. Similarly, the changes in capacitance of the capacitive sensors may be proportional to the movement of the moveable conductors 212a, 212b with respect to the flex circuits 214a, 214b. Thus, the changes in capacitance between the capacitive elements may be proportional to the force exerted.


A processing unit 223 is electrically coupled to the flex circuits 214a, 214b or other conductive elements. The processing unit 223 receives signals that indicate changes in capacitance between the respective capacitive elements. The processing unit 223 correlates these changes in capacitance to amounts of force to determine the force applied to the input structure 101. For example, the processing unit 223 may utilize a lookup table or other data structure stored in a non-transitory storage medium correlating capacitances and force amounts. The processing unit 223 may be able to determine non-binary amounts forces that are applied.


Transverse movement of the input structure 101 (e.g., movement in one of the directions 262 shown in FIG. 2B) will now be described. Force applied to the input structure 101 is transferred by the stem 203 to the respective moveable conductors 212a, 212b, and therefore to the compliant silicone 213a, 213b. This transferred force deforms the compliant silicone 213a, 213b, thereby changing the proximity between the moveable conductors 212a, 212b and the flex circuits 214a, 214b. These changes in proximity may alter capacitance between the moveable conductors 212a, 212b and the flex circuits 214a, 214b.



FIG. 2B depicts the electronic device 100 of FIG. 2A while a user 230 is exerting force to transversely move the input structure 101 in one of the directions 261 shown in FIG. 2B. The stem 203 receives and transfers the exerted force to the collar 208. This transferred force deforms the compliant silicone 213a, 213b. This shifts the moveable conductor 212a closer to the flex circuit 214a. This also shifts the moveable conductor 212b further from the flex circuit 214b. The change in proximity between the moveable conductors 212a, 212b and the flex circuits 214a, 214b changes the capacitance of the respective capacitive sensors formed thereby. The processing unit 223 analyzes these changes in capacitance to determine the amount of the force exerted on the input structure 101.


Additionally, the processing unit 223 may analyze changes in capacitance to determine other information. For example, the processing unit 223 may analyze changes in capacitance to determine a direction in which the force is applied, additional forces applied to the input structure 101, a direction of the transverse movement of the input structure 101, and so on. For example, force applied in the direction shown in FIG. 2B may result in an increase in the capacitance of the capacitive sensor (e.g., force sensor) formed by the moveable conductor 212a and the flex circuit 214a and a decrease in capacitance of the capacitive sensor formed by the moveable conductor 212b and the flex circuit 214b. The processing unit 223 may compare the changes in capacitance to determine that the force is applied in the direction shown in FIG. 2B.


Translational movement (e.g., movement in one of the directions 262 shown in FIG. 2C) of the input structure 101 will now be described. The slideable coupling of the stem 203 with respect to the collar 208 by the bushing 207 and the gasket 209 also allows the stem 203 to move toward the housing 204 and the collar 208 and/or away from the housing 204 and the collar in one of the directions 262 shown in FIG. 2C. Thus, the stem 203 is translatable. Similarly to rotational movement, the bushing 207 and the gasket 209 may bear the majority of the stress related to the sliding of the stem 203.



FIG. 2C depicts the electronic device 100 of FIG. 2A while a user 230 is exerting force to move the input structure 101 towards the housing 204. Translation of the input structure 101 towards the housing 204 decreases gaps between the cap 202 and the housing 204 and/or the collar 208.


Although the moveable conductors 212a, 212b are illustrated and described as separate components with respect to FIGS. 2A-2C, it is understood that this is an example. In various implementations, the moveable conductors 212a, 212b may be a single, unitary component. For example, in some implementations, the moveable conductors 212a, 212b may be a ring positioned around the compliant silicone 213a, 213b.


In various implementations, the electronic device 100 may include additional components that interact with movement of the input structure 101. In some embodiments, the electronic device 100 may include one or more components that resist translation of the input structure 101 towards the housing 204 and/or reverse such translation after force is exerted. For example, in some implementations, the electronic device 100 may include a dome switch or similar actuator mechanism connected in various ways to the stem 203. Translation of the stem 203 may compress the dome switch. Thus, the dome switch may resist translation of the stem 203. However, sufficient force translating the stem 203 may overcome the resistance and compress the dome switch. After exertion of the force, the dome switch may uncompress. This may reverse the translation of the stem 203.


In various embodiments, compression of the dome switch may also provide a tactile output in response to translation of the stem 203. In various implementations, the processing unit 223 may receive one or more signals related to compression or activation of the dome switch. By way of example, see the fourth example of a force-detecting input structure of FIG. 5.


In numerous embodiments, the electronic device 100 may include various mechanisms for detecting rotation, translation, or other movement of the stem 203. For example, in various implementations, one or more detectable elements may be positioned on the stem 203 and/or other components coupled to the stem 203. The detectable element may be any mechanism that is detectable by a detector. The detector may detect the detectable element to track translational, rotational, and/or transverse movement of the stem 203. In some implementations, the detector may be an optical detector, and the detectable element may be a series of coded markings that the optical detector detects to determine position and/or movement of the stem 203 with respect to the detector.


The electronic device 100 may include various additional components. For example, a cover glass 224 and/or display, touch display, and so on may be coupled to the housing 204. Various configurations are possible and contemplated without departing from the scope of the present disclosure.


Although FIGS. 2A-2C illustrate the input structure 101 as having capacitive sensors disposed in the collar 208 that may be used to detect the amount of force applied to transversely move the input structure 101, it is understood that this is an example. Various configurations of the input structure 101 are possible and contemplated without departing from the scope of the present disclosure.


For example, FIG. 3 depicts a second example of a force-detecting input structure 301 in accordance with further embodiments. Similar to the input structure 101 of FIGS. 2A-2C, the force-detecting input structure 301 includes a stem 303 slideably coupled to the housing 304, body, or other enclosure via the collar 308 or other coupler. However, in this example, the collar 308 may not include capacitive sensors. Instead, the bushings 307a, 307b may include capacitive sensors that may be used to detect force applied to the force-detecting input structure 301. The capacitive sensors may respectively include first conductors 341a, 341b and second conductors 343a, 343b separated by compliant material 342a, 342b. The compliant material 342a, 342b allows movement of the first conductors 341a, 341b and second conductors 343a, 343b in response to transverse movement of the stem 303. The flex circuits 314a, 314b extend through the collar 308 to the bushings 307a, 307b to connect the respective capacitive sensors to the processing unit 323.


In this example, the first conductors 341a, 341b and second conductors 343a, 343b may be formed of materials that are conductive but still allow sliding of the stem 303 with respect to the collar 308. For example, compliant capacitive materials such as metal-doped polymers may be used. In other implementations, conductive materials that do not allow sliding may be embedded in material that does allow sliding.


In other implementations, the bushings 307a, 307b may not include such conductive materials but may be compliant to allow movement of the stem 303 and the collar 308. In such other implementations, portions of the stem 303 and the collar 308 may be the first and second conductors that form the respective capacitive sensors. For example, the entire bushings 307a, 307b may be formed of such a compliant material, the bushings 307a, 307b may include compliant material within the bushings 307a, 307b that allow the movement, and so on.


Although the bushings 307a, 307b are illustrated as including components forming capacitive sensors in the example shown in FIG. 3, it is understood that this is an example. In other implementations, capacitive sensors may be formed by elements in other components, such as the gasket 309 without departing from the scope of the present disclosure. Further, although the input structures 101 and 301 of FIGS. 2A-2C and 3 illustrate capacitive sensors that are used to detect amounts of force that move the input structures 101 and 301 transversely, it is understood that these are examples. Input structures in other implementations may be configured to detect amounts of force exerted in other directions without departing from the scope of the present disclosure.


For example, FIG. 4 depicts a third example of a force-detecting input structure 401 in accordance with further embodiments where amounts of force that translate the input structure 401 toward and/or away from the housing 404 may be detected. Similar to the input structure 101 of FIGS. 2A-2C, the input structure 401 includes compliant material 444a, 444b, moveable portions 412a, and flex circuits 414a, 414b or other conductive materials. However, in this example, the moveable portions 412a, 412b are moveable by translation of the input structure 401. Thus, capacitive sensors formed by the moveable portions 412a, 412b, the flex circuits 414a, 414b, and the compliant material 444a, 444b may be used to detect amounts of force that translate the input structure 401.


In still other examples, capacitive sensors may be formed by other components of the input structure 401 and/or electronic devices that include such input structures 401. FIG. 5 depicts a fourth example of a force-detecting input structure 501 in accordance with further embodiments where a shear plate 521 positioned between the stem 503 and a dome switch 522 or other actuator includes such a capacitive sensor.


In this embodiment, a structure 517 couples the collar 508 to the housing 504. The dome switch 522 is mounted to the structure 517 so that translation of the stem 503 may compress the dome switch 522. The shear plate 521 separates the dome switch 522 from the stem 503. Flex circuit 518 and/or other electrical connections connect the dome switch 522 and the processing unit 523.


In this example, the shear plate 521 includes a capacitive sensor formed by a first conductor 545 separated from a second conductor 547 by a compliant material 546. The capacitive sensor may be used to detect amounts of force that translate the input structure 501.


Contrasted with the input structure 101 of FIGS. 2A-2C, this implementation may allow detection of force using the input structure 501 while allowing use of a unitary collar 508. This implementation may also allow detection of force using the input structure 501 without extending the flex circuit 514 through the collar 508, gasket 511, and so on.


Although the examples illustrated in FIGS. 2A-5 directly connect the processing units 223-523 to the respective capacitive sensors, it is understood that these are examples. Other configurations are possible and contemplated without departing from the scope of the present disclosure. For example, in various implementations, wireless connections and/or wireless transmission mechanisms may be used that allow unitary collars 208-508 and/or do not extend electrical connections through gaskets 211-511 and/or other components.


For example, FIG. 6 depicts a fifth example of a force-detecting input structure 601 in accordance with further embodiments that uses inductive coils 649, 650 as a wireless transmission mechanism to electrically connect capacitive sensors with processing unit 623 (via a flex circuit 648 and/or other electrical connection). In this example, inductive coils 649, 650 inductively exchange power such that the processing unit 623 receives changes in capacitance of capacitive sensors formed by moveable portions 612a, 612b, compliant material 613a, 613b, flex circuits 614a, 614b and/or other electrical connection. In this way, the processing unit 623 may determine applied force without extending the flex circuit 648 through the gasket 611.


Although the examples illustrated in FIGS. 2A-6 detect force applied to the various input structures 101-601 using the various respective capacitive sensors, it is understood that these are examples. In various implementations, force detection sensors other than and/or in addition to capacitive sensors may be used without departing from the scope of the present disclosure. For example, in various implementations, piezoelectric material that generates a voltage when deformed may be used. In such examples, the voltage may be proportional to the amount of deformation, and thus the force exerted. As such, the voltage generated by the piezoelectric material may be correlated to force amounts to determine the force exerted.


By way of another example, strain gauges may be used as force detection sensors in various implementations instead of and/or in addition to capacitive sensors. FIG. 7 depicts a sixth example of a force-detecting input structure 701 in accordance with further embodiments that utilize strain gauges 751a, 751b to determine force exerted on the input structure 701.


In this example, the collar 708 may be formed from materials that can be strained by force transferred by the stem 703. Strain gauges 751a, 751b are disposed on the collar 708 in areas of the collar 708 that are strained by the transferred force. The processing unit 723 receives signals indicating the strain via flex circuits 714a, 714b and/or electrical connections and may correlate the strain to force amounts to determine force applied to the input structure 701.


Although FIG. 7 illustrates a particular configuration of strain gauges 751a, 751b, it is understood that this is an example. In various implementations, various components may be strained by force applied to the input structure 701 and strain gauges 751a, 751b may be disposed on and/or in such components.


By way of example, FIG. 8 depicts a seventh example of a force-detecting input structure 801 in accordance with further embodiments. In this example, a shaft of the stem 803 may be formed from a material that is strained by force exerted on the stem 803 and strain gauges 852a, 852b may be disposed on the shaft. The processing unit 823 may wirelessly receive strain data from the strain gauges 852a, 852b via inductive coils 853, 854 (to which the processing unit 823 may be coupled via the flex circuit 814 and/or other electrical connections). The processing unit 823 may correlate the strain to force amounts to determine force applied to the input structure 801.


By way of another example, FIG. 9 depicts an eighth example of a force-detecting input structure 901 in accordance with further embodiments. In this example, arms 955a, 955b of the stem 903 may be formed from a material that is strained by force exerted on the stem 903 and strain gauges 952a, 952b may be disposed on the arms 955a, 955b. The processing unit 923 may wirelessly receive strain data via inductive coils 953, 954 and the flex circuit 914 and/or other electrical connection and correlate the strain to force amounts.


Although FIGS. 2A-9 illustrate and describe various force sensors that are variously configured and positioned to detect the amount of forces applied to the respective input structures 101-901 in various directions, it is understood that these are examples. In various implementations, any kind of force sensors may be located in a variety of different areas to detect the amount of a variety of different forces that may be exerted on the input structures 101-901 without departing from the scope of the present disclosure.


Further, although the input structures 101-901 are illustrated as crowns with respect to FIGS. 2A-9, it is understood that these are examples. In various implementations, the techniques discussed herein may be utilized with a variety of different input mechanisms and/or input mechanism assemblies without departing from the scope of the present disclosure. Such input mechanisms may be operable to receive translational input, rotational input, input related to transverse movement, and/or a variety of different movement related input.


Additionally, although the electronic devices 100 of FIGS. 1-9 are illustrated as a smart watch, it is understood that these are examples. In various implementations, the techniques illustrated and described herein may be utilized with a variety of different devices without departing from the scope of the present disclosure. Such devices may include wearable electronic devices, laptop computing devices, cellular telephones, displays, tablet computing devices, mobile computing devices, smart phones, digital media players, desktop computing devices, printers, speakers, input devices, and so on.



FIG. 10 depicts a flow chart illustrating an example method 1000 for detecting force applied to a crown or other input structure. This method 1000 may be performed by the electronic devices 100 of FIGS. 1-6.


At 1010, an electronic device operates. The flow proceeds to 1020 where the electronic device monitors the capacitance of one or more capacitive sensors associated with force exerted on an input mechanism such as a crown. Next, the flow proceeds to 1030 where the electronic device determines whether or not the capacitance has changed.


If the capacitance has not changed, the flow returns to 1010 where the electronic device continues to operate. Otherwise, the flow proceeds to 1040.


At 1040, after the electronic device determines that the capacitance of one or more capacitive sensors associated with force exerted on an input mechanism such as a crown has changed, the electronic device correlates the capacitance change to an amount of force. The flow then proceeds to 1050 where the electronic device performs one or more actions corresponding to the force amount.


For example, the electronic device may interpret the force amount as input indicating to select an icon displayed on a display and/or to execute an application associated with such an icon. In some examples, the electronic device may interpret the force amount as input indicating to select the icon displayed on the display if the force amount exceeds a first force threshold and to execute the application associated with the icon if the force amount exceeds a second, greater threshold. In this way, application of force may be used by a user to signal actions typically triggered by a single mouse click and a double mouse click of the icon without utilization of a mouse as an input device.


From 1050, after the electronic device performs the one or more actions corresponding to the amount of force, the flow returns to 1010. At 1010, the electronic device continues to operate.


Although the example method 1000 is illustrated and described as including particular operations performed in a particular order, it is understood that this is an example. In various implementations, various orders of the same, similar, and/or different operations may be performed without departing from the scope of the present disclosure.


For example, the example method 1000 is illustrated and described as monitoring changes in the capacitance of a capacitive sensor and determining force amounts based on such changes. However, in various implementations, force sensors other than capacitive sensors may be used without departing from the scope of the present disclosure. Use of such other force sensors may include monitoring voltages generated by deformation of piezoelectric material, receiving signals from one or more strain gauges, and so on.


As described above and illustrated in the accompanying figures, the present disclosure relates to a crown or other input mechanism included in an electronic device, such as a button, key, switch, surface, or the like. The crown may rotate, translate, move transversely, and so on. The crown may include one or more force sensors positioned in the input mechanism that may be used to determine an amount of force applied to the crown. In this way, the crown may be used to receive a variety of different inputs from the user.


In the present disclosure, the methods disclosed may be implemented as sets of instructions or software readable by a device. Further, it is understood that the specific order or hierarchy of steps in the methods disclosed are examples of sample approaches. In other embodiments, the specific order or hierarchy of steps in the method can be rearranged while remaining within the disclosed subject matter. The accompanying method claims present elements of the various steps in a sample order, and are not necessarily meant to be limited to the specific order or hierarchy presented.


The foregoing description, for purposes of explanation, used specific nomenclature to provide a thorough understanding of the described embodiments. However, it will be apparent to one skilled in the art that the specific details are not required in order to practice the described embodiments. Thus, the foregoing descriptions of the specific embodiments described herein are presented for purposes of illustration and description. They are not targeted to be exhaustive or to limit the embodiments to the precise forms disclosed. It will be apparent to one of ordinary skill in the art that many modifications and variations are possible in view of the above teachings.

Claims
  • 1. An electronic watch comprising: a housing defining an opening;a touch display positioned at least partially within the opening of the housing;a crown positioned along a side of the housing and comprising: a cap that is configured to receive a force input; anda force sensor coupled to the cap and comprising a first conductive element and a second conductive element that is separated from the first conductive element; anda processing unit positioned within the housing and operably coupled to the force sensor, the processing unit configured to estimate an amount of the force input based on a change in capacitance between the first conductive element and the second conductive element.
  • 2. The electronic watch of claim 1, wherein: the crown further comprises a stem coupled to the cap;the opening is a first opening;the housing defines a second opening along the side of the housing; andthe stem of the crown extends into the second opening and is rotatably coupled to the housing.
  • 3. The electronic watch of claim 2, wherein: the force sensor is positioned between the stem and the cap of the crown;the force input causes the cap to move with respect to the stem; andthe movement of the cap causes the change in capacitance between the first conductive element and the second conductive element.
  • 4. The electronic watch of claim 2, wherein: the force sensor is positioned along an end of the stem;the force input causes the cap and the stem to move with respect to the housing; andthe movement of the cap and the stem causes the change in capacitance between the first conductive element and the second conductive element.
  • 5. The electronic watch of claim 4, wherein: the electronic watch further comprises a dome switch positioned along the end of the stem; andthe force sensor is positioned between the dome switch and the stem.
  • 6. The electronic watch of claim 1, wherein: the first conductive element is separated from the second conductive element by a compliant material; andthe force input causes the compliant material to deform moving the first conductive element closer to the second conductive element.
  • 7. The electronic watch of claim 6, wherein the compliant material is a silicone material.
  • 8. An electronic watch comprising: a housing;a display positioned at least partially within the housing;a crown rotatably coupled to the housing and configured to receive a rotational input, the crown comprising a force sensor that is configured to deform in response to a force applied to the crown; anda processing unit disposed within the housing, operably coupled to the force sensor, and configured to estimate an amount of the force in response to an output of the force sensor; wherein: the display is responsive to the amount of the force estimated by the processing unit; andthe display is responsive to the rotational input received by the crown.
  • 9. The electronic watch of claim 8, wherein: the force sensor comprises a first conductive element and a second conductive element;a compliant material is positioned between the first conductive element and the second conductive element; andthe compliant material is configured to deform in response to the force applied to the crown.
  • 10. The electronic watch of claim 9, wherein: the electronic watch further comprises an inner core coupled to the housing;the crown comprises a cap that is coupled to the inner core;the first conductive element is fixed with respect to the inner core; andthe second conductive element is fixed with respect to the cap.
  • 11. The electronic watch of claim 8, wherein: the crown comprises a cap that is configured to receive the force; andthe force displaces the cap toward the housing.
  • 12. The electronic watch of claim 8, wherein: the force is a first force;the crown comprises a cap that is configured to receive the first force;the cap is configured to displace in a first direction that is toward the housing in response to receiving the first force;the cap is configured to receive a second force;the cap is configured to displace in a second direction that is transverse to the first direction in response to the second force; andthe display is responsive to the second force applied to the crown.
  • 13. The electronic watch of claim 8, wherein: the display is configured to display an icon;the processing unit is configured to determine if the amount of the force exceeds a threshold; andan application associated with the icon is executed in response to the force exceeding the threshold.
  • 14. An electronic watch, comprising: a housing;a display positioned at least partially within the housing and configured to display a graphical output;a crown coupled to the housing and comprising: a cap defining an external surface that is configured to receive a force; anda force sensor that is coupled to the cap and configured to produce a non-binary output in response to the received force; anda processing unit configured to modify the graphical output of the display in response to the non-binary output.
  • 15. The electronic watch of claim 14, wherein: the force sensor comprises a first conductive element and a second conductive element;the first conductive element is separated from the second conductive element by a compliant dielectric material; andthe force sensor is configured to produce the non-binary output based on a change in capacitance between the first conductive element and the second conductive element caused by the received force.
  • 16. The electronic watch of claim 15, wherein: the crown comprises a stem coupled to the cap;the first conductive element is fixed with respect to the cap; andthe second conductive element is fixed with respect to the stem.
  • 17. The electronic watch of claim 14, wherein the processing unit is configured to determine if the non-binary output exceeds a threshold.
  • 18. The electronic watch of claim 17, wherein the electronic watch is configured to execute an application in response to the non-binary output exceeding the threshold.
  • 19. The electronic watch of claim 14, wherein: the force sensor comprises a strain gauge; andthe strain gauge is configured to produce the non-binary output in response to the received force.
  • 20. The electronic watch of claim 14, wherein: the force sensor comprises a piezoelectric element; andthe piezoelectric element is configured to produce the non-binary output in response to the received force.
CROSS-REFERENCE TO RELATED APPLICATION(S)

This application is a continuation patent application of U.S. patent application Ser. No. 15/219,253, filed Jul. 25, 2016 and titled “Force-Detecting Input Structure,” now U.S. Pat. No. 10,019,097, the disclosure of which is hereby incorporated herein by reference in its entirety.

US Referenced Citations (392)
Number Name Date Kind
2237860 Bolle Apr 1941 A
2288215 Taubert et al. Jun 1942 A
2497935 Feurer Feb 1950 A
2771734 Morf Nov 1956 A
2788236 Kafowi Apr 1957 A
2797592 Marrapese Jul 1957 A
3040514 Dinstman Jun 1962 A
3056030 Kelchner Sep 1962 A
3130539 Davis Apr 1964 A
3355873 Morf Dec 1967 A
3362154 Perret Jan 1968 A
3410247 Dronberger Nov 1968 A
3495398 Widmer et al. Feb 1970 A
3577876 Spadini May 1971 A
3621649 Vulcan et al. Nov 1971 A
3662618 Kroll et al. May 1972 A
4007347 Haber Feb 1977 A
4031341 Wuthrich et al. Jun 1977 A
4037068 Gaynor Jul 1977 A
4077200 Schneider Mar 1978 A
4133404 Griffin Jan 1979 A
4170104 Yamagata Oct 1979 A
4258096 LaMarche Mar 1981 A
4287400 Kitik Sep 1981 A
4289400 Kubola et al. Sep 1981 A
4311026 Ochoa Jan 1982 A
4311990 Burke Jan 1982 A
4324956 Sakakino et al. Apr 1982 A
4345119 Latasiewicz Aug 1982 A
4364674 Tesch Dec 1982 A
4379642 Meyrat Apr 1983 A
4395134 Luce Jul 1983 A
4396298 Ripley Aug 1983 A
4417824 Paterson et al. Nov 1983 A
4581509 Sanford et al. Apr 1986 A
4600316 Besson Jul 1986 A
4617461 Subbarao et al. Oct 1986 A
4634861 Ching et al. Jan 1987 A
4641026 Garcia, Jr. Feb 1987 A
4670737 Rilling Jun 1987 A
4766642 Gaffney et al. Aug 1988 A
4783772 Umemoto et al. Nov 1988 A
4884073 Souloumiac Nov 1989 A
4914831 Kanezashi et al. Apr 1990 A
4922070 Dorkinski May 1990 A
4931794 Haag Jun 1990 A
4952799 Loewen Aug 1990 A
4980685 Souloumiac et al. Dec 1990 A
4987299 Kobayashi et al. Jan 1991 A
5034602 Garcia et al. Jul 1991 A
5214278 Banda May 1993 A
5258592 Nishikawa et al. Nov 1993 A
5288993 Bidiville et al. Feb 1994 A
5347123 Jackson et al. Sep 1994 A
5383166 Gallay Jan 1995 A
5471054 Watanabe Nov 1995 A
5509174 Worrell Apr 1996 A
5572314 Hyman et al. Nov 1996 A
5583560 Florin et al. Dec 1996 A
5631881 Pessey et al. May 1997 A
5726645 Kamon et al. Mar 1998 A
5748111 Bates May 1998 A
5825353 Will Oct 1998 A
5841050 Clift et al. Nov 1998 A
5847335 Sugahara et al. Dec 1998 A
5867082 Van Zeeland Feb 1999 A
5943233 Ebina Aug 1999 A
5953001 Challener et al. Sep 1999 A
5960366 Duwaer et al. Sep 1999 A
5963332 Feldman et al. Oct 1999 A
5999168 Rosenberg et al. Dec 1999 A
6069567 Zawilski May 2000 A
6134189 Carrard Oct 2000 A
6154201 Levin et al. Nov 2000 A
6175679 Veligdan et al. Jan 2001 B1
6241684 Amano Jun 2001 B1
6246050 Tullis et al. Jun 2001 B1
6252825 Perotto Jun 2001 B1
6304247 Black Oct 2001 B1
6355891 Ikunami Mar 2002 B1
6361502 Puolakanaho et al. Mar 2002 B1
6392640 Will May 2002 B1
6396006 Yokoji et al. May 2002 B1
6422740 Leuenberger Jul 2002 B1
6477117 Narayanaswami et al. Nov 2002 B1
6502982 Bach et al. Jan 2003 B1
6525278 Villain et al. Feb 2003 B2
6556222 Narayanaswami Apr 2003 B1
6575618 Inoue et al. Jun 2003 B1
6587400 Line Jul 2003 B1
6646635 Pogatetz et al. Nov 2003 B2
6661438 Shiraishi et al. Nov 2003 B1
6672758 Ehrsam et al. Jan 2004 B2
6794992 Rogers Sep 2004 B1
6809275 Cheng et al. Oct 2004 B1
6834430 Worrell Dec 2004 B2
6846998 Hasumi et al. Jan 2005 B2
6888076 Hetherington May 2005 B2
6896403 Gau May 2005 B1
6909378 Lambrechts et al. Jun 2005 B1
6914551 Vidal Jul 2005 B2
6961099 Takano et al. Nov 2005 B2
6963039 Weng et al. Nov 2005 B1
6977868 Brewer et al. Dec 2005 B2
6982930 Hung Jan 2006 B1
6985107 Anson Jan 2006 B2
6987568 Dana Jan 2006 B2
6998553 Hisamune et al. Feb 2006 B2
7016263 Gueissaz et al. Mar 2006 B2
7034237 Ferri et al. Apr 2006 B2
7081905 Raghunath et al. Jul 2006 B1
7102626 Denny, III Sep 2006 B2
7111365 Howie, Jr. Sep 2006 B1
7113450 Plancon et al. Sep 2006 B2
7119289 Lacroix Oct 2006 B2
7135673 Saint Clair Nov 2006 B2
7167083 Giles Jan 2007 B2
7244927 Huynh Jul 2007 B2
7255473 Hiranuma et al. Aug 2007 B2
7265336 Hataguchi et al. Sep 2007 B2
7274303 Dresti et al. Sep 2007 B2
7285738 Lavigne et al. Oct 2007 B2
7292741 Ishiyama et al. Nov 2007 B2
7358481 Yeoh et al. Apr 2008 B2
7369308 Tsuruta et al. May 2008 B2
7371745 Ebright et al. May 2008 B2
7385874 Vuilleumier Jun 2008 B2
7404667 Born et al. Jul 2008 B2
7465917 Chin et al. Dec 2008 B2
7468036 Rulkov et al. Dec 2008 B1
7506269 Lang et al. Mar 2009 B2
7520664 Wai Apr 2009 B2
7528824 Kong May 2009 B2
7545367 Sunda et al. Jun 2009 B2
7591582 Hiranuma et al. Sep 2009 B2
7593755 Colando et al. Sep 2009 B2
7605846 Watanabe Oct 2009 B2
7634263 Louch et al. Dec 2009 B2
7646677 Nakamura Jan 2010 B2
7682070 Burton Mar 2010 B2
7708457 Girardin May 2010 B2
7710456 Koshiba et al. May 2010 B2
7732724 Otani et al. Jun 2010 B2
7761246 Matsui Jul 2010 B2
7763819 Ieda et al. Jul 2010 B2
7772507 Orr Aug 2010 B2
7778115 Ruchonnet Aug 2010 B2
7781726 Matsui et al. Aug 2010 B2
RE41637 O'Hara et al. Sep 2010 E
7791588 Tierling et al. Sep 2010 B2
7791597 Silverstein et al. Sep 2010 B2
7856255 Tsuchiya et al. Dec 2010 B2
7858583 Schmidt et al. Dec 2010 B2
7865324 Lindberg Jan 2011 B2
7946758 Mooring May 2011 B2
8063892 Shahoian et al. Nov 2011 B2
8138488 Grot Mar 2012 B2
8143981 Washizu et al. Mar 2012 B2
8167126 Stiehl May 2012 B2
8169402 Shahoian et al. May 2012 B2
8188989 Levin et al. May 2012 B2
8195313 Fadell et al. Jun 2012 B1
8229535 Mensinger et al. Jul 2012 B2
8248815 Yang et al. Aug 2012 B2
8263886 Lin et al. Sep 2012 B2
8263889 Takahashi et al. Sep 2012 B2
8294670 Griffin et al. Oct 2012 B2
8312495 Vanderhoff Nov 2012 B2
8368677 Yamamoto Feb 2013 B2
8371745 Manni Feb 2013 B2
8373661 Lan et al. Feb 2013 B2
8410971 Friedlander Apr 2013 B2
8432368 Momeyer et al. Apr 2013 B2
8439559 Luk et al. May 2013 B2
8441450 Degner et al. May 2013 B2
8446713 Lai May 2013 B2
8456430 Oliver et al. Jun 2013 B2
8477118 Lan et al. Jul 2013 B2
8493190 Periquet et al. Jul 2013 B2
8508511 Tanaka et al. Aug 2013 B2
8525777 Stavely et al. Sep 2013 B2
8562489 Burton et al. Oct 2013 B2
8568313 Sadhu Oct 2013 B2
8576044 Chapman Nov 2013 B2
8593598 Chen et al. Nov 2013 B2
8607662 Huang Dec 2013 B2
8614881 Yoo Dec 2013 B2
8666682 LaVigne et al. Mar 2014 B2
8704787 Yamamoto Apr 2014 B2
8711093 Ong et al. Apr 2014 B2
8724087 Van De Kerkhof et al. May 2014 B2
8730167 Ming et al. May 2014 B2
8743088 Watanabe Jun 2014 B2
8783944 Doi Jul 2014 B2
8804993 Shukla et al. Aug 2014 B2
8816962 Obermeyer et al. Aug 2014 B2
8824245 Lau et al. Sep 2014 B2
8847741 Birnbaum et al. Sep 2014 B2
8859971 Weber Oct 2014 B2
8860674 Lee et al. Oct 2014 B2
8863219 Brown et al. Oct 2014 B2
D717679 Anderssen Nov 2014 S
8878657 Periquet et al. Nov 2014 B2
8885856 Sacha Nov 2014 B2
8895911 Takahashi Nov 2014 B2
8905631 Sakurazawa et al. Dec 2014 B2
8920022 Ishida et al. Dec 2014 B2
8922399 Bajaj et al. Dec 2014 B2
8928452 Kim et al. Jan 2015 B2
8954135 Yuen et al. Feb 2015 B2
8994827 Mistry et al. Mar 2015 B2
9001625 Essery et al. Apr 2015 B2
9024733 Wouters May 2015 B2
9028134 Koshoji et al. May 2015 B2
9030446 Mistry et al. May 2015 B2
9034666 Vaganov et al. May 2015 B2
9039614 Yuen et al. May 2015 B2
9041663 Westerman May 2015 B2
9042971 Brumback et al. May 2015 B2
9052696 Breuillot et al. Jun 2015 B2
9086717 Meerovitsch Jul 2015 B2
9086738 Leung et al. Jul 2015 B2
9101184 Wilson Aug 2015 B2
9105413 Hiranuma et al. Aug 2015 B2
9123483 Ferri et al. Sep 2015 B2
9176577 Jangaard et al. Nov 2015 B2
9176598 Sweetser et al. Nov 2015 B2
9202372 Reams et al. Dec 2015 B2
9213409 Redelsheimer et al. Dec 2015 B2
9223296 Yang et al. Dec 2015 B2
9241635 Yuen et al. Jan 2016 B2
9244438 Hoover et al. Jan 2016 B2
9256209 Yang et al. Feb 2016 B2
9277156 Bennett et al. Mar 2016 B2
9350850 Pope et al. May 2016 B2
9386932 Chatterjee et al. Jul 2016 B2
9426275 Eim et al. Aug 2016 B2
9430042 Levin Aug 2016 B2
9437357 Furuki et al. Sep 2016 B2
9449770 Sanford et al. Sep 2016 B2
9501044 Jackson et al. Nov 2016 B2
9520100 Houjou et al. Dec 2016 B2
9532723 Kim Jan 2017 B2
9542016 Armstrong-Muntner Jan 2017 B2
9545541 Aragones et al. Jan 2017 B2
9552023 Joo et al. Jan 2017 B2
9599964 Gracia Mar 2017 B2
9607505 Rothkopf et al. Mar 2017 B2
9620312 Ely et al. Apr 2017 B2
9627163 Ely Apr 2017 B2
9632318 Goto et al. Apr 2017 B2
9638587 Marquas et al. May 2017 B2
9651922 Hysek et al. May 2017 B2
9659482 Yang et al. May 2017 B2
9680831 Jooste et al. Jun 2017 B2
9709956 Ely et al. Jul 2017 B1
9753436 Ely et al. Sep 2017 B2
D800172 Akana Oct 2017 S
9800717 Ma et al. Oct 2017 B2
9836025 Ely et al. Dec 2017 B2
9873711 Hoover et al. Jan 2018 B2
9874945 Fukumoto Jan 2018 B2
9886006 Ely et al. Feb 2018 B2
9891590 Shim et al. Feb 2018 B2
9891651 Jackson et al. Feb 2018 B2
9898032 Hafez et al. Feb 2018 B2
9927902 Burr et al. Mar 2018 B2
9939923 Sharma Apr 2018 B2
9946297 Nazzaro et al. Apr 2018 B2
9952558 Ely Apr 2018 B2
9952682 Zhang et al. Apr 2018 B2
9971305 Ely et al. May 2018 B2
9971405 Holenarsipur et al. May 2018 B2
9979426 Na et al. May 2018 B2
10001817 Zambetti et al. Jun 2018 B2
10092203 Mirov Oct 2018 B2
20030174590 Arikawa et al. Sep 2003 A1
20040047244 Iino et al. Mar 2004 A1
20040082414 Knox Apr 2004 A1
20040130971 Ecoffet et al. Jul 2004 A1
20040264301 Howard et al. Dec 2004 A1
20050075558 Vecerina et al. Apr 2005 A1
20060250377 Zadesky et al. Nov 2006 A1
20070013775 Shin Jan 2007 A1
20070050054 Sambandam Guruparan et al. Mar 2007 A1
20070211042 Kim et al. Sep 2007 A1
20070222756 Wu et al. Sep 2007 A1
20070229671 Takeshita et al. Oct 2007 A1
20070247421 Orsley et al. Oct 2007 A1
20080130914 Cho Jun 2008 A1
20090051649 Rondel Feb 2009 A1
20090073119 Le et al. Mar 2009 A1
20090122656 Bonnet et al. May 2009 A1
20090146975 Chang Jun 2009 A1
20090152452 Lee et al. Jun 2009 A1
20090217207 Kagermeier et al. Aug 2009 A1
20090285443 Camp et al. Nov 2009 A1
20090312051 Hansson et al. Dec 2009 A1
20100033430 Kakutani et al. Feb 2010 A1
20100053468 Havrill Mar 2010 A1
20100081375 Rosenblatt et al. Apr 2010 A1
20100149099 Elias Jun 2010 A1
20110007468 Burton et al. Jan 2011 A1
20110090148 Li et al. Apr 2011 A1
20110158057 Brewer Jun 2011 A1
20110242064 Ono et al. Oct 2011 A1
20110270358 Davis et al. Nov 2011 A1
20120067711 Yang Mar 2012 A1
20120068857 Rothkopf et al. Mar 2012 A1
20120075082 Rothkopf et al. Mar 2012 A1
20120112859 Park et al. May 2012 A1
20120113044 Strazisar et al. May 2012 A1
20120206248 Biggs Aug 2012 A1
20120272784 Bailey et al. Nov 2012 A1
20120274508 Brown Nov 2012 A1
20130037396 Yu Feb 2013 A1
20130087443 Kikuchi Apr 2013 A1
20130191220 Dent et al. Jul 2013 A1
20130261405 Lee et al. Oct 2013 A1
20130335196 Zhang et al. Dec 2013 A1
20140071098 You Mar 2014 A1
20140073486 Ahmed et al. Mar 2014 A1
20140132516 Tsai et al. May 2014 A1
20140197936 Biggs et al. Jul 2014 A1
20140340318 Stringer et al. Nov 2014 A1
20140347289 Suh et al. Nov 2014 A1
20140368442 Vahtola Dec 2014 A1
20140375579 Fujiwara Dec 2014 A1
20150049059 Zadesky et al. Feb 2015 A1
20150098309 Adams et al. Apr 2015 A1
20150124415 Goyal et al. May 2015 A1
20150186609 Utter, II Jul 2015 A1
20150221460 Teplitxky et al. Aug 2015 A1
20150320346 Chen Nov 2015 A1
20150338642 Sanford Nov 2015 A1
20150366098 Lapetina et al. Dec 2015 A1
20160018846 Zenoff Jan 2016 A1
20160054813 Shediwy et al. Feb 2016 A1
20160058375 Rothkopf et al. Mar 2016 A1
20160061636 Gowreesunker et al. Mar 2016 A1
20160062623 Howard et al. Mar 2016 A1
20160069713 Ruh et al. Mar 2016 A1
20160109861 Kim et al. Apr 2016 A1
20160116306 Ferri et al. Apr 2016 A1
20160147432 Shi et al. May 2016 A1
20160170598 Zambetti et al. Jun 2016 A1
20160170608 Zambetti et al. Jun 2016 A1
20160170624 Zambetti et al. Jun 2016 A1
20160253487 Sarkar et al. Sep 2016 A1
20160258784 Boonsom et al. Sep 2016 A1
20160306446 Chung et al. Oct 2016 A1
20160313703 Ely et al. Oct 2016 A1
20160320583 Hall, Jr. Nov 2016 A1
20160327911 Eim et al. Nov 2016 A1
20160338642 Parara et al. Nov 2016 A1
20160378069 Rothkopf et al. Dec 2016 A1
20160378070 Rothkopf et al. Dec 2016 A1
20160378071 Rothkopf et al. Dec 2016 A1
20170003655 Ely Jan 2017 A1
20170010751 Shedletsky Jan 2017 A1
20170011210 Cheong et al. Jan 2017 A1
20170027461 Shin et al. Feb 2017 A1
20170031449 Karsten et al. Feb 2017 A1
20170045958 Battlogg et al. Feb 2017 A1
20170061863 Eguchi Mar 2017 A1
20170069443 Wang et al. Mar 2017 A1
20170069444 Wang et al. Mar 2017 A1
20170069447 Wang et al. Mar 2017 A1
20170104902 Kim et al. Apr 2017 A1
20170139489 Chen et al. May 2017 A1
20170216668 Burton et al. Aug 2017 A1
20170238138 Aminzade Aug 2017 A1
20170251561 Fleck et al. Aug 2017 A1
20170269715 Kim et al. Sep 2017 A1
20170285404 Kubota et al. Oct 2017 A1
20170301314 Kim et al. Oct 2017 A1
20170307414 Ferri et al. Oct 2017 A1
20170331869 Bendahan et al. Nov 2017 A1
20170357465 Dzeryn et al. Dec 2017 A1
20180018026 Bushnell et al. Jan 2018 A1
20180024683 Ely et al. Jan 2018 A1
20180136613 Ely et al. May 2018 A1
20180136686 Jackson et al. May 2018 A1
20180196517 Tan et al. Jul 2018 A1
20180235491 Bayley et al. Aug 2018 A1
20180239306 Ely Aug 2018 A1
20180246469 Ely et al. Aug 2018 A1
20180329368 Ely et al. Nov 2018 A1
20180335891 Shedletsky et al. Nov 2018 A1
20180341342 Bushnell et al. Nov 2018 A1
20180364815 Moussette et al. Dec 2018 A1
20190017846 Boonsom et al. Jan 2019 A1
Foreign Referenced Citations (94)
Number Date Country
1888928 Jan 1937 CH
1302740 Sep 2001 CN
1445627 Oct 2003 CN
1504843 Jun 2004 CN
1624427 Jun 2005 CN
1792295 Jun 2006 CN
101201587 Jun 2008 CN
201081979 Jul 2008 CN
101750958 Jun 2010 CN
101923314 Dec 2010 CN
202008579 Oct 2011 CN
102890443 Jan 2013 CN
202710937 Jan 2013 CN
103191557 Jul 2013 CN
103253067 Aug 2013 CN
103645804 Mar 2014 CN
203564224 Apr 2014 CN
103852090 Jun 2014 CN
203630524 Jun 2014 CN
103956006 Jul 2014 CN
203693601 Jul 2014 CN
203732900 Jul 2014 CN
103995456 Aug 2014 CN
203941395 Nov 2014 CN
104777987 Apr 2015 CN
104880937 Sep 2015 CN
204650147 Sep 2015 CN
105096979 Nov 2015 CN
105547146 May 2016 CN
3706194 Sep 1988 DE
102008023651 Nov 2009 DE
102016215087 Mar 2017 DE
0556155 Aug 1993 EP
1345095 Sep 2003 EP
1669724 Jun 2006 EP
1832969 Sep 2007 EP
2375295 Oct 2011 EP
2720129 Apr 2014 EP
2030093 Oct 1970 FR
2801402 May 2001 FR
2433211 Jun 2007 GB
S5708582 Jan 1982 JP
S5734457 Feb 1982 JP
H02285214 Nov 1990 JP
H04093719 Mar 1992 JP
H05203465 Aug 1993 JP
H05312595 Nov 1993 JP
H06347293 Dec 1994 JP
H10161811 Jun 1998 JP
H11121210 Apr 1999 JP
H11191508 Jul 1999 JP
2000337892 Dec 2000 JP
2001084934 Mar 2001 JP
2001202178 Jul 2001 JP
2003050668 Feb 2003 JP
2003151410 May 2003 JP
2003331693 Nov 2003 JP
2004184396 Jul 2004 JP
2005017011 Jan 2005 JP
2005063200 Mar 2005 JP
2006164275 Jun 2006 JP
2007248176 Sep 2007 JP
2007311153 Nov 2007 JP
2008053980 Mar 2008 JP
2008122124 May 2008 JP
2008122377 May 2008 JP
2008170436 Jul 2008 JP
2008235226 Oct 2008 JP
2009070657 Apr 2009 JP
2010032545 Feb 2010 JP
2010165001 Jul 2010 JP
2010186572 Aug 2010 JP
2010243344 Oct 2010 JP
2010244797 Oct 2010 JP
2011165468 Aug 2011 JP
2013057516 Mar 2013 JP
2013079961 May 2013 JP
2014174031 Sep 2014 JP
20010030477 Apr 2001 KR
20070014247 Feb 2007 KR
20080045397 May 2008 KR
20110011393 Feb 2011 KR
1040225 Nov 2014 NL
200633681 Oct 2006 TW
WO2001022038 Mar 2001 WO
WO2001069567 Sep 2001 WO
WO2010058376 May 2010 WO
WO2012083380 Jun 2012 WO
WO2012094805 Jul 2012 WO
WO2014018118 Jan 2014 WO
WO2014200766 Dec 2014 WO
WO2015147756 Oct 2015 WO
WO2016104922 Jun 2016 WO
WO2016155761 Oct 2016 WO
Non-Patent Literature Citations (31)
Entry
Author Unknown, “Desirable Android Wear smartwatch from LG,” Gulf News, Dubai, 3 pages, Jan. 30, 2015.
Author Unknown, “Fossil Q ups smartwatch game with handsome design and build,” Business Mirror, Makati City, Philippines, 3 pages, Dec. 20, 2016.
Author Unknown, “How Vesag Helps Kids Women and Visitors,” http://www.sooperarticles.com/health-fitness-articles/children-health-articles/how-vesag-helps-kids-women-visitors-218542.html, 2 pages, at least as early as May 20, 2015.
Author Unknown, “mHealth,” http://mhealth.vesag.com/?m=201012, 7 pages, Dec. 23, 2010.
Author Unknown, “mHealth Summit 2010,” http://www.virtualpressoffice.com/eventsSubmenu.do?page=exhibitorPage&showId=1551&companyId=5394, 5 pages, Nov. 18, 2010.
Author Unknown, “MyKronoz ZeTime: World's Most Funded Hybrid Smartwatch Raised over $3M on Kickstarter, Running until Apr. 27,” Business Wire, New York, New York, 3 pages, Apr. 21, 2017.
Author Unknown, “Re iPhone Universal Remote Control—Infrared Remote Control Accessory for iPhone and iPod touch,” http://www.amazon.com/iPhone-Universal-Remote-Control-Accessory/dp/tech-data/B0038Z4 . . . , 2 pages, at least as early as Jul. 15, 2010.
Author Unknown, “Vesag Wrist Watch for Dementia Care from VYZIN,” http://vyasa-kaaranam-ketkadey.blogspot.com/2011/03/vesag-wrist-watch-for-dementia-care.html, 2 pages, Mar. 31, 2011.
Author Unknown, “Vyzin Electronics Private Limited launches Vesag Watch,” http://www.virtualpressoffice.com/showJointPage.do?page=jp&showId=1544, 5 pages, Jan. 6, 2011.
Author Unknown, “Vyzin Unveiled Personal Emergency Response System (PERS) with Remote Health Monitoring That Can Be Used for Entire Family,” http://www.24-7pressrelease.com/press-release/vyzin-unveiled-personal-emergency-response-system-pers-with-remote-health-monitoring-that-can-be-used-for-entire-family-219317.php, 2 pages, Jun. 17, 2011.
Author Unknown, “DeskThorityNet, Optical Switch Keyboards,” http://deskthority.net/keyboards-f2/optical-switch-keyboards-t1474.html, 22 pages, Jul. 11, 2015.
Epstein et al., “Economical, High-Performance Optical Encoders,” Hewlett-Packard Journal, pp. 99-106, Oct. 1988. [text only version].
GreyB, “Google Watch: Convert your arm into a keyboard,” http://www.whatafuture.com/2014/02/28/google-smartwatch/#sthash.Yk35cDXK.dpbs, 3 pages, Feb. 28, 2014.
IBM, “Additional Functionality Added to Cell Phone via “Learning” Function Button,” www.ip.com, 2 pages, Feb. 21, 2007.
Kim, Joseph, “2010 mHealth Summit Emerges as Major One-Stop U.S. Venue for Mobile Health,” http://www.medicineandtechnology.com/2010/08/2010-mhealth-summit-emerges-as-major.html, 3 pages, Aug. 26, 2010.
Krishnan et al., “A Miniature Surface Mount Reflective Optical Shaft Encoder,” Hewlett-Packard Journal, Article 8, pp. 1-6, Dec. 1996.
Rick, “How VESAG Helps Health Conscious Citizens,” http://sensetekgroup.com/2010/11/29/wireless-health-monitoring-system/, 2 pages, Nov. 29, 2010.
Sadhu, Rajendra, “How VESAG Helps People Who Want to ‘Be There’?,” http://ezinearticles.com/?How-Vesag-Helps-People-Who-Want-to-Be-There?&id-5423873, 1 page, Nov. 22, 2010.
Sadhu, Rajendra, “Mobile Innovation Helps Dementia and Alzheimer's Patients,” http://www.itnewsafrica.com/2010/11/mobile-innovation-helps-dementia-andalzheimer%E2%80%99s-patients/, 3 pages, Nov. 22, 2010.
Sherr, Sol, “Input Devices,” p. 55, Mar. 1988.
Tran et al., “Universal Programmable Remote Control/Telephone,” www.ip.com, 2 pages, May 1, 1992.
U.S. Appl. No. 16/134,888, filed Sep. 18, 2018, pending.
U.S. Appl. No. 16/179,870, filed Nov. 2, 2018, pending.
U.S. Appl. No. 16/179,872, filed Nov. 2, 2018, pending.
U.S. Appl. No. 16/191,349, filed Nov. 14, 2018, pending.
U.S. Appl. No. 15/597,145, filed May 16, 2017, pending.
U.S. Appl. No. 15/627,321, filed Jun. 1, 2017, pending.
U.S. Appl. No. 15/879,223, filed Jan. 24, 2018, pending.
U.S. Appl. No. 15/960,487, filed Apr. 23, 2018, pending.
U.S. Appl. No. 15/969,630, filed May 2, 2018, pending.
U.S. Appl. No. 16/010,502, filed Jun. 17, 2018, pending.
Related Publications (1)
Number Date Country
20180307363 A1 Oct 2018 US
Continuations (1)
Number Date Country
Parent 15219253 Jul 2016 US
Child 16022563 US