A forced-air conveyance and harvesting system for use with a mechanized harvester of a row crop, especially small produce, such as berries. The forced-air conveyance system uses an air blower to help transfer harvested produce. The mechanized harvester includes a straddling over-carriage having a central channel for receiving a row of bushes or vines containing the produce to be harvested, and especially for blue berries. Specifically, the forced-air conveyance and harvesting system employs a precisely directed fan or blower generated airstream not only help remove the fruit or produce from the bushes or vines, but importantly to direct the removed fruit to the interior ‘catch pans,’ collection surfaces and conveyors, within the harvester.
There is a need for better harvesting efficiency, with less loss of harvested produce to the ground, in the mechanized picking of small fruits and produce, such as blueberries. Blowers and fans are often used with conventional harvesting systems to remove debris from the harvested material. However, beyond debris removal, these conventional fan systems fail to aid the harvesting and transport of the produce. Therefore, a need exists for improved fan-powered assistance, to aid in the mechanized harvesting and transport of small produce.
The following is a disclosure of the present invention that will be understood by reference to the following detailed description taken in conjunction with the accompanying drawings.
Reference characters included in the above drawings indicate corresponding parts throughout the several views, as discussed herein. The description herein illustrates one preferred embodiment of the invention, in one form, and the description herein is not to be construed as limiting the scope of the invention in any manner. It should be understood that the above listed figures are not necessarily to scale and that the embodiments are sometimes illustrated by fragmentary views, graphic symbols, diagrammatic or schematic representations, and phantom lines. Details that are not necessary for an understanding of the present invention by one skilled in the technology of the invention, or render other details difficult to perceive, may have been omitted.
The invention provides a forced-air conveyance and harvesting system that employs a fan to assist or augment the harvest and conveyance of small produce, and is especially suited for use in the harvesting and conveyance of berries and similar crops. The forced-air conveyance harvesting system, or more simply the forced-air conveyance system, can also be referred to as a fan-augmented harvesting system, in that the forced-air is preferably provided by a fan, and the conveyance or transport of the produce is performed in the harvesting of the produce within a mechanical or mechanized harvester. Preferred embodiments of the forced-air conveyance system 15 are shown in
The produce row 20 or ‘crop row’ of a produce 21 to be harvested is most preferably a row of bushes, but may alternatively be any vine, hedge or bush containing the produce and able to be gathered by the harvester 17. Preferably, the produce is a berry and most preferably a blueberry or similarly small and approximately spherical produce, including nuts, vegetables or fruits.
The terms “approximately” or “approximate” are employed herein throughout, including this detailed description and the attached claims, with the understanding that the terms denote a level of exactness as typical for the skill and precision in the generally applicable field of technology, and well known to those persons knowledgeable or skilled in agricultural practices, and especially in the design and engineering of mechanized harvesters 17 and related devices.
Again, it is intended that the forced-air conveyance system 15 employed with the mechanized harvester 17, could be used with any variety of smaller fruit, berry, vegetable, or nut, all referable to as a produce 21 that is mechanically harvest-able by the harvester, as equipped with a harvesting beater 27. The conventional harvesting beater includes a vertical spool 28 or drum, mounted within the central channel 19 of the harvester. A plurality of beater rods 30 attach to the spool as shown in
A most preferred produce 21 for use with the forced-air conveyance system 15 is blue berries, and the blue berries are removed from the row of bushes 20 entering into the central channel 19 of the harvester 17 by action of the harvesting beaters 27. Though only one harvesting beater is required, as an alternative embodiment of the fan-augmented harvesting system 15, a multiple of harvesting beaters can be employed, each having stacked plurality of beater rods radiating from the central spool 28. As shown in
The harvesting beater 27 can be a first harvesting beater 271, working with the auxiliary harvesting beater 27′, which may also be defined as a second harvesting beater 272 in the forced-air conveyance system 15, as shown in
As shown in
Most preferably, the duct tower 40 is placed within a structural framework 46 of the over-carriage 18 of the harvester 17. As shown in the preferred embodiment of
The blower 50 is powered by a blower motor 51, as shown in
Most preferably, the duct tower 40 reduces in diameter from the top tower end 47 to the bottom tower end 48, as shown in
Most preferably, as shown in
In the preferred alternative embodiment of the harvester configuration shown in
As preferred in this alternative embodiment of the forced-air conveyance system 15, the first harvesting beater 271 and the second harvesting beater 272 are offset, relative to the other, along the length of the harvester. The first harvesting beater and the second harvesting beater are not side-by-side across the central channel 19 of the harvester, as typical in conventional harvesters, but at a “Linear Offset Distance” LD.
From the top view of the forced-air conveyance system 15, as shown in
Most preferably, the first harvesting beater 271 is positioned closer to the frontward end 22 of the harvester 17 than the second harvesting beater 272, and the second harvesting beater is positioned closer to the rearward end 23 of the harvester than the first harvesting beater. Alternatively, the first harvesting beater can be positioned closer to the rearward end of the harvester than the second harvesting beater, and the second harvesting beater can be positioned closer to the frontward end of the harvester, relative to the first harvesting beater.
Specifically, the aforementioned Linear Offset Distance LD is defined as a distance from the first harvesting beater 271 to the second harvesting beater 272, as measured along a harvester axis 75. As shown in
To measure the Linear Offset Distance LD, the harvester axis 75 is constructed from the frontward end 22 of the harvester to the rearward end 23 of the harvester within the central channel 19 of the harvester, as shown in
As shown in
Positioned proximate to the frontward end 22 of the harvester 17, the first airstream 451 from the first set of diffusers 411 on the first duct tower 401 is directed to the first harvesting beater 271, with the first duct tower located across the central channel 19 of the harvester from the first harvesting beater. Positioned proximate to the rearward end 23 of the harvester, the second airstream 452 from the second set of diffusers 412 on the second duct tower 402 is directed to the second harvesting beater 272, with the second duct tower located across the central channel 19 of the harvester from the second harvesting beater.
This unique positioning and directing of the airstream 45 from the diffusers 41 toward the harvesting beater 27 greatly improves transportation or conveyance of the produce 21 removed and separated from the produce row 20 that enters the central channel 19 of the harvester 17. Importantly, the forced-air conveyance system 15 directs the produce toward the interior catches 36 of the harvester. The directed action of the airstream also helps to remove the produce from the produce row, which is preferably the removal of blueberries from a row of blueberry bushes entering the central channel of the harvester.
Specifically, a first interior catch 361 is located proximate to the first side 71 of the harvester, with the first airstream 451 from the first set of diffusers 411 directed to the first harvesting beater 271, and with the first airstream lofting the produce toward the first interior catch. A second interior catch 362 is located proximate to the second side 71 of the harvester, with the second airstream 452 from the second set of diffusers 412 directed to the second harvesting beater 272 lofting the produce toward the second interior catch. The lofting of the produce is achieved with the aerodynamic lift and side-force directed to the produce from the airstream 45. The diffusers can be positioned as needed to direct the airstream across the beater rods 30 of the harvesting beaters 27 because of the separation of the harvesting beaters by the Linear Offset Distance LD, with the first duct tower 401 mounted on the second side of the harvester supplying the first airstream from a first blower 501 directed toward the first harvesting beater, and the second duct tower 402 supplying a second airstream from a second blower 502 directed toward the second harvesting beater.
Another feature of the Linear Offset Distance LD is that it prevents the beater rods 30 of the first beater 271 from impacting the beater rods of the second beater 272. The advantage of offsetting the first spool 281 relative to the second spool 282, as provided by the Linear Offset Distance, is that the beater rods 30 of the first beater 271 cannot reach the beater rods of the second beater 272. The Linear Offset Distance prevents unwanted beating action against the produce 21 and the produce row 20, which can occur when the beater rods of the first beater impact the beater rods of the second beater. Additionally, the beater rods last longer in service with less damage and potential fracture, by avoiding beater-to-beater impacts, between the beater rods of the adjacent harvesting beaters.
As shown in
Most preferably for the forced-air conveyance system 15, the first duct tower 401 and the second duct tower 402 each reduce in diameter from the top tower end 47 to the bottom tower end 48, as shown in
As shown in
Again, this focused and directed airstream 45 not only helps transport the produce 21 removed from the produce row to the interior catches 36 within the harvester 17, but importantly it aids or augments the action of the harvesting beater 27 in dislodging the produce or the preferred blue berries from the produce row 20 or row of bushes, which are then received into the central channel 19 of the harvester. Additionally, the flexibility of the diffuser hoods 82 allows for the extension of the diffuser 41 into the produce row without damage to produce and bushes or vines of the produce row.
As shown in
For the forced-air conveyance system 15, the combined effect of the Linear Offset Distance LD of the first harvesting beater 271 relative to the second harvesting beater 272, coupled with the extension of the airflow 45 from the duct tower 40 to the harvesting beaters, provides a significant increase in produce harvesting efficiency. The forced-air conveyance system not only reduces the quantity of unpicked produce 21 remaining on the vines or bushes or the produce row, but also is gentler on the produce and produce row. Use of the forced-air conveyance system results in less bruising to the fragile produce and less damage to the branches and vines of the produce row, as compared to conventional spooled beater and shaker types of harvesters.
In compliance with the statutes, the invention has been described in language more or less specific as to structural features and process steps. While this invention is susceptible to embodiments in different forms, the specification illustrates preferred embodiments of the invention with the understanding that the present disclosure is to be considered an exemplification of the principles of the invention, and the disclosure is not intended to limit the invention to the particular embodiments described. Those with ordinary skill in the art will appreciate that other embodiments and variations of the invention are possible, which employ the same inventive concepts as described above. Therefore, the invention is not to be limited except by the following claims, as appropriately interpreted in accordance with the doctrine of equivalents.
This Non-Provisional Utility patent application claims the benefit of U.S. Provisional Application No. 61/991,211, filed May 9, 2014.
Number | Name | Date | Kind |
---|---|---|---|
2660021 | McDowell | Nov 1953 | A |
3006131 | McDowell | Oct 1961 | A |
3276194 | Mohn | Oct 1966 | A |
3590566 | Cutts, Sr. | Jul 1971 | A |
3601964 | Fisher | Aug 1971 | A |
3685266 | Mohn | Aug 1972 | A |
3720050 | Rozinska | Mar 1973 | A |
3872655 | Davis, Sr. | Mar 1975 | A |
4016711 | Claxton | Apr 1977 | A |
4083773 | Clary | Apr 1978 | A |
4150526 | Burton | Apr 1979 | A |
4179873 | Scudder | Dec 1979 | A |
4186547 | James | Feb 1980 | A |
4212148 | Brownlee | Jul 1980 | A |
4241569 | Bobard | Dec 1980 | A |
4292792 | Burton | Oct 1981 | A |
4860529 | Peterson et al. | Aug 1989 | A |
5074107 | Windemuller | Dec 1991 | A |
5113644 | Windemuller | May 1992 | A |
5174093 | Rodriguez | Dec 1992 | A |
5259177 | Windemuller | Nov 1993 | A |
5341630 | Littau | Aug 1994 | A |
5355667 | Scott | Oct 1994 | A |
5495708 | Scott | Mar 1996 | A |
5499493 | Rosset | Mar 1996 | A |
6155036 | Pellenc | Dec 2000 | A |
6886445 | Adams | May 2005 | B2 |
8117814 | Sidhu | Feb 2012 | B2 |
20110022231 | Walker | Jan 2011 | A1 |
20140250853 | Young | Sep 2014 | A1 |
20150223399 | Kokanovic | Aug 2015 | A1 |
Number | Date | Country |
---|---|---|
2226926 | Dec 1974 | FR |
677716 | Aug 1979 | SU |
Number | Date | Country | |
---|---|---|---|
20150319930 A1 | Nov 2015 | US |
Number | Date | Country | |
---|---|---|---|
61991211 | May 2014 | US |