Not Applicable.
Not Applicable.
Not Applicable.
1. Field of the Invention
The invention generally relates to a force measurement system. More particularly, the invention relates to a force measurement system having a displaceable force measurement assembly.
2. Background
Force measurement systems are utilized in various fields to quantify the reaction forces and moments exchanged between a body and support surface. For example, in biomedical applications, force measurement systems are used for gait analysis, assessing balance and mobility, evaluating sports performance, and assessing ergonomics. In order to quantify the forces and moments resulting from the body disposed thereon, the force measurement system includes some type of force measurement device. Depending on the particular application, the force measurement device may take the form of a balance plate, force plate, jump plate, an instrumented treadmill, or some other device that is capable of quantifying the forces and moments exchanged between the body and the support surface.
A balance assessment of a human subject is frequently performed using a specialized type of a force plate, which is generally known as a balance plate. In general, individuals maintain their balance using inputs from proprioceptive, vestibular and visual systems. Conventional balance systems are known that assess one or more of these inputs. However, these conventional balance systems often employ antiquated technology that significantly affects their ability to accurately assess a person's balance and/or renders them cumbersome and difficult to use by patients and the operators thereof (e.g., clinicians and other medical personnel). For example, some of these conventional balance systems employ displaceable background enclosures with fixed images imprinted thereon that are not readily adaptable to different testing schemes.
Therefore, what is needed is a force measurement system having a displaceable force measurement assembly that employs virtual reality scenarios for effectively assessing the balance characteristics of a subject and offering much greater flexibility in the balance assessment testing that can be employed. Moreover, what is needed is a force measurement system having a displaceable force measurement assembly which has a base assembly with a reduced step height so as to facilitate the use of the system by elderly individuals and those having balance disorders. Furthermore, a force measurement system having a displaceable force measurement assembly is needed that includes an immersive visual display device that enables a subject being tested to become effectively immersed in a virtual reality scenario or an interactive game.
Accordingly, the present invention is directed to a force measurement system having a displaceable force measurement assembly that substantially obviates one or more problems resulting from the limitations and deficiencies of the related art.
In accordance with one aspect of the present invention, there is provided a force measurement system having a displaceable force measurement assembly that includes: a force measurement assembly configured to receive a subject, the force measurement assembly including: a surface for receiving at least one portion of the body of the subject; and at least one force transducer, the at least one force transducer configured to sense one or more measured quantities and output one or more signals that are representative of forces and/or moments being applied to the surface of the force measurement assembly by the subject; at least one actuator operatively coupled to the force measurement assembly, the at least one actuator configured to displace the force measurement assembly; at least one visual display device having an output screen, the at least one visual display device configured to display one or more virtual reality scenes on the output screen so that the scenes are viewable by the subject, wherein the one or more virtual reality scenes are configured to create a simulated environment for the subject; and one or more data processing devices operatively coupled to the force measurement assembly, the at least one actuator, and the at least one visual display device, the one or more data processing devices configured to receive the one or more signals that are representative of the forces and/or moments being applied to the surface of the force measurement assembly by the subject, and to convert the one or more signals into output forces and/or moments, the one or more data processing devices further configured to selectively displace the force measurement assembly using the at least one actuator.
In a further embodiment of this aspect of the present invention, the at least one actuator is configured to rotate the force measurement assembly about at least one of: (i) a laterally extending rotational axis and (ii) a longitudinally extending rotational axis.
In yet a further embodiment, the at least one actuator is configured to rotate the force measurement assembly. In one more embodiments, the rotation of the force measurement assembly occurs about a laterally extending rotational axis.
In still a further embodiment, the at least one actuator is configured to translate the force measurement assembly in at least one of the following two directions: (i) a direction generally parallel to the sagittal plane of the subject and (ii) a direction generally parallel to the coronal plane of the subject.
In yet a further embodiment, the at least one actuator is configured to translate the force measurement assembly. In one more embodiments, the translation of the force measurement assembly occurs in a direction generally parallel to the sagittal plane of the subject.
In still a further embodiment, the one or more virtual reality scenes on the output screen of the at least one visual display device are in the form of one or more two-dimensional images or one or more three-dimensional images.
In yet a further embodiment, the one or more two-dimensional images or the one or more three-dimensional images comprise at least one of: (i) one or more images appearing to be displaced inwardly on the output screen of the at least one visual display device, (ii) one or more images appearing to be displaced outwardly on the output screen of the at least one visual display device, (iii) one or more images simulating the visual effects of walking down an aisle, and (iv) one or more images comprising an interactive game.
In still a further embodiment, the one or more data processing devices adjust the one or more virtual reality scenes on the output screen of the at least one visual display device in accordance with a computed sway angle for the subject.
In yet a further embodiment, the one or more data processing devices adjust the one or more virtual reality scenes on the output screen of the at least one visual display device in accordance with the selected displacement of the force measurement assembly.
In still a further embodiment, the force measurement system further comprises a motion detection system operatively coupled to the one or more data processing devices, the motion detection system configured to detect the motion of one or more body gestures of the subject, and the one or more data processing devices configured to adjust the one or more virtual reality scenes on the output screen of the at least one visual display device in accordance with the detected motion of the one or more body gestures of the subject.
In yet a further embodiment, the one or more body gestures of the subject comprise at least one of: (i) one or more limb movements of the subject, (ii) one or more torso movements of the subject, and (iii) a combination of one or more limb movements and one or more torso movements of the subject.
In accordance with another aspect of the present invention, there is provided a method for testing a subject disposed on a displaceable force measurement assembly, the method comprising the steps of: (i) providing a force measurement assembly configured to receive a subject, the force measurement assembly including: a surface for receiving at least one portion of the body of the subject; and at least one force transducer, the at least one force transducer configured to sense one or more measured quantities and output one or more signals that are representative of forces and/or moments being applied to the surface of the force measurement assembly by the subject; (ii) providing at least one actuator operatively coupled to the force measurement assembly, the at least one actuator configured to displace the force measurement assembly; (iii) providing at least one visual display device having an output screen, the at least one visual display device configured to display one or more virtual reality scenes on the output screen so that the scenes viewable by the subject; (iv) providing one or more data processing devices operatively coupled to the force measurement assembly, the at least one actuator, and the at least one visual display device, the one or more data processing devices configured to receive the one or more signals that are representative of the forces and/or moments being applied to the surface of the force measurement assembly by the subject and to convert the one or more signals into output forces and/or moments, and the one or more data processing devices configured to selectively displace the force measurement assembly using the at least one actuator; (v) positioning the subject on the force measurement assembly; (vi) selectively displacing the force measurement assembly and the subject disposed thereon using the at least one actuator; (vii) sensing, by utilizing the at least one force transducer, one or more measured quantities that are representative of forces and/or moments being applied to the surface of the force measurement assembly by the subject and outputting one or more signals representative thereof; (viii) converting, by using the one or more data processing devices, the one or more signals that are representative of the forces and/or moments being applied to the surface of the force measurement assembly by the subject into output forces and/or moments; and (ix) displaying one or more virtual reality scenes to the subject utilizing the output screen of the at least one visual display device, the one or more virtual reality scenes creating a simulated environment for the subject.
In a further embodiment of this aspect of the present invention, the method further comprises the steps of: (i) positioning the subject in a substantially stationary position on the force measurement assembly; and (ii) generating, by using the one or more data processing devices, one or more virtual reality scenes in the form of one or more two-dimensional images or one or more three-dimensional images that appear to be displaced inwardly on the output screen of the at least one visual display device so as to inhibit a sensory ability of the subject.
In yet a further embodiment, the method further comprises the steps of: (i) displacing the force measurement assembly and the subject disposed thereon using the at least one actuator so as to inhibit a sensory ability of the subject; and (ii) generating, by using the one or more data processing devices, one or more virtual reality scenes in the form of one or more substantially stationary two-dimensional images or three-dimensional images on the output screen of the at least one visual display device.
In still a further embodiment, the method further comprises the steps of: (i) displacing the force measurement assembly and the subject disposed thereon using the at least one actuator; and (ii) generating, by using the one or more data processing devices, one or more virtual reality scenes in the form of one or more two-dimensional images or one or more three-dimensional images that appear to be displaced inwardly on the output screen of the at least one visual display device so as to inhibit a sensory ability of the subject.
In accordance with yet another aspect of the present invention, there is provided a force measurement system having a displaceable force measurement assembly that includes: a force measurement assembly configured to receive a subject, the force measurement assembly including: a surface for receiving at least one portion of the body of the subject; and at least one force transducer, the at least one force transducer configured to sense one or more measured quantities and output one or more signals that are representative of forces and/or moments being applied to the surface of the force measurement assembly by the subject; at least one actuator operatively coupled to the force measurement assembly, the at least one actuator configured to displace the force measurement assembly; at least one visual display device having an output screen, the output screen of the at least one visual display device configured to at least partially surround the subject disposed on the force measurement assembly, the at least one visual display device configured to display one or more virtual reality scenes on the output screen so that the scenes are viewable by the subject, wherein the one or more virtual reality scenes are configured to create a simulated environment for the subject; and one or more data processing devices operatively coupled to the force measurement assembly, the at least one actuator, and the at least one visual display device, the one or more data processing devices configured to receive the one or more signals that are representative of the forces and/or moments being applied to the surface of the force measurement assembly by the subject, and the one or more data processing devices configured to selectively displace the force measurement assembly using the at least one actuator.
In a further embodiment of this aspect of the present invention, the output screen of the at least one visual display device engages enough of the peripheral vision of a subject such that the subject becomes immersed in the simulated environment.
In yet a further embodiment, the output screen of the at least one visual display at least partially circumscribes three sides of a subject.
In still a further embodiment, the force measurement system further comprises a base assembly in or on which the force measurement assembly and the at least one actuator are disposed, the base assembly having a width and a length, wherein a width of the output screen of the at least one visual display device is less than approximately 1.5 times the width of the base assembly, and wherein a depth of the output screen of the at least one visual display device is less than the length of the base assembly.
In yet a further embodiment, the width of the base assembly is measured in a direction generally parallel to the coronal plane of the subject, and wherein the length of the base assembly is measured in a direction generally parallel to the sagittal plane of the subject.
In still a further embodiment, the force measurement system further comprises a base assembly in or on which the force measurement assembly and the at least one actuator are disposed, wherein a width of the output screen of the at least one visual display device is not substantially greater than a width of the base assembly.
In yet a further embodiment, the at least one visual display comprises a projector, a convexly shaped mirror, and a concavely shaped projection screen, wherein the projector is configured to project an image onto the convexly shaped mirror, and the convexly shaped mirror is configured to project the image onto the concavely shaped projection screen.
In still a further embodiment, the concavely shaped projection screen is generally hemispherical in shape, and wherein the convexly shaped mirror is disposed near a top of the concavely shaped projection screen.
In yet a further embodiment, the top of the concavely shaped projection screen comprises a cutout for accommodating a light beam of the projector.
In still a further embodiment, the one or more data processing devices include a programmable logic controller configured to provide real-time control of the at least one actuator via an actuator control drive.
In yet a further embodiment, the programmable logic controller is configured to: (i) convert the one or more signals that are representative of the forces and/or moments being applied to the surface of the force measurement assembly by the subject into output forces and/or moments, (ii) compute center of pressure coordinates for the applied forces and/or compute a center of gravity value for the subject using the output forces and/or moments, and (iii) transmit the computed center of pressure coordinates and/or the computed center of gravity value to a computing device operatively coupled to the programmable logic controller.
In accordance with still another aspect of the present invention, there is provided a force measurement system having a displaceable force measurement assembly that includes: a force measurement assembly configured to receive a subject, the force measurement assembly including: a surface for receiving at least one portion of the body of the subject; and at least one force transducer, the at least one force transducer configured to sense one or more measured quantities and output one or more signals that are representative of forces and/or moments being applied to the surface of the force measurement assembly by the subject; at least one first actuator operatively coupled to the force measurement assembly, the at least one first actuator configured to rotate the force measurement assembly, the at least one first actuator disposed above the surface of the force measurement assembly; at least one second actuator operatively coupled to the force measurement assembly, the at least one second actuator configured to translate the force measurement assembly, the at least one second actuator disposed below the surface of the force measurement assembly; and one or more data processing devices operatively coupled to the force measurement assembly, the at least one first actuator, and the at least one second actuator, the one or more data processing devices configured to receive the one or more signals that are representative of the forces and/or moments being applied to the surface of the force measurement assembly by the subject and to convert the one or more signals into output forces and/or moments, the one or more data processing devices configured to selectively displace the force measurement assembly using the at least one first actuator and the at least one second actuator.
In a further embodiment of this aspect of the present invention, the force measurement system further comprises a base assembly in or on which the force measurement assembly and the first and second actuators are disposed, the base assembly having a step height measured from a ground surface to an upper surface thereof, wherein the step height of the base assembly is reduced, as compared to conventional dynamic force measurement systems, at least in part by the predetermined placement of the first and second actuators.
In yet a further embodiment, the step height of the base assembly is substantially less than conventional dynamic force measurement systems.
In still a further embodiment, the force measurement system further comprises a base assembly in or on which the force measurement assembly and the first and second actuators are disposed, the base assembly having a step height measured from a ground surface to an upper surface thereof, wherein a placement of the at least one first actuator above the surface of the force measurement assembly results in a reduction of the step height of the base assembly.
In yet a further embodiment, the one or more data processing devices include a programmable logic controller configured to provide real-time control of the at least one first actuator and the at least one second actuator via an actuator control drive.
In accordance with yet another aspect of the present invention, there is provided a force measurement system having a displaceable force measurement assembly that includes: a force measurement assembly configured to receive a subject, the force measurement assembly including: a surface for receiving at least one portion of the body of the subject; and at least one force transducer, the at least one force transducer configured to sense one or more measured quantities and output one or more signals that are representative of forces and/or moments being applied to the surface of the force measurement assembly by the subject; at least one actuator operatively coupled to the force measurement assembly, the at least one actuator configured to displace the force measurement assembly; at least one visual display device having an output screen, the at least one visual display device configured to display an interactive game on the output screen so that the interactive game is viewable by the subject; and a data processing device operatively coupled to the force measurement assembly, the at least one actuator, and the at least one visual display device, the data processing device configured to receive the one or more signals that are representative of forces and/or moments being applied to the surface of the force measurement assembly and to compute one or more numerical values using the one or more signals, the data processing device being configured to control the movement of at least one manipulatable element of the interactive game displayed on the output screen of the at least one visual display device by using the one or more computed numerical values.
In a further embodiment of this aspect of the present invention, the data processing device is further configured to quantify a subject's performance while playing the interactive game using one or more performance parameters, and to assess the balance of the subject by utilizing the one or more performance parameters.
In yet a further embodiment, a difficulty or skill level of the interactive game progressively increases over time.
In still a further embodiment, the force measurement system further comprises a motion detection system operatively coupled to the data processing device, the motion detection system configured to detect the motion of one or more body gestures of the subject, and the data processing device configured to adjust the interactive game on the output screen of the at least one visual display device in accordance with the detected motion of the one or more body gestures of the subject.
In yet a further embodiment, the one or more body gestures of the subject comprise at least one of: (i) one or more limb movements of the subject, (ii) one or more torso movements of the subject, and (iii) a combination of one or more limb movements and one or more torso movements of the subject.
In accordance with still another aspect of the present invention, there is provided a force measurement system that includes: a force measurement assembly configured to receive a subject, the force measurement assembly including: a surface for receiving at least one portion of the body of the subject; and at least one force transducer, the at least one force transducer configured to sense one or more measured quantities and output one or more signals that are representative of forces and/or moments being applied to the surface of the force measurement assembly by the subject; a motion detection system, the motion detection system configured to detect the motion of one or more body gestures of the subject; at least one visual display device having an output screen, the at least one visual display device configured to display one or more virtual reality scenes on the output screen so that the scenes are viewable by the subject, wherein the one or more virtual reality scenes are configured to create a simulated environment for the subject; and a data processing device operatively coupled to the force measurement assembly, the motion detection system, and the at least one visual display device, the data processing device configured to receive the one or more signals that are representative of the forces and/or moments being applied to the surface of the force measurement assembly by the subject, and the data processing device configured to adjust the one or more virtual reality scenes on the output screen of the at least one visual display device in accordance with at least one of: (i) the forces and/or moments being applied to the surface of the force measurement assembly by the subject and (ii) the detected motion of the one or more body gestures of the subject.
In a further embodiment of this aspect of the present invention, the one or more body gestures of the subject comprise at least one of: (i) one or more limb movements of the subject, (ii) one or more torso movements of the subject, and (iii) a combination of one or more limb movements and one or more torso movements of the subject.
In yet a further embodiment, the output screen of the at least one visual display device engages enough of the peripheral vision of a subject such that the subject becomes immersed in the simulated environment.
It is to be understood that the foregoing general description and the following detailed description of the present invention are merely exemplary and explanatory in nature. As such, the foregoing general description and the following detailed description of the invention should not be construed to limit the scope of the appended claims in any sense.
The invention will now be described, by way of example, with reference to the accompanying drawings, in which:
Throughout the figures, the same parts are always denoted using the same reference characters so that, as a general rule, they will only be described once.
An exemplary embodiment of the measurement and testing system is seen generally at 100 in
As shown in
Referring again to
In one non-limiting, exemplary embodiment, the force plate assembly 102 has a load capacity of up to approximately 500 lbs. (up to approximately 2,224 N) or up to 500 lbs. (up to 2,224 N). Advantageously, this high load capacity enables the force plate assembly 102 to be used with almost any subject requiring testing on the force plate assembly 102. Also, in one non-limiting, exemplary embodiment, the force plate assembly 102 has a footprint of approximately eighteen (18) inches by twenty (20) inches. However, one of ordinary skill in the art will realize that other suitable dimensions for the force plate assembly 102 may also be used.
Now, with reference to
Referring again to
Next, turning to
Again, referring to
In a preferred embodiment of the invention, both the first actuator assembly 158 and the second actuator assembly 160 are provided with two (2) electrical cables operatively coupled thereto. The first cable connected to each actuator assembly 158, 160 is a power cable for the electric motor and brake of each actuator, while the second cable transmits positional information from the respective actuator encoder that is utilized in the feedback control of each actuator assembly 158, 160.
Referring back to
In the illustrated embodiment, the at least one force transducer associated with the first and second plate components 110, 112 comprises four (4) pylon-type force transducers 154 (or pylon-type load cells) that are disposed underneath, and near each of the four corners (4) of the first plate component 110 and the second plate component 112 (see
In an alternative embodiment, rather than using four (4) pylon-type force transducers 154 on each plate component 110, 112, force transducers in the form of transducer beams could be provided under each plate component 110, 112. In this alternative embodiment, the first plate component 110 could comprise two transducer beams that are disposed underneath, and on generally opposite sides of the first plate component 110. Similarly, in this embodiment, the second plate component 112 could comprise two transducer beams that are disposed underneath, and on generally opposite sides of the second plate component 112. Similar to the pylon-type force transducers 154, the force transducer beams could have a plurality of strain gages attached to one or more surfaces thereof for sensing the mechanical strain imparted on the beam by the force(s) applied to the surfaces of the force measurement assembly 102.
Rather, than using four (4) force transducer pylons under each plate, or two spaced apart force transducer beams under each plate, it is to be understood that the force measurement assembly 102 can also utilize the force transducer technology described in pending patent application Ser. No. 13/348,506, the entire disclosure of which is incorporated herein by reference.
In other embodiments of the invention, rather than using a force measurement assembly 102 having first and second plate components 110, 112, it is to be understood that a force measurement assembly 102′ in the form of a single force plate may be employed (see
Referring to
In one exemplary embodiment, with reference to
Now, with reference to
In one embodiment of the invention, the generally hemispherical projection screen 168 is formed from a suitable material (e.g., an acrylic, fiberglass, fabric, aluminum, etc.) having a matte gray color. A matte gray color is preferable to a white color because it minimizes the unwanted reflections that can result from the use of a projection screen having a concave shape. Also, in an exemplary embodiment, the projection screen 168 has a diameter (i.e., width WS) of approximately 69 inches and a depth DS of approximately 22 inches. In other exemplary embodiments, the projection screen 168 has a width WS lying in the range between approximately sixty-eight (68) inches and approximately seventy-four (74) inches (or between sixty-eight (68) inches and seventy-four (74) inches). For example, including the flange 169, the projection screen 168 could have a width WS of approximately seventy-three (73) inches. In some embodiments, the target distance between the subject and the front surface of the projection screen 168 can lie within the range between approximately 25 inches and approximately 40 inches (or between 25 inches and 40 inches). Although, those of ordinary skill in the art will readily appreciate that other suitable dimensions and circumscribing geometries may be utilized for the projection screen 168, provided that the selected dimensions and circumscribing geometries for the screen 168 are capable of creating an immersive environment for a subject disposed on the force measurement assembly 102 (i.e., the screen 168 of the subject visual display device engages enough of the subject's peripheral vision such that the subject becomes, and remains immersed in the virtual reality scenario). In one or more embodiments, the projection screen 168 fully encompasses the peripheral vision of the subject 108 (e.g., by the coronal plane CP of the subject being approximately aligned with the flange 169 of the projection screen 168 or by the coronal plane CP being disposed inwardly from the flange 169 within the hemispherical confines of the screen 168). In other words, the output screen 168 of the at least one visual display 107 at least partially circumscribes three sides of a subject 108 (e.g., see
In one or more embodiments, the base assembly 106 has a width WB (see e.g.,
As illustrated in FIGS. 2 and 8-10, the generally hemispherical projection screen 168 can be supported from a floor surface using a screen support structure 167. In other words, the screen support structure 167 is used to elevate the projection screen 168 a predetermined distance above the floor of a room. With continued reference to FIGS. 2 and 8-10, it can be seen that the illustrated screen support structure 167 comprises a lower generally U-shaped member 167a, an upper generally U-shaped member 167b, and a plurality of vertical members 167c, 167d, 167e. As best shown in
Next, referring again to
Also, as shown in
Those of ordinary skill in the art will appreciate that the visual display device 130 can be embodied in various forms. For example, if the visual display device 130 is in the form of flat screen monitor as illustrated in
Now, turning to
Advantageously, the programmable logic controller 172 of the base assembly 106 (see e.g.,
In one or more embodiments, the input/output (I/O) module of the programmable logic controller 172 allows various accessories to be added to the force measurement system 100. For example, an eye movement tracking system, such as that described by U.S. Pat. Nos. 6,113,237 and 6,152,564 could be operatively connected to the input/output (I/O) module of the programmable logic controller 172. As another example, a head movement tracking system, which is instrumented with one or more accelerometers, could be operatively connected to the input/output (I/O) module.
When the programmable logic controller 172 receives the voltage signals SACO1-SACO6, it initially transforms the signals into output forces and/or moments by multiplying the voltage signals SACO1-SACO6 by a calibration matrix (e.g., FLz, MLx, MLy, FRz, MRx, MRy). After which, the center of pressure for each foot of the subject (i.e., the x and y coordinates of the point of application of the force applied to the measurement surface by each foot) are determined by the programmable logic controller 172. Referring to
As explained above, rather than using a measurement assembly 102 having first and second plate components 110, 112, a force measurement assembly 102′ in the form of a single force plate may be employed (see
In one exemplary embodiment, the programmable logic controller 172 in the base assembly 106 determines the vertical forces FLz, FRz exerted on the surface of the first and second force plates by the feet of the subject and the center of pressure for each foot of the subject, while in another exemplary embodiment, the output forces of the data acquisition/data processing device 104 include all three (3) orthogonal components of the resultant forces acting on the two plate components 110, 112 (i.e., FLx, FLy, FLz, FRx, FRy, FRz) and all three (3) orthogonal components of the moments acting on the two plate components 110, 112 (i.e., MLx, MLy, MLz, MRx, MRy, MRz). In yet other embodiments of the invention, the output forces and moments of the data acquisition/data processing device 104 can be in the form of other forces and moments as well.
In the illustrated embodiment, the programmable logic controller 172 converts the computed center of pressure (COP) to a center of gravity (COG) for the subject using a Butterworth filter. For example, in one exemplary, non-limiting embodiment, a second-order Butterworth filter with a 0.75 Hz cutoff frequency is used. In addition, the programmable logic controller 172 also computes a sway angle for the subject using a corrected center of gravity (COG') value, wherein the center of gravity (COG) value is corrected to accommodate for the offset position of the subject relative to the origin of the coordinate axes (142, 144, 146, 148) of the force plate assembly 102. For example, the programmable logic controller 172 computes the sway angle for the subject in the following manner:
where:
θ: sway angle of the subject;
COG′: corrected center of gravity of the subject; and
h: height of the center of gravity of the subject.
Now, referring again to the block diagram of
In order to accurately control the motion of the force measurement assembly 102, a closed-loop feedback control routine may be utilized by the force measurement system 100. As shown in
Next, the electrical single-line diagram of
Referring again to
As shown in
Now, specific functionality of the immersive virtual reality environment of the force measurement system 100 will be described in detail. It is to be understood that the aforedescribed functionality of the immersive virtual reality environment of the force measurement system 100 can be carried out by the data acquisition/data processing device 104 (i.e., the operator computing device) utilizing software, hardware, or a combination of both hardware and software. For example, the data acquisition/data processing device 104 can be specially programmed to carry out the functionality described hereinafter. In one embodiment of the invention, the computer program instructions necessary to carry out this functionality may be loaded directly onto an internal data storage device 104c of the data acquisition/data processing device 104 (e.g., on a hard drive thereof) and subsequently executed by the microprocessor 104a of the data acquisition/data processing device 104. Alternatively, these computer program instructions could be stored on a portable computer-readable medium (e.g., a flash drive, a floppy disk, a compact disk, etc.), and then subsequently loaded onto the data acquisition/data processing device 104 such that the instructions can be executed thereby. In one embodiment, these computer program instructions are embodied in the form of a virtual reality software program executed by the data acquisition/data processing device 104. In other embodiments, these computer program instructions could be embodied in the hardware of the data acquisition/data processing device 104, rather than in the software thereof. It is also possible for the computer program instructions to be embodied in a combination of both the hardware and the software.
As described above, in one or more embodiments of the invention, one or more virtual reality scenes are projected on the generally hemispherical projection screen 168 of the subject visual display device 107 so that the visual perception of a subject can be effectively altered during a test being performed using the force measurement system 100 (e.g., a balance test). In order to illustrate the principles of the invention, the immersive virtual reality environment of the force measurement system 100 will be described in conjunction with an exemplary balance assessment protocol, namely the Sensory Organization Test (“SOT”). Although, those of ordinary skill in the art will readily appreciate that the immersive virtual reality environment of the force measurement system 100 can be utilized with various other assessment protocols as well. For example, the force measurement system 100 could also include protocols, such as the Center of Gravity (“COG”) Alignment test, the Adaption Test (“ADT”), the Limits of Stability (“LOS”) test, the Weight Bearing Squat test, the Rhythmic Weight Shift test, and the Unilateral Stance test. In addition, the immersive virtual reality environment of the force measurement system 100 can be used with various forms of training, such as seated training, mobility training, closed chain training, weight shifting training, and quick training.
People maintain their upright posture and balance using inputs from somatosensory, vestibular and visual systems. In addition, individuals also rely upon inputs from their somatosensory, vestibular and visual systems to maintain balance when in other positions, such as seated and kneeling positions. During normal daily activity, where dynamic balance is to be maintained, other factors also matter. These factors are visual acuity, reaction time, and muscle strength. Visual acuity is important to see a potential danger. Reaction time and muscle strength are important to be able to recover from a potential fall. During the performance of the Sensory Organization Test (“SOT”), certain sensory inputs are taken away from the subject in order to determine which sensory systems are deficient or to determine if the subject is relying too much on one or more of the sensory systems. For example, the performance of the SOT protocol allows one to determine how much a subject is relying upon visual feedback for maintaining his or her balance.
In one embodiment, the SOT protocol comprises six conditions under which a subject is tested (i.e., six test stages). In accordance with the first sensory condition, a subject simply stands in stationary, upright position on the force plate assembly 102 with his or her eyes open. During the first condition, a stationary virtual reality scene is projected on the generally hemispherical projection screen 168 of the subject visual display device 107, and the force plate assembly 102 is maintained in a stationary position. For example, the virtual reality scene displayed on the generally hemispherical projection screen 168 may comprise a checkerboard-type enclosure or room (e.g., see
In accordance with the second sensory condition of the SOT protocol, the subject is blindfolded so that he or she is unable to see the surrounding environment. Similar to the first condition, the force plate assembly 102 is maintained in a stationary position during the second condition of the SOT test. By blindfolding the subject, the second condition of the SOT effectively removes the visual feedback of the subject.
During the third condition of the SOT protocol, like the first and second conditions, the force plate assembly 102 remains in a stationary position. However, in accordance with the third sensory condition of the test, the virtual reality scene displayed on the generally hemispherical projection screen 168 is moved in sync with the sway angle of the subject disposed on the force plate assembly 102. For example, when the subject leans forward on the force plate assembly 102, the virtual reality scene displayed on the screen 168 is altered so as to appear to the subject to be inwardly displaced on the output screen 168. Conversely, when the subject leans backward on the force plate assembly 102, the virtual reality scene is adjusted so as to appear to the subject to be outwardly displaced on the screen 168. As in the first condition, the eyes of the subject remain open during the third condition of the SOT protocol.
In accordance with the fourth sensory condition of the SOT protocol, the force plate assembly 102 and the subject disposed thereon is displaced (e.g., rotated), while the eyes of the subject remain open. The force plate assembly 102 is displaced according to the measured sway angle of the subject (i.e., the rotation of the force plate assembly 102 is synchronized with the computed sway angle of the subject). During the fourth condition, similar to the first condition, a stationary virtual reality scene is projected on the generally hemispherical projection screen 168 of the subject visual display device 107.
During the fifth condition of the SOT protocol, like the second condition thereof, the subject is blindfolded so that he or she is unable to see the surrounding environment. However, unlike during the second condition, the force plate assembly 102 does not remain stationary, rather the force plate assembly 102 and the subject disposed thereon is displaced (e.g., rotated). As for the fourth condition, the force plate assembly 102 is displaced according to the measured sway angle of the subject (i.e., the rotation of the force plate assembly 102 is synchronized with the computed the sway angle of the subject). As was described above for the second condition of SOT protocol, by blindfolding the subject, the fifth condition of the SOT test effectively removes the visual feedback of the subject.
Lastly, during the sixth sensory condition of the SOT protocol, like the fourth and fifth conditions, the force plate assembly 102 and the subject disposed thereon is displaced (e.g., rotated). Although, in accordance with the sixth sensory condition of the test, the virtual reality scene displayed on the generally hemispherical projection screen 168 is also moved in sync with the sway angle of the subject disposed on the force plate assembly 102. As previously described for the fourth and fifth conditions, the displacement of the force plate assembly 102 is governed by the measured sway angle of the subject (i.e., the rotation of the force plate assembly 102 is synchronized with the computed the sway angle of the subject). In an exemplary embodiment, when the subject is forwardly displaced on the force plate assembly 102 during the sixth condition of the SOT protocol, the virtual reality scene displayed on the screen 168 is altered so as to appear to the subject to be inwardly displaced on the output screen 168. Conversely, when the subject is rearwardly displaced on the force plate assembly 102, the virtual reality scene is adjusted so as to appear to the subject to be outwardly displaced on the screen 168. As in the fourth condition, the eyes of the subject remain open during the sixth condition of the SOT protocol.
In further embodiments of the invention, the data acquisition/data processing device 104 is configured to control the movement of a game element of an interactive game displayed on the immersive subject visual display device 107 by using one or more numerical values determined from the output signals of the force transducers associated with the force measurement assembly 102. Referring to screen images 210, 210′ illustrated in
In an illustrative embodiment, the one or more numerical values determined from the output signals of the force transducers associated with the force measurement assembly 102 comprise the center of pressure coordinates (xP, yP) computed from the ground reaction forces exerted on the force plate assembly 102 by the subject. For example, with reference to the force plate coordinate axes 150, 152 of
In other further embodiments of the invention, the force measurement system 100 described herein is used for assessing the visual flow of a particular subject, and at least in cases, the impact of a subject's visual flow on the vestibular systems. In one or more exemplary embodiments, the assessment of visual flow is concerned with determining how well a subject's eyes are capable of tracking a moving object.
In still further embodiments, the force measurement system 100 described herein is used for balance sensory isolation, namely selectively isolating or eliminating one or more pathways of reference (i.e., proprioceptive, visual, and vestibular). As such, it is possible to isolate the particular deficiencies of a subject. For example, the elderly tend to rely too heavily upon visual feedback in maintaining their balance. Advantageously, tests performed using the force measurement system 100 described herein could reveal an elderly person's heavy reliance upon his or her visual inputs.
Although the invention has been shown and described with respect to a certain embodiment or embodiments, it is apparent that this invention can be embodied in many different forms and that many other modifications and variations are possible without departing from the spirit and scope of this invention. In particular, while an interactive airplane game is described in the embodiment described above, those of ordinary skill in the art will readily appreciate that the invention is not so limited. For example, as illustrated in the screen image 206 of
Moreover, while reference is made throughout this disclosure to, for example, “one embodiment” or a “further embodiment”, it is to be understood that some or all aspects of these various embodiments may be readily combined with another as part of an overall embodiment of the invention.
Furthermore, while exemplary embodiments have been described herein, one of ordinary skill in the art will readily appreciate that the exemplary embodiments set forth above are merely illustrative in nature and should not be construed as to limit the claims in any manner. Rather, the scope of the invention is defined only by the appended claims and their equivalents, and not, by the preceding description.
This patent application claims priority to, and incorporates by reference in its entirety, pending U.S. Provisional Patent Application No. 61/754,556, entitled “Force Measurement System Having A Displaceable Force Measurement Assembly”, filed on Jan. 19, 2013.
Number | Name | Date | Kind |
---|---|---|---|
4009607 | Ficken | Mar 1977 | A |
4489932 | Young | Dec 1984 | A |
4738269 | Nashner | Apr 1988 | A |
4830024 | Nashner et al. | May 1989 | A |
5052406 | Nashner | Oct 1991 | A |
5269318 | Nashner | Dec 1993 | A |
5303715 | Nashner et al. | Apr 1994 | A |
5366375 | Sarnicola | Nov 1994 | A |
5429140 | Burdea et al. | Jul 1995 | A |
5474087 | Nashner | Dec 1995 | A |
5476103 | Nahsner | Dec 1995 | A |
5490784 | Carmein | Feb 1996 | A |
5551445 | Nashner | Sep 1996 | A |
5623944 | Nashner | Apr 1997 | A |
5697791 | Nashner et al. | Dec 1997 | A |
5745126 | Jain et al. | Apr 1998 | A |
5769640 | Jacobus et al. | Jun 1998 | A |
5846134 | Latypov | Dec 1998 | A |
5980256 | Carmein | Nov 1999 | A |
5980429 | Nashner | Nov 1999 | A |
6010465 | Nashner | Jan 2000 | A |
6038488 | Barnes et al. | Mar 2000 | A |
6063046 | Allum | May 2000 | A |
6113237 | Ober et al. | Sep 2000 | A |
6152564 | Ober et al. | Nov 2000 | A |
6190287 | Nashner | Feb 2001 | B1 |
6289299 | Daniel et al. | Sep 2001 | B1 |
6295878 | Berme | Oct 2001 | B1 |
6307567 | Cohen-Or | Oct 2001 | B1 |
6354155 | Berme | Mar 2002 | B1 |
6389883 | Berme et al. | May 2002 | B1 |
6449103 | Charles | Sep 2002 | B1 |
6632158 | Nashner | Oct 2003 | B1 |
6704694 | Basdogan et al. | Mar 2004 | B1 |
6738065 | Even-Zohar | May 2004 | B1 |
6774885 | Even-Zohar | Aug 2004 | B1 |
6936016 | Berme et al. | Aug 2005 | B2 |
7127376 | Nashner | Oct 2006 | B2 |
7179234 | Nashner | Feb 2007 | B2 |
7195355 | Nashner | Mar 2007 | B2 |
RE40427 | Nashner | Jul 2008 | E |
7500752 | Nashner | Mar 2009 | B2 |
7761269 | Kraal et al. | Jul 2010 | B1 |
7780573 | Carmein | Aug 2010 | B1 |
7931604 | Even-Zohar et al. | Apr 2011 | B2 |
8181541 | Berme | May 2012 | B2 |
8296858 | Striegler et al. | Oct 2012 | B2 |
8315822 | Berme et al. | Nov 2012 | B2 |
8315823 | Berme et al. | Nov 2012 | B2 |
RE44396 | Roston et al. | Jul 2013 | E |
20020010571 | Daniel et al. | Jan 2002 | A1 |
20030011561 | Stewart et al. | Jan 2003 | A1 |
20030122872 | Chiang et al. | Jul 2003 | A1 |
20030216656 | Berme et al. | Nov 2003 | A1 |
20030216895 | Ghaboussi et al. | Nov 2003 | A1 |
20040027394 | Schonberg | Feb 2004 | A1 |
20040127337 | Nashner | Jul 2004 | A1 |
20040216517 | Xi et al. | Nov 2004 | A1 |
20040227727 | Schena et al. | Nov 2004 | A1 |
20050043661 | Nashner | Feb 2005 | A1 |
20050075833 | Nashner | Apr 2005 | A1 |
20050148432 | Carmein | Jul 2005 | A1 |
20050243277 | Nashner | Nov 2005 | A1 |
20060115348 | Kramer | Jun 2006 | A1 |
20060264786 | Nashner | Nov 2006 | A1 |
20070064311 | Park | Mar 2007 | A1 |
20070093989 | Nashner | Apr 2007 | A1 |
20070121066 | Nashner | May 2007 | A1 |
20070135265 | Nashner | Jun 2007 | A1 |
20080034383 | Harwin et al. | Feb 2008 | A1 |
20080204666 | Spearman | Aug 2008 | A1 |
20080221487 | Zohar et al. | Sep 2008 | A1 |
20080228110 | Berme | Sep 2008 | A1 |
20090059096 | Yamamoto et al. | Mar 2009 | A1 |
20090119030 | Fang et al. | May 2009 | A1 |
20090126096 | Bocos | May 2009 | A1 |
20090137933 | Lieberman et al. | May 2009 | A1 |
20090325699 | Delgiannidis | Dec 2009 | A1 |
20100092267 | Najdovski et al. | Apr 2010 | A1 |
20100097526 | Jacob | Apr 2010 | A1 |
20100131113 | Even-Zohar | May 2010 | A1 |
20100137064 | Shum et al. | Jun 2010 | A1 |
20100176952 | Bajcsy et al. | Jul 2010 | A1 |
20100197462 | Piane, Jr. | Aug 2010 | A1 |
20100302142 | French et al. | Dec 2010 | A1 |
20110009241 | Lane et al. | Jan 2011 | A1 |
20110072367 | Bauer | Mar 2011 | A1 |
20110092882 | Firlik et al. | Apr 2011 | A1 |
20110115787 | Kadlec | May 2011 | A1 |
20110237396 | Lu | Sep 2011 | A1 |
20110256983 | Malack et al. | Oct 2011 | A1 |
20110277562 | Berme | Nov 2011 | A1 |
20110300994 | Verkaaik et al. | Dec 2011 | A1 |
20120013530 | Tsuboi et al. | Jan 2012 | A1 |
20120065784 | Feldman | Mar 2012 | A1 |
20120108909 | Slobounov et al. | May 2012 | A1 |
20120113209 | Ritchey et al. | May 2012 | A1 |
20120122062 | Yang et al. | May 2012 | A1 |
20120176411 | Huston | Jul 2012 | A1 |
20120266648 | Berme et al. | Oct 2012 | A1 |
20120271565 | Berme et al. | Oct 2012 | A1 |
20120303332 | Mangione-Smith | Nov 2012 | A1 |
20130005415 | Thomas et al. | Jan 2013 | A1 |
20130012357 | Wang | Jan 2013 | A1 |
20130022947 | Muniz Simas et al. | Jan 2013 | A1 |
20130033967 | Chuang et al. | Feb 2013 | A1 |
20130050260 | Reitan | Feb 2013 | A1 |
20130117377 | Miller | May 2013 | A1 |
20130127980 | Haddick et al. | May 2013 | A1 |
20130278631 | Border et al. | Oct 2013 | A1 |
Entry |
---|
“Standing, walking, running, and jumping on a force plate” Rod Cross, Am. J. Phys. 67 (4), Apr. 1999. |
Dynamic Control of a Moving Platform using the CAREN System to Optimize Walking inVirtual Reality Environments; 31st Annual International Conference of the IEEE EMBS Minneapolis, Minnesota, USA, Sep. 2-6, 2009, by Hassan El Makssoud, Carol L. Richards, and François Comeau. |
U.S. Appl. No. 13/348,506, entitled “Force Measurement System Having a Plurality of Measurement Surfaces”, Inventor: Dr. Necip Berme, filed Jan. 11, 2012. |
BalanceCheck Screener—Protocol Guide, Bertec Corporation, Version 1.1.0, last updated Mar. 2012. |
BalanceCheck Trainer—Protocol Guide, Bertec Corporation, Version 1.1.0, last updated Mar. 2012. |
Gates et al., Journal of NeuroEngineering and Rehabilitation 2012, 9:81, “Comparison of walking overground and in a Computer Assisted Rehabilitation Environment (CAREN) in individuals with and without transtibial amputation”. |
Mark Fondren, Monica Foster, Mitch Johnson, Drew Parks, Adam Vaclavik, “Virtual Rehabilitation”, http://engineeringworks.tamu.edu/2011/virtual-reality-for-high-tech-rehabilitation-2/; 2011. |
First office action on the merits (Non-Final Rejection) in U.S. Appl. No. 13/958,348, mailed on Dec. 5, 2013. |
Number | Date | Country | |
---|---|---|---|
61754556 | Jan 2013 | US |