Generally, a convection oven includes a convection fan that is near one or more heating elements. The heating element heats air which is blown into the cooking cavity of the oven by the convection fan. While the convection fan is useful to heat and/or cook an item within the cooking cavity, the heated air blown into the cooking cavity can make the item very dry. Stand-alone steam systems are very large and costly to integrate into a cooking appliance. For example, a powered boiler is large, expensive, and requires welding and additional electrical power which may require sharing power with the heating elements and/or the convection fan motor. Thus, it is desirable to have a convection oven that has a smaller, less-expensive approach to provide moisture into the cooking cavity to help keep the item in the cooking cavity moist.
One aspect of the present invention is an oven with a housing defining a cooking cavity. The oven has a door coupled to the housing. The oven has a convection fan assembly with a convection fan and at least one heating element to generate heat and to heat the air in the cooking cavity. The oven also has a trough assembly with a trough tray portion located underneath a portion of the convection fan and the convection fan heating element. The trough assembly also includes a trough supply portion shaped to receive fluid and to direct the fluid to the trough tray portion so that the fluid can be heated and turned into steam by the heating element(s) and blown into the cooking cavity by the convection fan.
Another aspect of the present invention is a convection fan assembly with a steaming device. The convection fan assembly has a convection fan connected to a motor that rotates the convection fan and at least one generally annular heating element coupled near the convection fan. The convection fan assembly also has a trough assembly. The trough assembly has a trough tray located underneath a portion of the convection fan and the generally annular heating element(s). The trough assembly also has a trough supply portion shaped to receive fluid and to direct the fluid to the trough tray portion so that the fluid can be heated by the generally annular heating element(s) and turned into steam, which is blown by the convection fan.
Another aspect of the present invention is a method for providing steam to a convection oven. The method includes forming a trough tray capable of holding fluid while surrounding a portion of the heating element(s) of the convection oven. The method includes forming a trough supply portion shaped to direct fluid to the trough tray. The method also includes adding fluid to the trough tray so that the fluid can be heated by the heating element(s) of the convection oven and forced into the oven cooking cavity by the fan of the convection oven.
These and other features, advantages, and objects of the present invention will be further understood and appreciated by those skilled in the art upon studying the following specification, claims, and appended drawings.
In the drawings:
As referenced in the figures, the same reference numerals may be used herein to refer to the same parameters and components or their similar modifications and alternatives. For purposes of description herein, the terms “upper,” “lower,” “right,” “left,” “rear,” “front,” “vertical,” “horizontal,” and derivatives thereof shall relate to the present disclosure as oriented in
With reference to the drawings, an oven 2 includes a cooking cavity 4 and an oven door 6. The oven door 6 can have a handle 8 to assist in the opening and closing of the oven door 6 for access to the cooking cavity 4. The oven 2 can have a number of burners 10 that are controlled by associated burner controls 12. As illustrated in
The oven 2 includes a convection fan assembly 20 that provides heated air to the cooking cavity 4 to heat and/or cook items within the cooking cavity 4. Typically, a baffle (not shown) is placed over the convection fan assembly 20 to prevent contact with the components of the convection fan assembly 20 when the cooking cavity 4 is used. This baffle has apertures that allow air to pass from the convection fan assembly 20 to the cooking cavity 4.
The convection fan assembly 20 includes a mounting plate 32 that allows the convection fan assembly 20 to be coupled to the cooking cavity 4. The convection fan assembly 20 includes a fan blade 34 that is rotated by a motor coupled to a connection 36. A fastener 38 is used to secure the fan blade 34 to the connection 36.
In the illustrated embodiment, the convection fan assembly 20 has a generally annular heating element(s) 30. These heating element(s) 30 are positioned generally near the fan blade 34 but do not inhibit the movement of the fan blade 34. As illustrated in
A trough assembly 18 includes a trough tray portion 22 with an interior 28 and a trough supply portion 24, as illustrated in
The trough tray portion 22 is shaped to surround a portion of the convection fan assembly 20, as shown in
The trough supply portion 24 has a generally cylindrical tubular design in the illustrated embodiment. However, the trough supply portion 24 can be of any shape, so long as it can direct fluid to the trough tray portion 22. However, in some embodiments the trough tray portion 22 can be manually filled with fluid and/or have a fluid connection directly to the trough tray portion 22 without the need for a trough supply portion 24.
The trough tray portion 22 and the trough supply portion 24 can be made of the same or different materials. The trough tray portion 22 needs to be made of a material that can withstand the heat generated by the heating element(s) 30. Thus, the trough tray portion 22 can be made of metal or a high temperature-resistant ceramic or polymeric material.
A fluid supply system can be used to supply fluid to the trough tray portion 22. As shown in
As illustrated in
The fluid can be water or water with an additive. For example, the additives could include any number of different flavors, such as liquid smoke, liquid garlic, or any other desired flavor.
The valve 44 can be of any type of valve. For example, it can be a drip ball valve, a solenoid valve, or other type of valve.
The valve 44 may be controlled electronically. For example, the valve 44 can be opened or closed based upon any one or combination of factors, including, but not limited to, the humidity in the cooking cavity 4, the fluid level 50, 50A in the trough tray portion 22, timing, steam percent, etc.
The fluid supply can also include a conduction break to prevent heat transfer to the valve 44. In addition, the fluid supply can have multiple outlets for multiple convection fans.
The heating element(s) 30 can be any type of heating element(s). In the illustrated embodiment, the heating element(s) 30 in a calrod burner that can reach a temperature of approximately 700° C. (1292° F.) which will turn the fluid into steam.
It will be understood by one having ordinary skill in the art that construction of the described device and other components is not limited to any specific material. Other exemplary embodiments of the device disclosed herein may be formed from a wide variety of materials, unless described otherwise herein.
For purposes of this disclosure, the term “coupled” (in all of its forms, couple, coupling, coupled, etc.) generally means the joining of two components (electrical or mechanical) directly or indirectly to one another. Such joining may be stationary in nature or movable in nature. Such joining may be achieved with the two components (electrical or mechanical) and any additional intermediate members being integrally formed as a single unitary body with one another or with the two components. Such joining may be permanent in nature or may be removable or releasable in nature unless otherwise stated.
It is also important to note that the construction and arrangement of the elements of the device as shown in the exemplary embodiments is illustrative only. Although only a few embodiments of the present innovations have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited. For example, elements shown as integrally formed may be constructed of multiple parts or elements shown as multiple parts may be integrally formed, the operation of the interfaces may be reversed or otherwise varied, the length or width of the structures and/or members or connector or other elements of the system may be varied, the nature or number of adjustment positions provided between the elements may be varied. It should be noted that the elements and/or assemblies of the system may be constructed from any of a wide variety of materials that provide sufficient strength or durability, in any of a wide variety of colors, textures, and combinations. Accordingly, all such modifications are intended to be included within the scope of the present innovations. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions, and arrangement of the desired and other exemplary embodiments without departing from the spirit of the present innovations.
It will be understood that any described processes or steps within described processes may be combined with other disclosed processes or steps to form structures within the scope of the present device. The exemplary structures and processes disclosed herein are for illustrative purposes and are not to be construed as limiting.
It is also to be understood that variations and modifications can be made on the aforementioned structures and methods without departing from the concepts of the present device, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.
The above description is considered that of the illustrated embodiments only. Modifications of the device will occur to those skilled in the art and to those who make or use the device. Therefore, it is understood that the embodiments shown in the drawings and described above is merely for illustrative purposes and not intended to limit the scope of the device, which is defined by the following claims as interpreted according to the principles of patent law, including the Doctrine of Equivalents.
Number | Name | Date | Kind |
---|---|---|---|
1141176 | Copeman | Jun 1915 | A |
1380656 | Lauth | Jun 1921 | A |
1405624 | Patterson | Feb 1922 | A |
1598996 | Wheelock | Sep 1926 | A |
1808550 | Harpman | Jun 1931 | A |
2024510 | Crisenberry | Dec 1935 | A |
2530991 | Reeves | Nov 1950 | A |
2536613 | Schulze et al. | Jan 1951 | A |
2777407 | Schindler | Jan 1957 | A |
2781038 | Sherman | Feb 1957 | A |
2815018 | Collins | Dec 1957 | A |
2828608 | Cowlin et al. | Apr 1958 | A |
2847932 | More | Aug 1958 | A |
2930194 | Perkins | May 1960 | A |
2934957 | Reinhart et al. | May 1960 | A |
D191085 | Kindl et al. | Aug 1961 | S |
3017924 | Jenson | Jan 1962 | A |
3051813 | Busch et al. | Aug 1962 | A |
3089407 | Kinkle | May 1963 | A |
3259120 | Keating | Jul 1966 | A |
3386431 | Branson | Jun 1968 | A |
3463138 | Lotter et al. | Aug 1969 | A |
3489135 | Astrella | Jan 1970 | A |
3548154 | Christiansson | Dec 1970 | A |
3602131 | Dadson | Aug 1971 | A |
3691937 | Meek et al. | Sep 1972 | A |
3731035 | Jarvis et al. | May 1973 | A |
3777985 | Hughes et al. | Dec 1973 | A |
3780954 | Genbauffs | Dec 1973 | A |
3857254 | Lobel | Dec 1974 | A |
3877865 | Duperow | Apr 1975 | A |
3899655 | Skinner | Aug 1975 | A |
D245663 | Gordon | Sep 1977 | S |
4149518 | Schmidt et al. | Apr 1979 | A |
4363956 | Scheidler et al. | Dec 1982 | A |
4413610 | Berlik | Nov 1983 | A |
4418456 | Riehl | Dec 1983 | A |
4447711 | Fischer | May 1984 | A |
4466789 | Riehl | Aug 1984 | A |
4518346 | Pistien | May 1985 | A |
4587946 | Doyon et al. | May 1986 | A |
4646963 | Delotto et al. | Mar 1987 | A |
4654508 | Logel et al. | Mar 1987 | A |
4689961 | Stratton | Sep 1987 | A |
4812624 | Kern | Mar 1989 | A |
4846671 | Kwiatek | Jul 1989 | A |
4886043 | Homer | Dec 1989 | A |
4891936 | Shekleton et al. | Jan 1990 | A |
D309398 | Lund | Jul 1990 | S |
4981416 | Nevin et al. | Jan 1991 | A |
4989404 | Shekleton | Feb 1991 | A |
5136277 | Civanelli et al. | Aug 1992 | A |
5171951 | Chartrain et al. | Dec 1992 | A |
D332385 | Adams | Jan 1993 | S |
5190026 | Doty | Mar 1993 | A |
D340383 | Addison et al. | Oct 1993 | S |
5272317 | Ryu | Dec 1993 | A |
D342865 | Addison et al. | Jan 1994 | S |
5397234 | Kwiatek | Mar 1995 | A |
D364993 | Andrea | Dec 1995 | S |
5491423 | Turetta | Feb 1996 | A |
D369517 | Ferlin | May 1996 | S |
5546927 | Lancelot | Aug 1996 | A |
D378578 | Eberhardt | Mar 1997 | S |
5618458 | Thomas | Apr 1997 | A |
5649822 | Gertler et al. | Jul 1997 | A |
5735261 | Kieslinger | Apr 1998 | A |
5785047 | Bird et al. | Jul 1998 | A |
5842849 | Huang | Dec 1998 | A |
5913675 | Vago et al. | Jun 1999 | A |
5928540 | Antoine et al. | Jul 1999 | A |
D414377 | Huang | Sep 1999 | S |
5967021 | Yung | Oct 1999 | A |
6030207 | Saleri | Feb 2000 | A |
6050176 | Schultheis et al. | Apr 2000 | A |
6089219 | Kodera et al. | Jul 2000 | A |
6092518 | Dane | Jul 2000 | A |
6111229 | Schultheis | Aug 2000 | A |
6114665 | Garcia et al. | Sep 2000 | A |
6155820 | Döbbeling | Dec 2000 | A |
6188045 | Hansen et al. | Feb 2001 | B1 |
6192669 | Keller et al. | Feb 2001 | B1 |
6196113 | Yung | Mar 2001 | B1 |
6253759 | Giebel et al. | Jul 2001 | B1 |
6320169 | Clothier | Nov 2001 | B1 |
6322354 | Carbone et al. | Nov 2001 | B1 |
6362458 | Sargunam et al. | Mar 2002 | B1 |
6452136 | Berkcan et al. | Sep 2002 | B1 |
6452141 | Shon | Sep 2002 | B1 |
6589046 | Harneit | Jul 2003 | B2 |
6614006 | Pastore et al. | Sep 2003 | B2 |
6619280 | Zhou et al. | Sep 2003 | B1 |
6655954 | Dane | Dec 2003 | B2 |
6663009 | Bedetti et al. | Dec 2003 | B1 |
6718965 | Rummel et al. | Apr 2004 | B2 |
6837151 | Chen | Jan 2005 | B2 |
6891133 | Shozo et al. | May 2005 | B2 |
6930287 | Gerola et al. | Aug 2005 | B2 |
7005614 | Lee | Feb 2006 | B2 |
7017572 | Cadima | Mar 2006 | B2 |
D524105 | Poltronieri | Jul 2006 | S |
7083123 | Molla | Aug 2006 | B2 |
7220945 | Wang | May 2007 | B1 |
D544753 | Tseng | Jun 2007 | S |
7274008 | Arnal Valero et al. | Sep 2007 | B2 |
7281715 | Boswell | Oct 2007 | B2 |
7291009 | Kamal et al. | Nov 2007 | B2 |
7325480 | Gruhbaum et al. | Feb 2008 | B2 |
D564296 | Koch et al. | Mar 2008 | S |
7348520 | Wang | Mar 2008 | B2 |
7368685 | Nam et al. | May 2008 | B2 |
7411160 | Duncan et al. | Aug 2008 | B2 |
7417204 | Nam et al. | Aug 2008 | B2 |
D581736 | Besseas | Dec 2008 | S |
7468496 | Marchand | Dec 2008 | B2 |
D592445 | Sorenson et al. | May 2009 | S |
D598959 | Kiddoo | Aug 2009 | S |
7589299 | Fisher et al. | Sep 2009 | B2 |
D604098 | Hamlin | Nov 2009 | S |
7614877 | McCrorey et al. | Nov 2009 | B2 |
7628609 | Pryor et al. | Dec 2009 | B2 |
7640930 | Little et al. | Jan 2010 | B2 |
7696454 | Nam et al. | Apr 2010 | B2 |
7708008 | Elkasevic et al. | May 2010 | B2 |
7721727 | Kobayashi | May 2010 | B2 |
7731493 | Starnini et al. | Jun 2010 | B2 |
7762250 | Elkasevic et al. | Jul 2010 | B2 |
7770985 | Davis et al. | Aug 2010 | B2 |
7781702 | Nam et al. | Aug 2010 | B2 |
7823502 | Hecker et al. | Nov 2010 | B2 |
7829825 | Kühne | Nov 2010 | B2 |
7841333 | Kobayashi | Nov 2010 | B2 |
7964823 | Armstrong et al. | Jun 2011 | B2 |
D642675 | Scribano et al. | Aug 2011 | S |
8006687 | Watkins et al. | Aug 2011 | B2 |
8015821 | Spytek | Sep 2011 | B2 |
8037689 | Oskin et al. | Oct 2011 | B2 |
8141549 | Armstrong et al. | Mar 2012 | B2 |
8217314 | Kim et al. | Jul 2012 | B2 |
8220450 | Luo et al. | Jul 2012 | B2 |
8222578 | Beier | Jul 2012 | B2 |
D665491 | Goel et al. | Aug 2012 | S |
8272321 | Kalsi et al. | Sep 2012 | B1 |
8288690 | Boubeddi et al. | Oct 2012 | B2 |
8302593 | Cadima | Nov 2012 | B2 |
8304695 | Bonuso et al. | Nov 2012 | B2 |
8342165 | Watkins | Jan 2013 | B2 |
8393317 | Sorenson et al. | Mar 2013 | B2 |
8398303 | Kuhn | Mar 2013 | B2 |
8464703 | Ryu et al. | Jun 2013 | B2 |
D685225 | Santoyo et al. | Jul 2013 | S |
D687675 | Filho et al. | Aug 2013 | S |
8535052 | Cadima | Sep 2013 | B2 |
D693175 | Saubert | Nov 2013 | S |
8584663 | Kim et al. | Nov 2013 | B2 |
8596259 | Padgett et al. | Dec 2013 | B2 |
8616193 | Padgett | Dec 2013 | B2 |
8660297 | Yoon et al. | Feb 2014 | B2 |
8687842 | Yoon et al. | Apr 2014 | B2 |
8707945 | Hasslberger et al. | Apr 2014 | B2 |
8747108 | Lona Santoyo et al. | Jun 2014 | B2 |
8800543 | Simms et al. | Aug 2014 | B2 |
D718061 | Wu | Nov 2014 | S |
8887710 | Rossi et al. | Nov 2014 | B2 |
8930160 | Wall et al. | Jan 2015 | B2 |
8932049 | Ryu et al. | Jan 2015 | B2 |
8950389 | Horstkoetter et al. | Feb 2015 | B2 |
8978637 | Ryu et al. | Mar 2015 | B2 |
D727489 | Rohskopf et al. | Apr 2015 | S |
9021942 | Lee et al. | May 2015 | B2 |
9074765 | Armanni | Jul 2015 | B2 |
D735525 | Nguyen | Aug 2015 | S |
9113503 | Arnal Valero et al. | Aug 2015 | B2 |
9132302 | Luongo et al. | Sep 2015 | B2 |
D743203 | Filho et al. | Nov 2015 | S |
9175858 | Tisselli et al. | Nov 2015 | B2 |
D750314 | Hobson et al. | Feb 2016 | S |
9307888 | Baldwin et al. | Apr 2016 | B2 |
D758107 | Hamilton | Jun 2016 | S |
D766036 | Koch et al. | Sep 2016 | S |
D766696 | Kemker | Sep 2016 | S |
9513015 | Estrella et al. | Dec 2016 | B2 |
9521708 | Adelmann et al. | Dec 2016 | B2 |
9572475 | Gephart et al. | Feb 2017 | B2 |
9644847 | Bhogal et al. | May 2017 | B2 |
9696042 | Hasslberger et al. | Jul 2017 | B2 |
9927129 | Bhogal et al. | Mar 2018 | B2 |
20020065039 | Benezech et al. | May 2002 | A1 |
20040031782 | Westfield | Feb 2004 | A1 |
20040195399 | Molla | Oct 2004 | A1 |
20040224273 | Inomata | Nov 2004 | A1 |
20040224274 | Tomiura | Nov 2004 | A1 |
20050112520 | Todoli et al. | May 2005 | A1 |
20050199232 | Gama et al. | Sep 2005 | A1 |
20050268794 | Nesterov | Dec 2005 | A1 |
20070124972 | Ratcliffe | Jun 2007 | A1 |
20070251936 | Nam et al. | Nov 2007 | A1 |
20070281267 | Li | Dec 2007 | A1 |
20080029081 | Gagas et al. | Feb 2008 | A1 |
20080050687 | Wu | Feb 2008 | A1 |
20080173632 | Jang et al. | Jul 2008 | A1 |
20080210685 | Beier | Sep 2008 | A1 |
20090320823 | Padgett | Dec 2009 | A1 |
20100035197 | Cadima | Feb 2010 | A1 |
20100126496 | Luo et al. | May 2010 | A1 |
20100154776 | Czajka et al. | Jun 2010 | A1 |
20100192939 | Parks | Aug 2010 | A1 |
20110027733 | Yamamoto et al. | Feb 2011 | A1 |
20110142998 | Johncock et al. | Jun 2011 | A1 |
20110163086 | Aldana Arjol et al. | Jul 2011 | A1 |
20110248021 | Gutierrez et al. | Oct 2011 | A1 |
20120017595 | Liu | Jan 2012 | A1 |
20120036855 | Hull | Feb 2012 | A1 |
20120067334 | Kim et al. | Mar 2012 | A1 |
20120076351 | Yoon et al. | Mar 2012 | A1 |
20120099761 | Yoon et al. | Apr 2012 | A1 |
20120160228 | Kim et al. | Jun 2012 | A1 |
20120171343 | Cadima et al. | Jul 2012 | A1 |
20120261405 | Kurose et al. | Oct 2012 | A1 |
20130043239 | Anton Falcon et al. | Feb 2013 | A1 |
20130252188 | Chen | Sep 2013 | A1 |
20130255663 | Cadima et al. | Oct 2013 | A1 |
20130260618 | Bally et al. | Oct 2013 | A1 |
20140048055 | Ruther | Feb 2014 | A1 |
20140090636 | Bettinzoli | Apr 2014 | A1 |
20140097172 | Kang et al. | Apr 2014 | A1 |
20140116416 | Saubert | May 2014 | A1 |
20140137751 | Bellm | May 2014 | A1 |
20140139381 | Sippel | May 2014 | A1 |
20140318527 | Silva et al. | Oct 2014 | A1 |
20150096974 | Freeman et al. | Apr 2015 | A1 |
20150136760 | Lima et al. | May 2015 | A1 |
20150153041 | Neumeier | Jun 2015 | A1 |
20150241069 | Brant et al. | Aug 2015 | A1 |
20150330640 | Stork genannt Wersborg | Nov 2015 | A1 |
20150345800 | Cabrera Botello | Dec 2015 | A1 |
20150359045 | Neukamm et al. | Dec 2015 | A1 |
20160029439 | Kurose et al. | Jan 2016 | A1 |
20160061490 | Cho et al. | Mar 2016 | A1 |
20160095469 | Gregory et al. | Apr 2016 | A1 |
20160116160 | Takeuchi | Apr 2016 | A1 |
20160153666 | Tcaciuc | Jun 2016 | A1 |
20160178209 | Park et al. | Jun 2016 | A1 |
20160178212 | Park et al. | Jun 2016 | A1 |
20160187002 | Ryu et al. | Jun 2016 | A1 |
20160201902 | Cadima | Jul 2016 | A1 |
20160209044 | Cadima | Jul 2016 | A1 |
20160295644 | Khokle et al. | Oct 2016 | A1 |
20160296067 | Laws | Oct 2016 | A1 |
20170003033 | Lona Santoyo et al. | Jan 2017 | A1 |
20170067651 | Khokle et al. | Mar 2017 | A1 |
20170082296 | Jeong et al. | Mar 2017 | A1 |
20170082299 | Rowley et al. | Mar 2017 | A1 |
20170103228 | Park et al. | Apr 2017 | A1 |
20170115008 | Erbe et al. | Apr 2017 | A1 |
20170223774 | Cheng et al. | Aug 2017 | A1 |
20170261213 | Park et al. | Sep 2017 | A1 |
20180058702 | Jang et al. | Mar 2018 | A1 |
Number | Date | Country |
---|---|---|
2365023 | Jul 2002 | CA |
2734926 | Oct 2011 | CA |
201680430 | Dec 2010 | CN |
2845869 | Apr 1980 | DE |
3014908 | Oct 1981 | DE |
3238441 | Apr 1984 | DE |
3446621 | Jun 1986 | DE |
3839657 | May 1990 | DE |
4103664 | Jan 1992 | DE |
4445594 | Jun 1996 | DE |
60004581 | Jun 2004 | DE |
102004002466 | Aug 2005 | DE |
102005059505 | Jun 2007 | DE |
102005059505 | Jun 2007 | DE |
102007021297 | Nov 2008 | DE |
102008042467 | Apr 2010 | DE |
102008051829 | Apr 2010 | DE |
102008051829 | Apr 2010 | DE |
102013218714 | Apr 2014 | DE |
0000908 | Mar 1979 | EP |
0000908 | Mar 1979 | EP |
0122966 | Oct 1984 | EP |
0429120 | Nov 1990 | EP |
0690659 | Jan 1996 | EP |
1030114 | Aug 2000 | EP |
1217306 | Jun 2002 | EP |
1344986 | Sep 2003 | EP |
1617148 | Jan 2006 | EP |
1617148 | Jan 2006 | EP |
1201998 | Mar 2006 | EP |
1460342 | May 2006 | EP |
2116775 | Nov 2009 | EP |
2116829 | Nov 2009 | EP |
2276227 | Jan 2011 | EP |
2299181 | Mar 2011 | EP |
2375170 | Oct 2011 | EP |
2144012 | Sep 2012 | EP |
2657615 | Oct 2013 | EP |
2816291 | Dec 2014 | EP |
2835580 | Feb 2015 | EP |
3006832 | Apr 2016 | EP |
2789753 | Aug 2000 | FR |
3003338 | Sep 2014 | FR |
2158225 | Nov 1985 | GB |
2010038475 | Feb 2010 | JP |
2011144982 | Jul 2011 | JP |
2006136363 | Dec 2006 | WO |
2012077050 | Jun 2012 | WO |
2013098330 | Jul 2013 | WO |
2013104521 | Jul 2013 | WO |
2013104521 | Jul 2013 | WO |
WO-2013104521 | Jul 2013 | WO |
2013182410 | Dec 2013 | WO |
2014194176 | Dec 2014 | WO |
2015086420 | Jun 2015 | WO |
Entry |
---|
Built-In Gas Cooktop, image post date Feb. 18, 2015, originally in U.S. Appl. No. 29/539,768 in Restriction Requirement dated Oct. 27, 2016, 10 pages, <http://www.bestbuy.com/site/kitchenaid-36-built-in-gas-cooktop-stainless-steel/8636634.p?skuld=8636634>. |
True-Heat burner, image post date Jan. 30, 2015, originally in U.S. Appl. No. 29/539,768 in Restriction Requirement dated Oct. 27, 2016, 2 pages, <http://ovens.reviewed.com/news/kitchenaid-has-a-new-flame>. |
Metal Cover Gas Hob, image post date 2012, originally in U.S. Appl. No. 29/539,768 in Restriction Requirement dated Oct. 27, 2016, 13 pages, <http://inse.gmc.globalmarket.com/products/details/metal-cover-gas-hob-8516959.html>. |
Penny Stove, image post date 2004, originally in U.S. Appl. No. 29/539,768 in Restriction Requirement dated Oct. 27, 2016, 30 pages, <http://www.jureystudio.com/pennystove/stoveinstruction.html>. |
Number | Date | Country | |
---|---|---|---|
20180259192 A1 | Sep 2018 | US |