Forced convection steam assembly

Information

  • Patent Grant
  • 10451290
  • Patent Number
    10,451,290
  • Date Filed
    Tuesday, March 7, 2017
    8 years ago
  • Date Issued
    Tuesday, October 22, 2019
    5 years ago
Abstract
A convection oven includes a convection fan assembly and a trough assembly that surrounds a portion of the heating element(s) of the convection fan assembly. Fluid in the trough assembly is heated and turned into steam by the heating element(s) and blown into the cooking cavity of the convection oven by the convection fan of the convection fan assembly. The steam in the cooking cavity provides moisture to the items that are being cooked and/or heated in the cooking cavity.
Description
BACKGROUND

Generally, a convection oven includes a convection fan that is near one or more heating elements. The heating element heats air which is blown into the cooking cavity of the oven by the convection fan. While the convection fan is useful to heat and/or cook an item within the cooking cavity, the heated air blown into the cooking cavity can make the item very dry. Stand-alone steam systems are very large and costly to integrate into a cooking appliance. For example, a powered boiler is large, expensive, and requires welding and additional electrical power which may require sharing power with the heating elements and/or the convection fan motor. Thus, it is desirable to have a convection oven that has a smaller, less-expensive approach to provide moisture into the cooking cavity to help keep the item in the cooking cavity moist.


SUMMARY OF THE INVENTION

One aspect of the present invention is an oven with a housing defining a cooking cavity. The oven has a door coupled to the housing. The oven has a convection fan assembly with a convection fan and at least one heating element to generate heat and to heat the air in the cooking cavity. The oven also has a trough assembly with a trough tray portion located underneath a portion of the convection fan and the convection fan heating element. The trough assembly also includes a trough supply portion shaped to receive fluid and to direct the fluid to the trough tray portion so that the fluid can be heated and turned into steam by the heating element(s) and blown into the cooking cavity by the convection fan.


Another aspect of the present invention is a convection fan assembly with a steaming device. The convection fan assembly has a convection fan connected to a motor that rotates the convection fan and at least one generally annular heating element coupled near the convection fan. The convection fan assembly also has a trough assembly. The trough assembly has a trough tray located underneath a portion of the convection fan and the generally annular heating element(s). The trough assembly also has a trough supply portion shaped to receive fluid and to direct the fluid to the trough tray portion so that the fluid can be heated by the generally annular heating element(s) and turned into steam, which is blown by the convection fan.


Another aspect of the present invention is a method for providing steam to a convection oven. The method includes forming a trough tray capable of holding fluid while surrounding a portion of the heating element(s) of the convection oven. The method includes forming a trough supply portion shaped to direct fluid to the trough tray. The method also includes adding fluid to the trough tray so that the fluid can be heated by the heating element(s) of the convection oven and forced into the oven cooking cavity by the fan of the convection oven.


These and other features, advantages, and objects of the present invention will be further understood and appreciated by those skilled in the art upon studying the following specification, claims, and appended drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:



FIG. 1 is a front perspective view of an oven according to an embodiment of the present concept;



FIG. 2 is a partial front perspective view of the cavity of the oven shown in FIG. 1 with the baffle covering the convection assembly removed;



FIG. 3 is a front perspective view of the convection fan assembly and trough assembly of the oven shown in FIG. 1;



FIG. 4 is front perspective view of the convection fan assembly and trough assembly shown in FIG. 3 before the trough assembly is situated around a portion of the convection fan assembly;



FIG. 5 is a front view of the convection fan assembly and trough assembly showing a drip valve above a portion of the trough assembly; and



FIG. 6 is a partial cross section showing the convection fan assembly, the trough assembly, and fluid supply along with fluid level(s) in the trough assemblies.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

As referenced in the figures, the same reference numerals may be used herein to refer to the same parameters and components or their similar modifications and alternatives. For purposes of description herein, the terms “upper,” “lower,” “right,” “left,” “rear,” “front,” “vertical,” “horizontal,” and derivatives thereof shall relate to the present disclosure as oriented in FIG. 1. However, it is to be understood that the present disclosure may assume various alternative orientations, except where expressly specified to the contrary. It is also to be understood that the specific devices and processes illustrated in the attached drawings, and described in the following specification are simply exemplary embodiments of the inventive concepts defined in the appended claims. Hence, specific dimensions and other physical characteristics relating to the embodiments disclosed herein are not to be considered as limiting, unless the claims expressly state otherwise. The drawings referenced herein are schematic and associated views thereof are not necessarily drawn to scale.


With reference to the drawings, an oven 2 includes a cooking cavity 4 and an oven door 6. The oven door 6 can have a handle 8 to assist in the opening and closing of the oven door 6 for access to the cooking cavity 4. The oven 2 can have a number of burners 10 that are controlled by associated burner controls 12. As illustrated in FIG. 2, the cooking cavity 4 can have one or more racks 14 that are supported by rack supports 16.


The oven 2 includes a convection fan assembly 20 that provides heated air to the cooking cavity 4 to heat and/or cook items within the cooking cavity 4. Typically, a baffle (not shown) is placed over the convection fan assembly 20 to prevent contact with the components of the convection fan assembly 20 when the cooking cavity 4 is used. This baffle has apertures that allow air to pass from the convection fan assembly 20 to the cooking cavity 4.


The convection fan assembly 20 includes a mounting plate 32 that allows the convection fan assembly 20 to be coupled to the cooking cavity 4. The convection fan assembly 20 includes a fan blade 34 that is rotated by a motor coupled to a connection 36. A fastener 38 is used to secure the fan blade 34 to the connection 36.


In the illustrated embodiment, the convection fan assembly 20 has a generally annular heating element(s) 30. These heating element(s) 30 are positioned generally near the fan blade 34 but do not inhibit the movement of the fan blade 34. As illustrated in FIG. 6, the fan motor is powered by electrical connection 48, while the heating element(s) 30 are powered by electrical connection 46.


A trough assembly 18 includes a trough tray portion 22 with an interior 28 and a trough supply portion 24, as illustrated in FIGS. 2-6. While the trough tray portion 22 and trough supply portion 24 are shown as a unitary piece in the illustrated embodiment, they can be separate pieces that are positioned relative to each other.


The trough tray portion 22 is shaped to surround a portion of the convection fan assembly 20, as shown in FIGS. 2-6. When the trough tray portion 22 is situated around the convection fan assembly 20, a portion of the heating element(s) 30 is within the interior 28 of the trough tray portion 22.


The trough supply portion 24 has a generally cylindrical tubular design in the illustrated embodiment. However, the trough supply portion 24 can be of any shape, so long as it can direct fluid to the trough tray portion 22. However, in some embodiments the trough tray portion 22 can be manually filled with fluid and/or have a fluid connection directly to the trough tray portion 22 without the need for a trough supply portion 24.


The trough tray portion 22 and the trough supply portion 24 can be made of the same or different materials. The trough tray portion 22 needs to be made of a material that can withstand the heat generated by the heating element(s) 30. Thus, the trough tray portion 22 can be made of metal or a high temperature-resistant ceramic or polymeric material.


A fluid supply system can be used to supply fluid to the trough tray portion 22. As shown in FIGS. 5 and 6, that fluid supply system can be used in connection with the trough supply portion 24. For example, tube end 40 may be positioned over the interior opening 26 of the trough supply portion 24. The tube 42 extends from a valve 44 to the tube end 40, as illustrated in FIG. 6.


As illustrated in FIG. 6, the fluid level 50 can be below the heating element(s) 30. In this arrangement, the heating element(s) 30 can heat the fluid and turn it into steam to be forced into the cooking cavity 4 by rotation of the fan blade 34. Also as illustrated in FIG. 6, the fluid level 50A can actually cover a portion of the heating element(s) 30. Again, in this arrangement, the heating element(s) 30 will heat the fluid and turn it into steam to be forced into the cooking cavity 4 by rotation of the fan blade 34.


The fluid can be water or water with an additive. For example, the additives could include any number of different flavors, such as liquid smoke, liquid garlic, or any other desired flavor.


The valve 44 can be of any type of valve. For example, it can be a drip ball valve, a solenoid valve, or other type of valve.


The valve 44 may be controlled electronically. For example, the valve 44 can be opened or closed based upon any one or combination of factors, including, but not limited to, the humidity in the cooking cavity 4, the fluid level 50, 50A in the trough tray portion 22, timing, steam percent, etc.


The fluid supply can also include a conduction break to prevent heat transfer to the valve 44. In addition, the fluid supply can have multiple outlets for multiple convection fans.


The heating element(s) 30 can be any type of heating element(s). In the illustrated embodiment, the heating element(s) 30 in a calrod burner that can reach a temperature of approximately 700° C. (1292° F.) which will turn the fluid into steam.


It will be understood by one having ordinary skill in the art that construction of the described device and other components is not limited to any specific material. Other exemplary embodiments of the device disclosed herein may be formed from a wide variety of materials, unless described otherwise herein.


For purposes of this disclosure, the term “coupled” (in all of its forms, couple, coupling, coupled, etc.) generally means the joining of two components (electrical or mechanical) directly or indirectly to one another. Such joining may be stationary in nature or movable in nature. Such joining may be achieved with the two components (electrical or mechanical) and any additional intermediate members being integrally formed as a single unitary body with one another or with the two components. Such joining may be permanent in nature or may be removable or releasable in nature unless otherwise stated.


It is also important to note that the construction and arrangement of the elements of the device as shown in the exemplary embodiments is illustrative only. Although only a few embodiments of the present innovations have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited. For example, elements shown as integrally formed may be constructed of multiple parts or elements shown as multiple parts may be integrally formed, the operation of the interfaces may be reversed or otherwise varied, the length or width of the structures and/or members or connector or other elements of the system may be varied, the nature or number of adjustment positions provided between the elements may be varied. It should be noted that the elements and/or assemblies of the system may be constructed from any of a wide variety of materials that provide sufficient strength or durability, in any of a wide variety of colors, textures, and combinations. Accordingly, all such modifications are intended to be included within the scope of the present innovations. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions, and arrangement of the desired and other exemplary embodiments without departing from the spirit of the present innovations.


It will be understood that any described processes or steps within described processes may be combined with other disclosed processes or steps to form structures within the scope of the present device. The exemplary structures and processes disclosed herein are for illustrative purposes and are not to be construed as limiting.


It is also to be understood that variations and modifications can be made on the aforementioned structures and methods without departing from the concepts of the present device, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.


The above description is considered that of the illustrated embodiments only. Modifications of the device will occur to those skilled in the art and to those who make or use the device. Therefore, it is understood that the embodiments shown in the drawings and described above is merely for illustrative purposes and not intended to limit the scope of the device, which is defined by the following claims as interpreted according to the principles of patent law, including the Doctrine of Equivalents.

Claims
  • 1. An oven comprising: an oven housing defining a cooking cavity;a door coupled to the housing;a convection fan assembly comprising a convection fan with a fan blade and at least one generally cylindrical heating element surrounding said blade to heat up the air in the cooking cavity;a trough assembly comprising an open trough tray portion having walls surrounding a portion of said at least one generally cylindrical heating element, and a trough supply portion shaped to receive fluid and direct it to the trough tray portion so that it can be heated and turned into steam by said at least one generally cylindrical heating element and blown into said cooking cavity by said convection fan.
  • 2. The oven of claim 1, wherein: said trough assembly is manually filled with fluid.
  • 3. The oven of claim 1, wherein: said trough tray portion and said trough supply portion are connected.
  • 4. The oven of claim 1, wherein: said trough assembly is filled with fluid by a drip ball valve positioned above said trough supply portion of said trough assembly.
  • 5. The oven of claim 4, wherein: said drip ball valve is controlled electronically.
  • 6. The oven of claim 1, wherein: said trough assembly is filled with fluid by a fluid line connected to a solenoid valve.
  • 7. The oven of claim 1, wherein: said fluid is water with an additive.
  • 8. The oven of claim 1, including: a fluid delivery system that has a conduction break to prevent heat from travelling to at least one valve in said fluid delivery system.
US Referenced Citations (258)
Number Name Date Kind
1141176 Copeman Jun 1915 A
1380656 Lauth Jun 1921 A
1405624 Patterson Feb 1922 A
1598996 Wheelock Sep 1926 A
1808550 Harpman Jun 1931 A
2024510 Crisenberry Dec 1935 A
2530991 Reeves Nov 1950 A
2536613 Schulze et al. Jan 1951 A
2777407 Schindler Jan 1957 A
2781038 Sherman Feb 1957 A
2815018 Collins Dec 1957 A
2828608 Cowlin et al. Apr 1958 A
2847932 More Aug 1958 A
2930194 Perkins May 1960 A
2934957 Reinhart et al. May 1960 A
D191085 Kindl et al. Aug 1961 S
3017924 Jenson Jan 1962 A
3051813 Busch et al. Aug 1962 A
3089407 Kinkle May 1963 A
3259120 Keating Jul 1966 A
3386431 Branson Jun 1968 A
3463138 Lotter et al. Aug 1969 A
3489135 Astrella Jan 1970 A
3548154 Christiansson Dec 1970 A
3602131 Dadson Aug 1971 A
3691937 Meek et al. Sep 1972 A
3731035 Jarvis et al. May 1973 A
3777985 Hughes et al. Dec 1973 A
3780954 Genbauffs Dec 1973 A
3857254 Lobel Dec 1974 A
3877865 Duperow Apr 1975 A
3899655 Skinner Aug 1975 A
D245663 Gordon Sep 1977 S
4149518 Schmidt et al. Apr 1979 A
4363956 Scheidler et al. Dec 1982 A
4413610 Berlik Nov 1983 A
4418456 Riehl Dec 1983 A
4447711 Fischer May 1984 A
4466789 Riehl Aug 1984 A
4518346 Pistien May 1985 A
4587946 Doyon et al. May 1986 A
4646963 Delotto et al. Mar 1987 A
4654508 Logel et al. Mar 1987 A
4689961 Stratton Sep 1987 A
4812624 Kern Mar 1989 A
4846671 Kwiatek Jul 1989 A
4886043 Homer Dec 1989 A
4891936 Shekleton et al. Jan 1990 A
D309398 Lund Jul 1990 S
4981416 Nevin et al. Jan 1991 A
4989404 Shekleton Feb 1991 A
5136277 Civanelli et al. Aug 1992 A
5171951 Chartrain et al. Dec 1992 A
D332385 Adams Jan 1993 S
5190026 Doty Mar 1993 A
D340383 Addison et al. Oct 1993 S
5272317 Ryu Dec 1993 A
D342865 Addison et al. Jan 1994 S
5397234 Kwiatek Mar 1995 A
D364993 Andrea Dec 1995 S
5491423 Turetta Feb 1996 A
D369517 Ferlin May 1996 S
5546927 Lancelot Aug 1996 A
D378578 Eberhardt Mar 1997 S
5618458 Thomas Apr 1997 A
5649822 Gertler et al. Jul 1997 A
5735261 Kieslinger Apr 1998 A
5785047 Bird et al. Jul 1998 A
5842849 Huang Dec 1998 A
5913675 Vago et al. Jun 1999 A
5928540 Antoine et al. Jul 1999 A
D414377 Huang Sep 1999 S
5967021 Yung Oct 1999 A
6030207 Saleri Feb 2000 A
6050176 Schultheis et al. Apr 2000 A
6089219 Kodera et al. Jul 2000 A
6092518 Dane Jul 2000 A
6111229 Schultheis Aug 2000 A
6114665 Garcia et al. Sep 2000 A
6155820 Döbbeling Dec 2000 A
6188045 Hansen et al. Feb 2001 B1
6192669 Keller et al. Feb 2001 B1
6196113 Yung Mar 2001 B1
6253759 Giebel et al. Jul 2001 B1
6320169 Clothier Nov 2001 B1
6322354 Carbone et al. Nov 2001 B1
6362458 Sargunam et al. Mar 2002 B1
6452136 Berkcan et al. Sep 2002 B1
6452141 Shon Sep 2002 B1
6589046 Harneit Jul 2003 B2
6614006 Pastore et al. Sep 2003 B2
6619280 Zhou et al. Sep 2003 B1
6655954 Dane Dec 2003 B2
6663009 Bedetti et al. Dec 2003 B1
6718965 Rummel et al. Apr 2004 B2
6837151 Chen Jan 2005 B2
6891133 Shozo et al. May 2005 B2
6930287 Gerola et al. Aug 2005 B2
7005614 Lee Feb 2006 B2
7017572 Cadima Mar 2006 B2
D524105 Poltronieri Jul 2006 S
7083123 Molla Aug 2006 B2
7220945 Wang May 2007 B1
D544753 Tseng Jun 2007 S
7274008 Arnal Valero et al. Sep 2007 B2
7281715 Boswell Oct 2007 B2
7291009 Kamal et al. Nov 2007 B2
7325480 Gruhbaum et al. Feb 2008 B2
D564296 Koch et al. Mar 2008 S
7348520 Wang Mar 2008 B2
7368685 Nam et al. May 2008 B2
7411160 Duncan et al. Aug 2008 B2
7417204 Nam et al. Aug 2008 B2
D581736 Besseas Dec 2008 S
7468496 Marchand Dec 2008 B2
D592445 Sorenson et al. May 2009 S
D598959 Kiddoo Aug 2009 S
7589299 Fisher et al. Sep 2009 B2
D604098 Hamlin Nov 2009 S
7614877 McCrorey et al. Nov 2009 B2
7628609 Pryor et al. Dec 2009 B2
7640930 Little et al. Jan 2010 B2
7696454 Nam et al. Apr 2010 B2
7708008 Elkasevic et al. May 2010 B2
7721727 Kobayashi May 2010 B2
7731493 Starnini et al. Jun 2010 B2
7762250 Elkasevic et al. Jul 2010 B2
7770985 Davis et al. Aug 2010 B2
7781702 Nam et al. Aug 2010 B2
7823502 Hecker et al. Nov 2010 B2
7829825 Kühne Nov 2010 B2
7841333 Kobayashi Nov 2010 B2
7964823 Armstrong et al. Jun 2011 B2
D642675 Scribano et al. Aug 2011 S
8006687 Watkins et al. Aug 2011 B2
8015821 Spytek Sep 2011 B2
8037689 Oskin et al. Oct 2011 B2
8141549 Armstrong et al. Mar 2012 B2
8217314 Kim et al. Jul 2012 B2
8220450 Luo et al. Jul 2012 B2
8222578 Beier Jul 2012 B2
D665491 Goel et al. Aug 2012 S
8272321 Kalsi et al. Sep 2012 B1
8288690 Boubeddi et al. Oct 2012 B2
8302593 Cadima Nov 2012 B2
8304695 Bonuso et al. Nov 2012 B2
8342165 Watkins Jan 2013 B2
8393317 Sorenson et al. Mar 2013 B2
8398303 Kuhn Mar 2013 B2
8464703 Ryu et al. Jun 2013 B2
D685225 Santoyo et al. Jul 2013 S
D687675 Filho et al. Aug 2013 S
8535052 Cadima Sep 2013 B2
D693175 Saubert Nov 2013 S
8584663 Kim et al. Nov 2013 B2
8596259 Padgett et al. Dec 2013 B2
8616193 Padgett Dec 2013 B2
8660297 Yoon et al. Feb 2014 B2
8687842 Yoon et al. Apr 2014 B2
8707945 Hasslberger et al. Apr 2014 B2
8747108 Lona Santoyo et al. Jun 2014 B2
8800543 Simms et al. Aug 2014 B2
D718061 Wu Nov 2014 S
8887710 Rossi et al. Nov 2014 B2
8930160 Wall et al. Jan 2015 B2
8932049 Ryu et al. Jan 2015 B2
8950389 Horstkoetter et al. Feb 2015 B2
8978637 Ryu et al. Mar 2015 B2
D727489 Rohskopf et al. Apr 2015 S
9021942 Lee et al. May 2015 B2
9074765 Armanni Jul 2015 B2
D735525 Nguyen Aug 2015 S
9113503 Arnal Valero et al. Aug 2015 B2
9132302 Luongo et al. Sep 2015 B2
D743203 Filho et al. Nov 2015 S
9175858 Tisselli et al. Nov 2015 B2
D750314 Hobson et al. Feb 2016 S
9307888 Baldwin et al. Apr 2016 B2
D758107 Hamilton Jun 2016 S
D766036 Koch et al. Sep 2016 S
D766696 Kemker Sep 2016 S
9513015 Estrella et al. Dec 2016 B2
9521708 Adelmann et al. Dec 2016 B2
9572475 Gephart et al. Feb 2017 B2
9644847 Bhogal et al. May 2017 B2
9696042 Hasslberger et al. Jul 2017 B2
9927129 Bhogal et al. Mar 2018 B2
20020065039 Benezech et al. May 2002 A1
20040031782 Westfield Feb 2004 A1
20040195399 Molla Oct 2004 A1
20040224273 Inomata Nov 2004 A1
20040224274 Tomiura Nov 2004 A1
20050112520 Todoli et al. May 2005 A1
20050199232 Gama et al. Sep 2005 A1
20050268794 Nesterov Dec 2005 A1
20070124972 Ratcliffe Jun 2007 A1
20070251936 Nam et al. Nov 2007 A1
20070281267 Li Dec 2007 A1
20080029081 Gagas et al. Feb 2008 A1
20080050687 Wu Feb 2008 A1
20080173632 Jang et al. Jul 2008 A1
20080210685 Beier Sep 2008 A1
20090320823 Padgett Dec 2009 A1
20100035197 Cadima Feb 2010 A1
20100126496 Luo et al. May 2010 A1
20100154776 Czajka et al. Jun 2010 A1
20100192939 Parks Aug 2010 A1
20110027733 Yamamoto et al. Feb 2011 A1
20110142998 Johncock et al. Jun 2011 A1
20110163086 Aldana Arjol et al. Jul 2011 A1
20110248021 Gutierrez et al. Oct 2011 A1
20120017595 Liu Jan 2012 A1
20120036855 Hull Feb 2012 A1
20120067334 Kim et al. Mar 2012 A1
20120076351 Yoon et al. Mar 2012 A1
20120099761 Yoon et al. Apr 2012 A1
20120160228 Kim et al. Jun 2012 A1
20120171343 Cadima et al. Jul 2012 A1
20120261405 Kurose et al. Oct 2012 A1
20130043239 Anton Falcon et al. Feb 2013 A1
20130252188 Chen Sep 2013 A1
20130255663 Cadima et al. Oct 2013 A1
20130260618 Bally et al. Oct 2013 A1
20140048055 Ruther Feb 2014 A1
20140090636 Bettinzoli Apr 2014 A1
20140097172 Kang et al. Apr 2014 A1
20140116416 Saubert May 2014 A1
20140137751 Bellm May 2014 A1
20140139381 Sippel May 2014 A1
20140318527 Silva et al. Oct 2014 A1
20150096974 Freeman et al. Apr 2015 A1
20150136760 Lima et al. May 2015 A1
20150153041 Neumeier Jun 2015 A1
20150241069 Brant et al. Aug 2015 A1
20150330640 Stork genannt Wersborg Nov 2015 A1
20150345800 Cabrera Botello Dec 2015 A1
20150359045 Neukamm et al. Dec 2015 A1
20160029439 Kurose et al. Jan 2016 A1
20160061490 Cho et al. Mar 2016 A1
20160095469 Gregory et al. Apr 2016 A1
20160116160 Takeuchi Apr 2016 A1
20160153666 Tcaciuc Jun 2016 A1
20160178209 Park et al. Jun 2016 A1
20160178212 Park et al. Jun 2016 A1
20160187002 Ryu et al. Jun 2016 A1
20160201902 Cadima Jul 2016 A1
20160209044 Cadima Jul 2016 A1
20160295644 Khokle et al. Oct 2016 A1
20160296067 Laws Oct 2016 A1
20170003033 Lona Santoyo et al. Jan 2017 A1
20170067651 Khokle et al. Mar 2017 A1
20170082296 Jeong et al. Mar 2017 A1
20170082299 Rowley et al. Mar 2017 A1
20170103228 Park et al. Apr 2017 A1
20170115008 Erbe et al. Apr 2017 A1
20170223774 Cheng et al. Aug 2017 A1
20170261213 Park et al. Sep 2017 A1
20180058702 Jang et al. Mar 2018 A1
Foreign Referenced Citations (55)
Number Date Country
2365023 Jul 2002 CA
2734926 Oct 2011 CA
201680430 Dec 2010 CN
2845869 Apr 1980 DE
3014908 Oct 1981 DE
3238441 Apr 1984 DE
3446621 Jun 1986 DE
3839657 May 1990 DE
4103664 Jan 1992 DE
4445594 Jun 1996 DE
60004581 Jun 2004 DE
102004002466 Aug 2005 DE
102005059505 Jun 2007 DE
102005059505 Jun 2007 DE
102007021297 Nov 2008 DE
102008042467 Apr 2010 DE
102008051829 Apr 2010 DE
102008051829 Apr 2010 DE
102013218714 Apr 2014 DE
0000908 Mar 1979 EP
0000908 Mar 1979 EP
0122966 Oct 1984 EP
0429120 Nov 1990 EP
0690659 Jan 1996 EP
1030114 Aug 2000 EP
1217306 Jun 2002 EP
1344986 Sep 2003 EP
1617148 Jan 2006 EP
1617148 Jan 2006 EP
1201998 Mar 2006 EP
1460342 May 2006 EP
2116775 Nov 2009 EP
2116829 Nov 2009 EP
2276227 Jan 2011 EP
2299181 Mar 2011 EP
2375170 Oct 2011 EP
2144012 Sep 2012 EP
2657615 Oct 2013 EP
2816291 Dec 2014 EP
2835580 Feb 2015 EP
3006832 Apr 2016 EP
2789753 Aug 2000 FR
3003338 Sep 2014 FR
2158225 Nov 1985 GB
2010038475 Feb 2010 JP
2011144982 Jul 2011 JP
2006136363 Dec 2006 WO
2012077050 Jun 2012 WO
2013098330 Jul 2013 WO
2013104521 Jul 2013 WO
2013104521 Jul 2013 WO
WO-2013104521 Jul 2013 WO
2013182410 Dec 2013 WO
2014194176 Dec 2014 WO
2015086420 Jun 2015 WO
Non-Patent Literature Citations (4)
Entry
Built-In Gas Cooktop, image post date Feb. 18, 2015, originally in U.S. Appl. No. 29/539,768 in Restriction Requirement dated Oct. 27, 2016, 10 pages, <http://www.bestbuy.com/site/kitchenaid-36-built-in-gas-cooktop-stainless-steel/8636634.p?skuld=8636634>.
True-Heat burner, image post date Jan. 30, 2015, originally in U.S. Appl. No. 29/539,768 in Restriction Requirement dated Oct. 27, 2016, 2 pages, <http://ovens.reviewed.com/news/kitchenaid-has-a-new-flame>.
Metal Cover Gas Hob, image post date 2012, originally in U.S. Appl. No. 29/539,768 in Restriction Requirement dated Oct. 27, 2016, 13 pages, <http://inse.gmc.globalmarket.com/products/details/metal-cover-gas-hob-8516959.html>.
Penny Stove, image post date 2004, originally in U.S. Appl. No. 29/539,768 in Restriction Requirement dated Oct. 27, 2016, 30 pages, <http://www.jureystudio.com/pennystove/stoveinstruction.html>.
Related Publications (1)
Number Date Country
20180259192 A1 Sep 2018 US