Certain embodiments of the invention will be described with reference to the accompanying drawings. However, the accompanying drawings illustrate only certain aspects or implementations of the invention by way of example and are not meant to limit the scope of the claims.
Specific embodiments will now be described with reference to the accompanying figures. In the following description, numerous details are set forth as examples of the invention. It will be understood by those skilled in the art that one or more embodiments of the present invention may be practiced without these specific details and that numerous variations or modifications may be possible without departing from the scope of the invention. Certain details known to those of ordinary skill in the art are omitted to avoid obscuring the description.
In general, embodiments of the invention relate to devices, systems, and/or methods for temperature control. A system in accordance with one or more embodiments of the invention may include a chilled air generation system that provides chilled air. The chilled air may be provided to a facility for the storage of temperature sensitive goods. The facility may be, for example, a thermally insulated room of a building. Air, as used herein, refers to air or hypoxic air.
The system may also include one or more phase change material (PCM) modules disposed within the facility. The PCM modules may be mountable to a wall, ceiling, or other structure within the facility. The PCM modules may provide thermal energy storage that is used, in part, to regulate the temperature within the facility and/or the temperature of the goods disposed within the facility. The PCM modules may include a quantity of phase change material that has a solid to liquid phase transition temperature between
−60° Fahrenheit and 40° Fahrenheit. The PCM module may further include a sensor for measuring the temperature of the PCM or the PCM module. The temperature sensor may be a component of the PCM module or may be an external component linked to a controller by a communication link and thereby the controller may determine the temperature of the PCM or the PCM module based on information sent to the controller by the temperature sensor.
The PCM modules may be configured to be mounted, for example, to a wall of the facility, to a ceiling of the facility, to a floor of the facility, to a rack that is disposed within the facility, or to any other structure within the facility. For example, a PCM module may include a wall mounting flange that may be secured to the wall and thereby secure the PCM module to the wall.
The chilled air generation system, when active, may provide chilled air to the facility that causes the PCM modules to undergo a liquid to solid phase change. When the chilled air generation system is not active, a portion of the PCM within the PCM modules may undergo a solid to liquid phase change and thereby absorb heat. Absorbing heat may regulate the temperature of the facility at the solid to liquid phase change temperature while the chilled air generation system is not active.
The system may also include one or more forced air convection systems disposed within the facility. The forced air convection system may facilitate the regulation of the temperature of goods disposed near the forced air convection system and/or the temperature within the facility.
In one or more embodiments of the invention, the forced air convection system may include a reversible fan unit. The reversible fan module may be configured to generate a forced airflow in a first direction or a forced airflow in a second direction, which is opposite the first direction. The convective airflow generated by the reversible fan module may pass by one or more PCM modules within the facility and thereby exchange heat with the PCM modules.
Exchanging heat with the PCM modules may change the temperature of the airflow generated by the forced air convection system. The resulting temperature changed airflow may be used to regulate the temperature of goods disposed in the facility. For example, the forced air convection system may generate an airflow that causes warm ambient air to pass by PCM modules that have a temperature lower than the temperature of the warm ambient air. The airflow generated may exchange heat with the PCM modules and thereby reduce the temperature of the airflow to a lower temperature. The reduced temperature airflow may be directed towards goods in the facility and thereby cool the goods or via mixing may maintain the environment within the facility at or near a desired temperature or temperature range, thereby maintaining the desired temperature of the goods.
In one or more embodiments of the invention, the airflow generated by the forced air convection system may also interact with the PCM modules and therein cause heat exchange between the airflow and the PCM modules. The aforementioned heat exchange may also cool the nearby goods.
The system may also include a controller that is operably connected to the chilled air generation system and the forced air convection system. The controller may be configured to control the generation of chilled air by the chilled air generation system and the operation of the forced air convection system. The controller may activate the chilled air generation system and the forced air convection system selectively to regulate the temperature of the facility and/or goods disposed within the facility. The controller may also be configured to minimize the use of energy and/or cost of the use of energy needed to regulate the temperature of the facility and/or the goods disposed within the facility.
The system may also include a power distributor that is operably connected to the controller. The power distributor may control the supply of power to the chilled air generation system and/or the forced air convection system. The power distributor may be connected to one or more power sources. When multiple power sources are available, the power sources may include, for example, a first power source that is an on-demand power source and a second power source that is a renewable power source. The power distributor may be configured to supply power from the renewable power source when such power is available and to supply power from the on-demand power source when power from the renewable power source is not available. The operation of the power distributor may be specified by the controller by way of sending a command through the operable connection.
The controller may also be configured for temporally shifting power use or peak power usage. For example, an on-demand power source may have a higher cost during the daytime, such as during normal business hours or when residential usage may be highest. Likewise, a solar power source may be available only during the day, and wind power may only be available when winds are sufficient to produce power. The PCM modules may provide for temperature regulation within the facility during peak power cost times and/or during low power availability times, and the controller(s) may be configured to operate the chilled air generation system when power is available and/or low cost. The system and controller may thus account for numerous factors to determine when to operate the chilled air generation system and when to operate based on the thermal energy storage of the PCM modules. In some embodiments, these periods of time may also coincide with times when the chilled air generation system may operate at higher efficiency.
A method of operating systems disclosed herein may include, for example, utilizing the renewable power source during a first time period, when such power is available, to operate the chilled air generation system. Operation of the chilled air generation system may cause the PCM modules to undergo a liquid to solid phase change. The method may also include deactivating the chilled air generation system during a second period of time when power from the renewable power source is unavailable. During the second time period, the fans of the forced air convection system may operate, continuously or intermittently, and thereby generate convection currents within the facility. The convection currents may cause heat transfer to the PCM modules which is absorbed by way of a solid to liquid phase change of a portion of the PCM modules. Absorption of the heat may regulate the temperature of the facility and/or the temperature of goods disposed within the facility.
The system may include a facility (100). The facility may be a physical structure. Goods (110) may be stored within the facility. For example, goods (110) may be disposed on racks (115) within the facility. The goods (100) may be temperature sensitive and may spoil or otherwise become less valuable when exposed to temperatures that fall outside of a predetermined range.
In one or more embodiments of the invention, the facility (100) may be a building. The building may be insulated. For example, the building may be a static structure that includes insulated walls.
In one or more embodiments of the invention, the facility (100) may be a room of a building. The room may be insulated, e.g., at least a portion of the walls, roof, and/or floor of the room may be thermally insulated from a surrounding environment. For example, the room may be a walk in freezer or refrigerator.
In one or more embodiments of the invention, the facility (100) may be an enclosure. The enclosure may be, for example, a train car, a shipping container, a storage container, a frozen/refrigerated goods shipping vehicle, or any other moveable structure that may store goods. The enclosure may be a refrigerated transport vehicle or a refrigerated box car of a train. In one or more embodiments of the invention, the refrigerated box car may include an insulated portion, a chilled air supply that supplies chilled air to the insulated portion, a PCM module disposed within the insulated portion, and/or a forced air convection system disposed within the insulated portion. The vehicle may be any type of vehicle including, but not limited to, an automobile, train car, boat, or aircraft.
The system may include a chilled air generation system (120). The chilled air generation system (120) may be a physical structure that produces chilled air. The chilled air generation system (120) may include an air return (121) that receives air from the facility (100) and a chilled air feed (122) that supplies chilled air to the facility (100). The chilled air generation system (120) may be any type of air conditioning system and may include condenser coils, defrost unit, and thermostats, among other components.
The chilled air generation system (120) may be connected to the controller (160) by an operable connection. The chilled air generation system (120) may receive commands from the controller (160) by way of the operable connection and thereby perform action under the direction of the controller. For example, various sensors may send temperature measurements to the controller. For example, one or more temperature sensors measuring a temperature of the air within the facility, a temperature of the PCM or PCM module, and/or a temperature of the good may be monitored by the controller. By way of the operable connection, the controller may send a command to the chilled air generation system to generate chilled air based on one or more of the temperature measurements.
The system may further include one or more PCM modules (130, 131, 132). The PCM modules (130, 131, 132) may be physical structures. The PCM modules (130, 131, 132) may facilitate the regulation of the temperature of the goods disposed within the facility and/or the temperature of the facility. The PCM modules (130, 131, 132) may include a volume of phase change material that has a solid to liquid phase transition temperature or temperature range. The phase change materials) used and the associated solid to liquid phase transition temperature may be selected, for example, based on a regulation temperature of the goods disposed within the facility and/or the regulation temperature of the facility.
Each of the PCM modules (130, 131, 132) may include one or more housings and each housing may include one or more phase change material reception ports. The housings may be made of, for example, a plastic, such as high density polyethylene, or any other appropriate material that may provide the desired compatibility with the phase change material and the requisite heat transfer characteristics. The shape of the housings may be, for example, cylindrical, rectangular, or in the form of a panel. In one or more embodiments of the invention, the housings may have a shape that maximizes heat exchange between the PCM module and airflow proximate the PCM module (130, 131, 132). The housings may have other shapes without departing from the invention.
The phase change material reception ports may be closable orifices for receiving a phase change material and thereby enabling a quantity of phase change material to be disposed within the housings. The housings may be configured to contain, for example, up to 1 gallon of phase change material. The phase change material may have a solid-liquid phase change temperature or temperature range based on a desired regulation temperature of goods. In one or more embodiments of the invention, the solid-liquid phase change temperature is between −60° and 40° Fahrenheit, such as between −20° and 40° Fahrenheit, or between 0° and about 30° Fahrenheit.
The quantity and/or type of phase change material may be set based on the desired regulation temperature of the goods. In one or more embodiments of the invention, the phase change material may include water and a quantity of one or more salts. The concentration of the one or more salts may be set, at least in part, on a desired temperature profile of the goods. In one or more embodiments of the invention, the regulation temperature of the goods is between −60° Fahrenheit and 50° Fahrenheit.
In one or more embodiments of the invention, a PCM module may be configured to be mounted to a structure.
Each of the housings may be disposed on a support structure (260). The support structure (260) may mechanically connect each of the housings (255). In one or more embodiments of the invention, the support structure (260) may include one or more rails. The rails may be, for example, structural pipe, plastic pipe, or metal pipe. The rails may pass through each of the housings (255), or may individually attach two housings (255) to collectively form a unit. In one or more embodiments of the invention, the support structure (260) may include one or more cross members that improve the stiffness of the support structure (260). In one or more embodiments of the invention, the support structure may be configured to mechanically attach to the facility or to a structure within the facility, and in some embodiments may be configured to attach to the housing of the forced air convection system (140) (
In one or more embodiments of the invention, the support structure (260) may spatially separate each of the housings (255) and thereby create airflow paths. The airflow paths may increase convective heat exchange between the PCM module (250) and an airflow proximate the PCM module (250). The support structure (260) may include one or more spacers (265) disposed on the rails and between adjacent housings (255). The spacers may be, for example, sections of plastic pipe or metal pipe having an inner diameter that is larger than the outer diameter of each rail.
While the example PCM module shown in
For example,
Returning to
While the wall mounting brackets in
While the ceiling mounting brackets in
The rack PCM module (132) may include like parts as those of the example PCM module shown in
While the rack mounting rails (500) in
The platform (510) may be a physical structure. In one or more embodiments of the invention, the platform (510) may be a wire frame structure that enables an airflow through the platform (510). By allowing airflow through the platform (510), thermal exchange between the PCM modules of the rack PCM module (132) may be greater than thermal exchange between the PCM modules of the rack PCM module (132) in proximity to a platform (510) that does not enable airflow through the platform (510).
Returning to
The forced air convection system may include a pallet (600). The pallet (600) may be a structural member that is a base for other components of the forced air convection system. The pallet (600) may be, for example, a wood or metal structure configured to support the weight of the other components of the forced air convection system and to enable the forced air convection system to be easily moved from one location to another location. The pallet (600) may include a number of airflow channels (605) through which air may flow and thereby enable air to flow through the pallet (600). While the pallet (600) is shown as including five narrow slots as airflow channels (605) in
The forced air convection system may include a housing (610). The housing (610) may include an airflow path from the pallet (600) to the reversible fan module (630). A first end of the airflow path may be disposed proximate the pallet (600) and the second end of the airflow path may be disposed proximate the reversible fan module (630). The flow of air through the housing is further described with respect to
The housing (610) may be made of a structural material such as metal. In one or more embodiments of the invention, the metal may be aluminum. The housing (610) may be disposed on the pallet and support the reversible fan module (630). While the housing (610) is depicted as a tubular structure having a rectangular cross section in
The forced air convection system may optionally include one or more integrated PCM modules (620). Each of the integrated PCM modules (620) may include one or more housings and each housing may include one or more phase change material reception pods. The housings may be made of, for example, high density polyethylene. The shape of the housings may be, for example, cylindrical, rectangular, or in the form of a panel. In one or more embodiments of the invention, the housings may have a shape that maximizes heat exchange between the PCM module and airflow proximate the PCM module. In one or more embodiments of the invention, the airflow is generated by the fan module (630). The housings may have other shapes without departing from the invention.
The phase change material reception ports may be closable orifices for receiving a phase change material and thereby enabling a quantity of phase change material to be disposed within the housings. The housings may include, for example, up to 1 gallon of phase change material. The phase change material used may include a solid-liquid phase change temperature set based on a desired regulation temperature of goods. In one or more embodiments of the invention, the solid-liquid phase change temperature is between −60° and 40° Fahrenheit.
The quantity and/or type of phase change material may be set based on the desired regulation temperature of the goods, as well as the configuration and location of the facility. In one or more embodiments of the invention, the phase change material may include water and a quantity of one or more salts. The concentration of the one or more salts may be set, at least in part, on a desired temperature profile of the goods. In one or more embodiments of the invention, the regulation temperature of the goods is between −20° Fahrenheit and 38° Fahrenheit.
In one or more embodiments of the invention, the integrated PCM modules (620) of the forced air convection system may the same as the PCM module shown in
Returning to
The one or more fans (631) may be electrically driven fans. In one or more embodiments of the invention, the fans (631) may be high efficiency fans and draw 4 watts or less of power, each.
The fans (631) may be reversible and thereby generate a forward or reverse airflow throughout the housing (610). Each of the fans (631) may be controlled by a controller, e.g., the controller may instruct the fans (631) to operate in a forward direction, a reverse direction, or to not operate.
The fans (631) may be disposed on a support structure (632). The support structure (632) may be a mechanical structure that orients and positions the fans (631) and thereby directs airflow generated by the fans (631). The support structure (632) may be, for example, an aluminum frame. While the support structure (630) is illustrated as a pyramidal structure in
The forced air convection system may include a battery backup (640). The battery backup (640) may include a battery and a regulator. The regulator may be configured to charge the battery when power from the power distributor (150) is available and to supply power to the reversible fan module (630) and/or controller (650) when power from the power distributor (150) is not available.
The forced air convection system may include a controller (650). The controller (650) may be configured to operate the fans (631) of the reversible fan module (630). The controller (650) may be further configured to monitor the temperature of goods, phase change material, and/or the facility, and activate the fans (631) in response to the monitored temperature exceeding a predetermined range and/or value.
The controller (650) may be a computing device such as a computer, embedded system, microcontroller, or any other type of computing device. The controller (650) may include a processor, memory, communication unit, and a non-transitory storage medium on which instructions are stored that when executed by the processor cause the controller to perform the functions shown in
The processor may be, for example, a central processing unit. The memory may be, for example, random access memory or persistent memory. The communication unit may be a network adapter that allows the controller (650) to communicate with other devices such as a temperature regulation system. The temperature regulation system may be, for example, a heating, ventilation, and air conditioning (HVAC) system, a refrigeration system, or a freezer system. The non-transitory computer readable medium may be a CD, DVD, storage device, a diskette, a tape, flash memory, physical memory, or any other computer readable storage medium.
The forced air convection system (140) may be connected to the controller (160) by way of an operable connection and take action based on commands received from the controller (160). in some embodiments, the forced air convection system (140) may also include a controller (650), which may be part of an overall control system and may be subservient to the controller (160).
Returning to
The power distributor (150) may be configured to receive power from one or more power sources, such as an on-demand power source (151) and a renewable power source (152). The power distributor (150) may be further configured to selectively supply power based on commands received from the controller (160) by way of an operable connection. For example, during a first time period the controller (160) may send a command to the power distributor (150) indicating that power from the renewable power source (152) should be supplied. During a second period of time, the controller (160) may send a command to the power distributor (150) indicating that power from the on-demand power source (151) should be supplied. Based on the commands, the power distributor (150) may supply power from the renewable power source (152) during the first period and may supply power from the on-demand power source (151) during the second period.
In one or more embodiments of the invention, the renewable power source (152) may generate power by receiving light. For example, the renewable power source (152) may include a photovoltaic cell or a photo-thermalelectric system. The renewable power source (152) may produce power intermittently when ambient conditions allow, e.g., when there is sufficient light to produce power or power production being proportional to ambient light intensity.
In one or more embodiments of the invention, the renewable power source (152) may generate power by receiving wind. For example, the renewable power source (152) may include a wind turbine. The renewable power source (152) may produce power intermittently when ambient conditions allow, e.g., when there is sufficient wind to produce power or power production being proportional to wind speed.
In one or more embodiments of the invention, the on-demand power source (151) may generate power by consuming a fuel source, e.g., coal, natural gas, nuclear, oil, stored water, etc. For example, the on-demand power source (151) may include a coal fired steam generator coupled to a turbine. The on-demand power source (151) may produce power on-demand and as needed, e.g., a base load power supply.
The system may include the controller (160). The controller (160) may be a computing device such as a computer, embedded system, microcontroller, or any other type of computing device. The controller (160) may include a processor, memory, communication unit, and a non-transitory computer readable medium on which instructions are stored that when executed by the processor cause the controller to perform the functions shown in
The processor may be, for example, a central processing unit. The memory may be, for example, random access memory or persistent memory. The communication unit may be a network adapter that allows the controller to communicate with other devices including the forced air convection system (140) and/or the chilled air generation system (120) by way of operable connections. The non-transitory computer readable storage medium may be a CD, DVD, storage device, a diskette, a tape, flash memory, physical memory, or any other computer readable storage medium.
In Step 800, forced air convection system obtains a command to activate a reversible fan module. The command may be received from a controller. The command may include a direction, rotation rate, duty cycle, and/or other parameter that specifies a modification of the operation of the reversible fan module. In one or more embodiments of the invention, the command may be sent to the forced air convection system via a wired or wireless connection. For example, the wired or wireless connection may be a direct wired/wireless connection, e.g., an IEEE 802.15.1 standard connection, or a network wired/wireless connection, e.g., an IEEE 802.11 standard connection. A network wired or wireless connection may support Internet Protocol (IP) communications. The wired or wireless connection may support other communication protocols without departing from the invention.
In Step 810, the system activates the reversible fan module based on the received command, and may activate the reversible fan module by setting a direction and/or rate of power to one or more fans of the reversible fan module.
Additionally, when operated in the first direction as shown in
In Step 850, a controller determines an ambient temperature. The controller may determine the ambient temperature based on a temperature sensor linked to the controller. The temperature sensor may be a component of the forced air convection system or may be an external component linked to the controller by a communication link and thereby the controller may determine the ambient temperature based on information sent to the controller by the temperature sensor.
In Step 860, the controller activates a reversible fan module in response to the ambient temperature exceeding a predetermined temperature. The controller may activate the reversible fan module by setting a direction and/or rate of power to one or more fans of the reversible fan module, Activating the reversible fan module may cause an airflow, as shown in
The ambient temperature could exceed a predetermined temperature for any reason including a failure of a component, a temporary power outage that renders the chilled air generation system inoperable, or any other reason.
In one or more embodiments of the invention, the predetermined temperature may be a temperature that extends the shelf life of goods. For example, if the goods are frozen goods, the predetermined temperature may be 27° Fahrenheit. In a second example, if the goods are produce, the predetermined temperature may be 40° Fahrenheit.
In Step 870, the controller deactivates the reversible fan module of the forced air convection system in response to the ambient temperature falling below the predetermined temperature. The method ends following Step 870.
In Step 900, a controller may obtain a first period of time having a high electricity cost and a second period of time having a low electricity cost. The controller may be operably linked to a power distributor, one or more forced air convection systems, and a chilled air generation system. As the system may require a higher energy demand during a time period when the chilled air generation system is running, the controller may optimize the time(s) that the chilled air convection system is operating. For example, during peak energy cost times, and/or when less costly (lower relative cost), renewable energy sources are not available, the controller may be configured to selectively run the forced air convection system. The system will thus be utilizing the thermal energy storage of the PCM module instead of operating the chilled air generation system. In this manner, the controller may work to reduce energy demands and decouple the system from constant, on-demand energy sources, resulting in a cost savings in overall energy requirements.
In Step 910, the controller supplies power generated by a renewable source during the first period of time. The controller may supply the power by sending a command to the power distributor. The power distributor may be configured to receive power from an on-demand source and a renewable source. The command may indicate that the power distributor is to provide power from the renewable source to the one or more forced air convection systems and the chilled air generation system. The command may be sent at the start of the first time period. In response to the first command, the power distributor may transmit power received from the renewable source to the one or more forced air convection systems and/or the chilled air generation system.
In Step 920, the controller supplies power generated by the on-demand source during the second time period. The controller may supply the power by sending a second command to the power distributor. The command may indicate that the power distributor is to provide power from the on-demand source to the one or more forced air convection systems and the chilled air generation system. The command may be sent at the start of the second time period. In response to the second command, the power distributor may transmit power received from the on-demand source to the one or more forced air convection systems and/or the chilled air generation system.
In Step 1000, a controller may obtain a first period of time having a high electricity cost and a second period of time having a low electricity cost. The controller may be operably linked to a power distributor, one or more forced air convection systems, and a chilled air generation system. As the system may require a higher energy demand when the chilled air generation system is running, the controller may be configured to minimize energy usage during the first period of time. For example, during peak energy cost times, or when cheap, renewable energy sources are not available, the controller may selectively run the forced air convection system, during the second period of time, utilizing the thermal energy storage of the PCM module instead of operating the chilled air generation system for the first period of time. In this manner, the controller may work to reduce energy demands and decouple the system from constant, on-demand energy sources, resulting in a cost savings in overall energy requirements.
In Step 1010, the controller supplies power generated to the one or more forced air convection systems and the chilled air generation system during the first period of time. In one or more embodiments of the invention, supplying power during the first time period causes the chilled air generation source to generate a chilled airflow throughout a facility, where the chilled airflow has a temperature below a solid-liquid phase change transition temperature of one or more PCM modules within the facility. Exposing the PCM modules to the chilled air may cause at least a portion of the phase change material within the phase change material modules to undergo a liquid to solid phase transition. The PCM modules may be wall PCM modules, ceiling PCM modules, or rack PCM modules, for example.
In Step 1020, the controller terminates the supply of power to the one or more forced air convection systems and/or the chilled air generation source during the second time period. Terminating the supply of power may terminate the generation of chilled air by the chilled air generation system. While the chilled air is not supplied to the facility by the chilled air generation source, the temperature within the facility may begin to rise. When the temperature reaches a predetermined temperature, the forced air convection system may activate and thereby cause convective airflow within the facility. When the temperate reaches the solid to liquid phase transition temperature, portions of the phase change material within the PCM modules may undergo a solid to liquid phase change and thereby absorb heat. Absorbing heat by the PCM modules may regulate the temperature of the facility and thereby the temperature of goods disposed within the facility. The convective currents generated by the forced air convection system may ensure uniformity of temperature within the facility by way of convective thermal exchange.
Thus, the method shown in
In a like manner, a controller may also be configured to regulate the temperature of goods by shifting the use of electricity to periods of time when a renewable energy source is available, and utilizing PCM modules to regulate the temperature of goods during periods of time when the renewable energy source is unavailable.
The following are examples of systems in accordance with one or more embodiments of the invention. The following examples are explanatory examples and not intended to the limit the invention.
The forced air convection system (140) may be configured to operate one or more reversible fan modules (140) in a first direction when the temperature measurement of the interior of the facility (100) indicates that the measured temperature is above a second predetermined value. The forced air convection system (140) may be further configured to operate the reversible fan modules in a second direction when the temperature measurement of the interior of the facility (100) indicates that the measured temperature is below a second predetermined value.
The first predetermined value may be less than the second predetermined value.
Both forced air convection systems (1200, 1201) may be configured to operate reversible fan modules in a first direction when the temperature measurement of the interior of the facility (100) indicates that the measured temperature is above a second predetermined value. The forced air convection systems (1200, 1201) may be further configured to operate the reversible fan modules in a second direction when the temperature measurement of the interior of the facility (100) indicates that the measured temperature is below a second predetermined value.
The first predetermined value may be less than the second predetermined value.
Both forced air convection systems (1200, 1201) may be configured to operate reversible fan modules in a first direction when the temperature measurement of the interior of the facility (100) indicates that the measured temperature is above a second predetermined value. The forced air convection systems (1200, 1201) may be further configured to operate the reversible fan modules in a second direction when the temperature measurement of the interior of the facility (100) indicates that the measured temperature is below a second predetermined value.
The PCM modules (1300, 1301, 1302, 1303, 1304, 1305) may be configured to absorb heat when exposed to a temperature that is above the second predetermined value. The PCM modules (1300, 1301, 1302, 1303, 1304, 1305) may be further configured to release heat when exposed to a temperature that is below the second predetermined value. The first predetermined value may be less than the second predetermined value.
One or more embodiments of the invention may provide one or more of the following advantages: i) a system in accordance with embodiments of the invention may regulate a temperature of a good and/or a facility in which a good is stored, ii) the system may reduce the cost of regulating the temperature of goods by maintaining the temperature of goods using the PCM modules to regulate temperature during periods of time where the cost of energy is high, e.g., reduce the cost by 25-50% by selectively not using chilled air generation systems during time periods when on-demand energy is more costly or unavailable, iii) the system in accordance with embodiments of the invention may regulate a temperature of a good to a desired range for a desired period of time, for example, of four to eight hours, iv) the system in accordance with embodiments of the invention may be configurable to maintain the temperature of goods to a predetermined temperature between −60° and 40° Fahrenheit, v) the system in accordance with embodiments of the invention may be reusable, e.g., no component is used up or otherwise lost during use, vi) the system may be configurable to regulate the temperature of a facility of arbitrary size, and vii) one or more embodiments of the invention may enable an existing facility to be retrofitted by one or more embodiments herein.
As used herein, “time” and “period of time” may refer to operational phases when certain conditions are met, and may not necessarily refer to discrete blocks of time, such as 15 minutes or 30 minutes. One of ordinary skill in the art, with the benefit of the disclosure herein, would appreciate that a first period of time and a second period of time may be alternately utilized as necessary by the controller and not on a fixed schedule.
While the invention has been described above with respect to a limited number of embodiments, those skilled in the art, having the benefit of this disclosure, will appreciate that other embodiments can be devised which do not depart from the scope of the invention as disclosed herein. Accordingly, the scope of the invention should be limited only by the attached claims.
Number | Date | Country | |
---|---|---|---|
62332903 | May 2016 | US |