Forefoot catapult for athletic shoes

Information

  • Patent Grant
  • 8495825
  • Patent Number
    8,495,825
  • Date Filed
    Friday, December 30, 2011
    13 years ago
  • Date Issued
    Tuesday, July 30, 2013
    11 years ago
Abstract
An athletic shoe includes an upper, an outsole, a pair of hinged plates, and a spring. The pair of hinged plates are attached between the outsole and the upper in a forefoot portion of the shoe, and the spring biases the plates apart, so that energy is stored and returned during a propulsion phase of a gait cycle in a human step. Foam may be disposed between the plates. A shroud may enclose an outer periphery of the plates. An adjustable torsion spring may be disposed in a hinge portion of the plates, and one or more wave springs may be disposed between the plates.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


Embodiments of the present invention relate in general to footwear, and particularly to energy absorption and return systems for use in athletic footwear.


2. Related Art


In prior U.S. Pat. Nos. 5,437,110 and 5,596,819, issued in the names of two of the inventors herein, a discussion was provided of the desirability of providing adjustable foot-strike energy shock absorption and return. Those patents disclosed the use of a device disposed in the midsole of a shoe under the heel. The device used an adjustable mechanism to store and return to the wearer's foot shock energy experienced during walking or running.


Those prior patents discussed a variety of related art, including U.S. Pat. Nos. 4,486,964, 4,506,460, 2,357,281, 2,394,281, 4,709,489, 4,815,221, 4,854,057, and 4,878,300 as disclosing a variety of spring systems for shoes that related to heel-strike energy absorption and return. Since the time of those patents, other patents and applications have addressed a variety of spring mechanisms for shoes. See, e.g., U.S. Pat. Nos. 6,282,814, 6,751,891, 6,865,824, 6,886,274, 7,159,338, 7,219,447, 7,287,340, and 7,290,354, as well as published applications 2005/0166422 and 2009/0064536.


A step forward or stride consists of a dynamic process sometimes referred to as gait. The science surrounding gait is extensive but embodiments of the present invention focus upon that aspect that a layman might identify as toe-off when jumping. Gait can be broken down into three distinct phases as follows: (1) the contact phase which begins with heel strike and continues until the foot is flat on the surface, (2) the mid-stance phase beginning from the foot flat and a shift of body weight and continuing until the heel rises, and, lastly, (3) the propulsion phase where toe-off (or jumping) would occur.


The related art does not focus upon the propulsion phase of the gait cycle. Most of the devices are directed to the contact phase and use heel-related mechanisms to store and return energy. Because energy stored in the contact phase via a heel spring is dissipated by the time the propulsion phase begins, heel springs have not proven effective for energy storage and return. Some of the related art also use springs under the ball of the foot. In addition to not being effective in the propulsion phase, such devices can have adverse physiological effects on the foot if not properly positioned.


SUMMARY OF THE DISCLOSURE

A catapult device in accordance with various embodiments of the present invention is located ahead of the ball of the foot and directly below the forefoot of the foot in a forefoot portion of a shoe. In various embodiments, the catapult device stores and returns energy during the propulsion phase of a gait. In some embodiments, the catapult device includes opposing plates hinged together and biased apart by a torsion spring that may be adjustable. Also, in some embodiments, lightweight foam is disposed between the plates. In other embodiments, additional springs, such as wave springs, or the like, may be disposed within or outside of foam at the front of the catapult device.


Such catapult devices are very effective in storing and returning energy where an athlete needs it most: at the front of the shoe, which is where the toe-off in running or jumping occurs. Furthermore, in various embodiments, the catapult device replaces a portion of the midsole that would otherwise be under the forefoot, and is thus easy to install in a production environment, as it simply is affixed to the outsole. The use of a torsion spring in various embodiments allows for easy exterior adjustability of the catapult device by a wearer of the shoe.


A shoe in accordance with an embodiment of the present invention comprises an upper, an outsole, a pair of hinged plates attached between the outsole and the upper in a forefoot portion of the shoe, and a spring biasing the plates apart, whereby energy is stored and returned during a propulsion phase of a gait cycle in a human step.


In various embodiments, the shoe further comprises foam disposed between the plates. Also, in various embodiments, the shoe further comprises a shroud enclosing an outer periphery of the plates. In some embodiments, the spring comprises a torsion spring disposed in a hinge portion of the plates. Also, in some embodiments, the torsion spring is adjustable.


In various embodiments, the spring comprises at least one wave spring disposed between the plates. In some embodiments, the shoe further comprises an energy return material disposed between the plates. In some embodiments, the energy return material comprises rubber or Hytrel®. In various embodiments, one of the plates wraps around a portion of the upper to form a toe bumper.


A device in accordance with an embodiment of the present invention is installed in a forefoot portion of a shoe between an upper and an outsole of the shoe, and is used to store and return energy during a propulsion phase of a gait cycle in a human step. In various embodiments, the device comprises a pair of opposing plates, hinge means for attaching the plates together at one end, and spring means for biasing the plates apart, whereby, when a wearer of the shoe moves into an apex of a gait cycle, a force applied on the plates pushes the plates together, increasing a loading of the spring means, and providing the wearer with a launch factor equal to a release of torque from the spring means.


In some embodiments, the spring means comprises a torsion spring. Also, in some embodiments, the spring means further comprises at least one wave spring. In various embodiments, the device further comprises means for precluding debris from entering an area between the plates. In some embodiments, the means for precluding debris from entering the area between the plates comprises foam. Also, in some embodiments, the means for precluding debris from entering the area between the plates comprises a shroud along a peripheral portion of the plates. In various embodiments, the spring means comprises an adjustment means for changing a force applied by the spring means to the plates to bias them apart.


A shoe in accordance with an embodiment of the present invention comprises an outsole having a heel portion, a ball portion, and a forefoot portion, and a catapult device comprising two plates and a spring, where the catapult device is located at least partially above the forefoot portion of the outsole. In various embodiments, the shoe further comprises a midsole, and the catapult device is located in a cavity in the midsole. In some embodiments, the spring is located between the two plates.


A method in accordance with an embodiment of the present invention allows for storing and returning energy during a propulsion phase of a gait cycle in a human step using a catapult device in a shoe including two plates and a spring that biases the two plates apart from each other. In various embodiments, the method comprises applying, with a foot, a force on at least one of the two plates that is positioned in the shoe beneath a forefoot portion of the foot, so as to move the two plates together and increase a loading of the spring, and launching the foot due to the two plates being moved apart by the spring as the foot is being lifted.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a side view of a catapult device in accordance with an embodiment of the present invention when installed in an athletic shoe;



FIG. 2 shows a side view of a portion of a shoe in accordance with an embodiment of the present invention including a catapult device in an outsole of the shoe;



FIG. 3 shows a perspective view of a catapult device in accordance with an embodiment of the present invention;



FIG. 4 shows a top view of a catapult device in accordance with an embodiment of the present invention;



FIG. 5 shows a partial cross sectional view of a torsion spring mounting in a catapult device in accordance with an embodiment of the present invention;



FIG. 6 shows an alternative embodiment of a catapult device of the present invention, with a top part of the catapult device functioning as a toe bumper;



FIG. 7 shows an alternative embodiment of the catapult device including a shroud;



FIG. 8 shows an embodiment of a catapult device of the present invention;



FIG. 9A shows an embodiment of a catapult device of the present invention, with a wave spring augmenting a torsion spring;



FIG. 9B shows another embodiment of a catapult device of the present invention, with a wave spring augmenting a torsion spring;



FIG. 10 shows an embodiment of a catapult device of the present invention, with wave springs augmenting a torsion spring;



FIG. 11 shows an embodiment of a catapult device of the present invention, with wave springs augmenting a torsion spring;



FIG. 12 shows an embodiment of a catapult device of the present invention, with an energy return material augmenting a torsion spring;



FIG. 13 shows a side view of a portion of a shoe in accordance with an embodiment of the present invention;



FIG. 14 shoes a top view of a midsole having a cavity in which a catapult device is located in accordance with an embodiment of the present invention; and



FIG. 15 shows a flowchart of a method in accordance with an embodiment of the present invention.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Referring to FIG. 1, an athletic shoe 5 is provided with a catapult device 10 according to an embodiment of the present invention. The catapult device 10 is mounted in an outsole 22 of the shoe 5, as shown in more detail in FIG. 2. The catapult device 10 includes a top plate 12 and a bottom plate 14 that are hinged together via a pin 18 (or similar means), as shown in FIG. 5. In various embodiments, the plates 12 and 14 are designed such that they have a very limited motion around a hinge axis. Also, in various embodiments, in a neutral position the plates 12 and 14 are parallel to each other, forming what might be explained as a duck-bill, as shown in FIGS. 3 and 4. In some embodiments, the plates 12 and 14 have a limited motion that allows movement toward one another but not opening beyond (any more than) the two plates being parallel to each other.


With reference to FIG. 1, various materials could be used for the plates 12 and 14, including polymer, block polymer, monomer, etc., that exhibit properties conducive to use in processes known as injection molding, and in some cases extrusion and the like, or other types of molding such as compression molding, etc. In various embodiments, material is selected for rigidity, because in practice the catapult device 10 will be subjected to tremendous force as a wearer goes through a gait cycle ending up on the balls of the feet. At the apex of the propulsion phase of the gait cycle, the catapult device 10 will be subjected to several times the wearer's body weight as the device is “loading”. During this loading, it may be desirable that the catapult device 10 does not deform under stress. Such deformity would result in loss of load factor resulting in diminished return of energy and a corresponding decrease in the actual intended performance. As such, thin steel is potentially usable to reinforce other materials to ensure the requisite rigidity.


A variety of hinge mechanisms could be used with the plates 12 and 14, such as a barrel hinge, butt hinge, living hinge, plain hinge, or others. In various embodiments, a barrel hinge can include molded features to control a movement of the plates 12 and 14 around its axis, to prevent it from springing open, such as a slot and key feature, or notched stop. A barrel hinge would form the two plates 12 and 14 into a single device with a single axis of rotation.


In various embodiments, a helical torsion spring 16 may encircle the hinge pin 18, and may bias the plates 12 and 14 apart consistent with a strength of the particular spring utilized. An embodiment including the helical torsion spring 16 is shown in more detail in FIG. 5. In various embodiments, the helical torsion spring 16 is constructed from a metal wire or rod twisted or formed into a helical coil. In such embodiments, each end of the coil may be biased against the plates 12 and 14. Such torsion springs may be similar to those shown in U.S. Pat. No. 5,464,197. That patent shows a coil spring member with arms that provide an opposing bias. Adjustment of the torsion is achieved therein via an inner coil which acts to control the deformation of an outer coil. If a hinge pin 18 is used, it could be positioned along line D as shown in the '197 patent. Alternatively, a torsion spring could be located within a barrel hinge formed as an integral member of the top and bottom plates 12 and 14. Once the catapult device has been properly assembled and installed within the forepart of the footwear, and the wearer moves into the apex of a gait cycle (i.e. toe-off in jumping), the force applied to the top plate 12 will push the two plates 12 and 14 together. This will increase the torque loading of the helical torsion spring 16, and provide the wearer with a launch factor equal to a release of torque from the helical torsion spring 16.


In various embodiments, between the plates 12 and 14 there can be lightweight foam 20, as shown in FIGS. 1-3. This component's purpose is basically as filler, and may extend partially (FIG. 8) or completely (FIG. 2) between the plates 12 and 14. In various embodiments, the catapult device 10 may perform optimally in a case where the space between the plates 12 and 14 is void or empty. However, given the normal spectrum of use for footwear, it might not be desirable to leave the space empty in many instances. Dirt, mud, water, snow, ice, etc. (debris) may find its way within the space and could significantly decrease or even destroy the function of the device. Therefore, various embodiments include a means of blocking debris from entering the working space between the plates 12 and 14. Because the catapult device 10 of various embodiments would perform optimally without any material between the plates 12 and 14, it may be desirable for performance reasons to include a material that is lightweight, reflects good tear strength values, and that possesses specific compression properties. In addition to the criteria above, the ideal candidate foam 20 in various embodiments would compress under very low loading and compress to 30% of original thickness gauge—or more. Based upon these criteria, the foam 20 would preferably be of an open cell type. Thus, polyurethane, rubber, rubber latex, PVC or polyethylene can be used in various embodiments.


One purpose of the foam 20 is to avoid debris collecting between the plates 12 and 14. The foam 20 may slightly inhibit the performance of the catapult device 10 in various embodiments, since it adds resistance in the loading phase of performance. As such, in an alternative embodiment of the invention shown in FIG. 7, the foam 20 may be replaced with a front shroud 30 on one of the plates 12, 14 (in FIG. 7, it is shown attached to the top plate 12). In various embodiments, the shroud 30 acts to keep debris from entering between the plates 12 and 14, and wraps around a perimeter of the toe area.


In addition, in various embodiments the foam 20 may be reduced in size or removed completely to allow the use of other springs 32, 34, 36 as shown in FIGS. 9A, 9B, 10, and 11. The springs 32, 34, 36 assist the torsion spring 16 in providing propulsion to the wearer of the shoe. In various embodiments, such additional springs could be wave springs as shown in U.S. Pat. No. 4,901,987, or the like. Wave springs are particularly advantageous because the energy return is almost entirely axial, which would serve to press the plates 12 and 14 apart after compression. The springs 32, 34, 36 could be attached directly to the top and bottom plates 12 and 14 in various embodiments. In various embodiments, an energy return or rebound material 48 may be disposed between the plates 12 and 14, as shown in FIG. 12. In some embodiments, the energy return material 48 comprises rubber, Hytrel®, or the like, and creates an additional energy return effect.


With reference to FIG. 9A, in various embodiments the top plate 12 and the bottom plate 14 are manufactured as separate units and may have portions in contact with each other at a contact location 85. With reference to FIG. 9B, in various other embodiments, the top plate 12 and the bottom plate 14 are manufactured as a single continuous unit.


As mentioned, in various embodiments the catapult device 10 is mounted to the outsole 22 under a forefoot region by conventional means (gluing, stitching, etc.) and replaces the midsole 38 in the forefoot portion of the shoe 5, as shown in FIG. 2. Thus, in such embodiments, the midsole 38 would extend only from the heel portion of the outsole 22 up to the catapult device 10. With reference to FIG. 2, the shoe 5 may be described with respect to different portions of the shoe 5 along a length of the shoe 5, including a heel portion 52, an arch portion 54, a ball portion 56, and a forefoot portion 58.


With reference to FIG. 1, in various embodiments, an optimal function of the catapult device 10 within the shoe 5 requires an absence of any material (foam/rubber/etc.) between the catapult device and the shoe upper 24. In other words, it is desirable in various embodiments to have the shoe upper 24 sit directly on the catapult device 10 in the forepart for best performance, as shown in FIG. 1. Therefore, in various embodiments the top plate 12 of the catapult device 10 would be configured to wrap up around the shoe upper 24 and in addition to its primary function of propulsion, forms features such as a toe bumper 26 and a sidewall 28, as shown in FIG. 6. Such a unique construction with the top plate 12 configured to wrap up around the shoe upper 24 would create a very rigid toe bumper 26 and sidewall 28, which would be a departure from typical basketball footwear.


With this approach, an alternative embodiment for the top plate 12 would have the top plate 12 manufactured from more typical, softer/flexible materials (rubber/foam/etc.) and a secondary component then added to it (e.g. steel) added to provide rigidity directly above the bottom plate 14. The bottom plate 14 in such embodiments may still be manufactured from the rigid materials.



FIG. 13 shows a side view of part of a shoe 6 in accordance with another embodiment of the present invention. The shoe 6 includes an outsole 22 and a midsole 38. In the shoe 6, the midsole 38 extends into a forefoot portion of the shoe 6. FIG. 14 illustrates a top view of the midsole 38 from FIG. 13 in accordance with an embodiment of the present invention, where the midsole 38 includes a cavity 39 in which an embodiment of the catapult device 10 is located. Thus, various embodiments allow for placing the catapult device 10 within a midsole 38, such as within the cavity 39 of the midsole 38 or otherwise surrounded by the midsole 38.



FIG. 15 illustrates a method in accordance with an embodiment of the present invention. In various embodiments, the method of FIG. 15 allows for storing and returning energy during a propulsion phase of a gait cycle in a human step using a catapult device in a shoe including two plates and a spring that biases the two plates apart from each other. In various embodiments, the method comprises (step 70) applying, with a foot, a force on at least one of the two plates that is positioned in the shoe beneath a forefoot portion of the foot, so as to move the two plates together and increase a loading of the spring, and (step 71) launching the foot due to the two plates being moved apart by the spring as the foot is being lifted.


The embodiments disclosed herein are to be considered in all respects as illustrative, and not restrictive of the invention. The present invention is in no way limited to the embodiments described above. Various modifications and changes may be made to the embodiments without departing from the spirit and scope of the invention. Various modifications and changes that come within the meaning and range of equivalency of the claims are intended to be within the scope of the invention.

Claims
  • 1. A device that is installable in a forefoot portion of a shoe, the device comprising: a first plate;a second plate;a filler material positioned between the first plate and the second plate; anda spring positioned between the first plate and the second plate; anda pin;wherein the first plate and the second plate are hinged together by the pin; andwherein the filler material is completely outside of the spring and at least a portion of the filler material is located between the pin and the spring.
  • 2. The device of claim 1, wherein the filler material comprises a polymer.
  • 3. The device of claim 1, wherein the filler material comprises ethylene.
  • 4. The device of claim 1, wherein the filler material comprises a vinyl product.
  • 5. The device of claim 1, wherein the filler material comprises foam.
  • 6. The device of claim 1, wherein the filler material comprises at least one material selected from a group consisting of polyurethane, rubber, rubber latex, polyvinyl chloride, and polyethylene.
  • 7. The device of claim 1, further comprising: a second spring;wherein the spring is located closer to the pin than the second spring is to the pin.
  • 8. The device of claim 1, further comprising a second spring disposed between the first plate and the second plate.
  • 9. The device of claim 8, wherein the first plate and the second plate are hinged together at a hinge; andwherein the spring is located between the second spring and the hinge.
  • 10. The device of claim 9, further comprising: a third spring disposed between the first plate and the second plate;wherein the second spring is located between the spring and the third spring.
  • 11. The device of claim 9, wherein the spring and the second spring are located closer to an end of the first plate that is opposite the hinge than they are to the hinge.
  • 12. The device of claim 1, wherein the spring is a compression spring.
  • 13. The device of claim 12, wherein the spring is positioned to bias the first plate and the second plate apart from each other.
  • 14. The device of claim 12, wherein the compression spring has a coil that is configured to compress in a direction that is orthogonal to the first plate when force is exerted on the second plate.
  • 15. The device of claim 1, wherein the first plate, the second plate, and the pin form a hinge; and wherein the filler material extends from the pin to an outer side of the spring.
  • 16. The device of claim 1, wherein the spring is a coil spring and the filler material is located entirely outside of a center of the spring.
  • 17. The device of claim 1, wherein the spring is a coil spring and the filler material is located entirely outside of an edge of the spring.
  • 18. The device of claim 1, wherein the filler material has a thickness that tapers off as it approaches the spring.
  • 19. The device of claim 1, wherein the filler material comprises a first end that contacts both the first and the second plates; and wherein the filler material comprises a second end that has a reduced thickness compared to the first end such that the filler material at the second end contacts only one of the first or second plates.
  • 20. The device of claim 19, wherein the first end of the filler material is closer to the pin than the second end of the filler material.
  • 21. The device of claim 1, wherein the filler material that is located between the first and the second plates is located entirely in the forefoot portion of the shoe.
  • 22. A shoe, comprising: a device located in a forefoot portion of the shoe, the device comprising: a first plate;a second plate connected to the first plate by a hinge;a filler material positioned between the first plate and the second plate; anda spring positioned between the first plate and the second plate; andwherein the filler material is completely outside of the spring and at least a portion of the filler material is located between the hinge and the spring.
  • 23. The shoe of claim 22, wherein the device further comprises a pin; andwherein the first plate and the second plate are hinged together by the pin.
CROSS-REFERENCE TO RELATED PATENT APPLICATIONS

This application is a continuation of U.S. application Ser. No. 12/467,679, filed on May 18, 2009, which claims the benefit of U.S. Provisional Application No. 61/168,533, filed Apr. 10, 2009, the entire contents of both of which are incorporated by reference herein.

US Referenced Citations (94)
Number Name Date Kind
507490 Gambino Oct 1893 A
1069001 Guy Jul 1913 A
1088328 Cucinotta Feb 1914 A
2357281 Williams Aug 1944 A
2394281 Williams Feb 1946 A
2437227 Hall Mar 1948 A
2721400 Israel Oct 1955 A
4457084 Horibata et al. Jul 1984 A
4486964 Rudy Dec 1984 A
4506460 Rudy Mar 1985 A
4592153 Jacinto Jun 1986 A
4709489 Welter Dec 1987 A
4771554 Hannemann Sep 1988 A
4815221 Diaz Mar 1989 A
4854057 Misevich et al. Aug 1989 A
4878300 Bogaty Nov 1989 A
4901987 Greenhill et al. Feb 1990 A
5060401 Whatley Oct 1991 A
5159767 Allen Nov 1992 A
5203095 Allen Apr 1993 A
5279051 Whatley Jan 1994 A
5282325 Beyl Feb 1994 A
D355755 Kilgore Feb 1995 S
5437110 Goldston et al. Aug 1995 A
5464197 Ecclesfield Nov 1995 A
5596819 Goldston et al. Jan 1997 A
5622358 Komura et al. Apr 1997 A
5649373 Winter et al. Jul 1997 A
5651196 Hsieh Jul 1997 A
5706589 Marc Jan 1998 A
5743028 Lombardino Apr 1998 A
5845419 Begg Dec 1998 A
5875567 Bayley Mar 1999 A
5896679 Baldwin Apr 1999 A
6006449 Orlowski et al. Dec 1999 A
6029374 Herr et al. Feb 2000 A
D433216 Avar et al. Nov 2000 S
6282814 Krafsur et al. Sep 2001 B1
6393731 Moua et al. May 2002 B1
6457261 Crary Oct 2002 B1
6568102 Healy et al. May 2003 B1
6665957 Levert et al. Dec 2003 B2
6751891 Lombardino Jun 2004 B2
6860034 Schmid Mar 2005 B2
6865824 Levert et al. Mar 2005 B2
6886274 Krafsur et al. May 2005 B2
D507094 Lyden Jul 2005 S
6928756 Haynes Aug 2005 B1
6944972 Schmid Sep 2005 B2
6983553 Lussier et al. Jan 2006 B2
7100308 Aveni Sep 2006 B2
7140125 Singleton et al. Nov 2006 B2
7159338 LeVert et al. Jan 2007 B2
D538018 Hlavacs Mar 2007 S
7219447 LeVert et al. May 2007 B2
7287340 Talbott Oct 2007 B2
7290354 Perenich Nov 2007 B2
7418790 Kerrigan Sep 2008 B2
7441347 LeVert et al. Oct 2008 B2
7900376 Rabushka Mar 2011 B2
8112905 Bemis et al. Feb 2012 B2
20010049888 Krafsur et al. Dec 2001 A1
20020073579 Lombardino Jun 2002 A1
20020133976 Crutcher Sep 2002 A1
20020144430 Schmid Oct 2002 A1
20020174567 Krafsur et al. Nov 2002 A1
20020189134 Dixon Dec 2002 A1
20030051372 Lyden Mar 2003 A1
20030126760 LeVert et al. Jul 2003 A1
20030163933 Krafsur et al. Sep 2003 A1
20030192200 Dixon Oct 2003 A1
20030200677 Abraham Oct 2003 A1
20030217483 Abraham Nov 2003 A1
20040118017 Dalton et al. Jun 2004 A1
20040154191 Park Aug 2004 A1
20040237340 Rembrandt Dec 2004 A1
20050081401 Singleton et al. Apr 2005 A1
20050126039 LeVert et al. Jun 2005 A1
20050138839 Terlizzi et al. Jun 2005 A1
20050166422 Schaeffer et al. Aug 2005 A1
20050193595 Jennings Sep 2005 A1
20050241184 LeVert et al. Nov 2005 A1
20050247385 Krafsur et al. Nov 2005 A1
20060048412 Kerrigan Mar 2006 A1
20060130371 Schneider Jun 2006 A1
20060277788 Fujii Dec 2006 A1
20080184596 Yu Aug 2008 A1
20080209762 Krafsur Sep 2008 A1
20080271340 Grisoni et al. Nov 2008 A1
20080313928 Adams et al. Dec 2008 A1
20090064536 Klassen et al. Mar 2009 A1
20090113760 Dominguez May 2009 A1
20100257752 Goldston et al. Oct 2010 A1
20100257753 Bemis et al. Oct 2010 A1
Foreign Referenced Citations (3)
Number Date Country
0 552 994 Jul 1993 EP
1 346 655 Sep 2003 EP
WO-9938405 Aug 1999 WO
Non-Patent Literature Citations (5)
Entry
International Search Report and Written Opinion of the International Searching Authority for PCT patent application No. PCT/US2010/030012 dated Jul. 27, 2010.
International Preliminary Report on Patentability for PCT patent application No. PCT/US2010/030012 dated Oct. 11, 2011.
U.S. Office Action issued for U.S. Appl. No. 12/467,679 and mailed on Sep. 7, 2011.
Notice of Allowance and Fee(s) Due issued for U.S. Appl. No. 12/467,679 and mailed on Nov. 14, 2011.
U.S. Office Action for U.S. Appl. No. 12/754,333 mailed on Jun. 29, 2012.
Related Publications (1)
Number Date Country
20120096741 A1 Apr 2012 US
Provisional Applications (1)
Number Date Country
61168533 Apr 2009 US
Continuations (1)
Number Date Country
Parent 12467679 May 2009 US
Child 13341267 US