1. Field of the Invention
The present invention generally relates to an improved comfort device to be used with a nasal mask. In particular, the device is useful in combination with masks which are used for the treatment of respiratory conditions and assisted respiration. The invention assists in fitting the mask to the face as well.
2. General Background
Nasal masks are commonly used in the treatment of respiratory conditions and sleep disorders by delivering a flow of breathable gas to a patient to either assist the patient in respiration or to provide a therapeutic form of gas to the patient to treat sleep disorders such as obstructive sleep apnea. These nasal masks typically receive a gas through a supply line which delivers gas into a chamber formed by walls of the mask. The mask is generally a semi-rigid mask which has a face portion which covers at least the wearer's nostrils. Additionally, the mask may be a full face mask. The mask is normally secured to the wearer's head by straps. The straps are adjusted to pull the mask against the face with sufficient force to achieve a gas tight seal between the mask and the wearer's face. Gas is thus delivered to the mask and the wearer's nasal passages and/or mouth.
One of the problems that arises with the use of the mask is that in order for the straps to be tight, the mask is compressed against the wearer's face and may push unduly hard on the wearer's nose. Additionally, the mask may move around on the wearer's face. Thus, there has been provided a forehead support, which provides a support mechanism between the mask and the forehead. This forehead support prevents both the mask from pushing too strongly against the wearer's nose and/or facial region as well as minimize movement of the mask with the addition of a contact point between the mask and the wearer's head as well as minimize uncomfortable pressure points of the mask. Additionally, the forehead support may prevent the airflow tube from contacting the wearer's forehead or face.
The related art arm 34 is shown in greater detail in
It has been found that while the related art forehead support performs correctly if operated according to the instructions, an improvement can be made to reduce the risk of breakage when the forehead support is operated in a manner contrary to instructions.
Further, because depressions 106 and 108 are relatively narrow, an improvement can be made to allow the user to positively and firmly position his or her fingers to press the pins 56 and 58 together. Finally, because there is a relatively large amount of material contact between an interior of semicircular portion 100 and an exterior of airflow tube 12, this can result in a relatively large amount of friction between the arm 34 and the tube 12, thereby requiring additional force to pivot the arm 34 around the tube 12 for adjustment purposes.
The present invention is directed to an improved version of the type of forehead support discussed above. In particular, the present invention utilizes improved arms extending from the mask or gas supply line for adjustably engaging the bridge for allowing positioning of the mask on the face. First, extending portions of the arms are redesigned to compress more easily than the extending portions of the related art arms discussed above while at the same time maintaining the strength necessary for adequately supporting the airflow tube. Thus, the engaging pins may more easily be compressed together to allow for adjustment of the arms with respect to the bridge.
Furthermore, the extending portions of the arms are provided with locking portions that maintain alignment of the pins with respect to one another as they are being compressed to prevent lateral deflection of the pins, unintended stress loading on the arms and to allow easier engagement of the pins with the slots upon release of the extending portions.
Finally, arc portions of the arms that come into contact with the airflow tube 12 are undercut and radiused to prevent sticking or binding of the arms as they are pivoted about the airflow tube during adjustment of the forehead support, as compared to the related arm embodiment. Thus, the arms more easily pivot about the airflow tube during adjustment of the forehead support.
These improvements make it easier to adjust the forehead support, as well as make it easier to disassemble the arms from the bridge to allow thorough cleaning of the bridge and other support components.
Extending portion 204 includes two flange portions 206 and 208 on which generally oval depressions 210 and 212 are respectively positioned. Bridge engagement pins 214 and 216 are positioned at far ends of flange portions 206 and 208, respectively, and project, respectively, upwardly and downwardly from the arm 200. A space 218 separates the flange portions 206 and 208 and in this embodiment, it can be seen that there is no vertical web between the respective flange portions and the space 218. Also, it can be seen that the space 218 extends along a greater portion of arm 200 than does the embodiment shown in
Even though the thickness of the cantilever arm portions of the arm of
A male locking portion 220 is positioned inboard of pin 214 and a female locking portion 222 is correspondingly positioned inboard of pin 216. The male and female locking portions are configured so as to be able to fittingly mate with one another when the two flanges portions 206 and 208 are pressed together. As seen in
The lengths of the pins 214 and 216 are provided such that when the pins are pressed together to the extent allowed by the locking portions, the pins will clear the slots in the bridge, contrary to the pins of the related art arms.
In a preferred embodiment, these improved arms are constructed of a polycarbonate, specifically, Makrolon 2858 manufactured by Bayer.
There are several advantages to this improved arm embodiment. First, because the space 218 extends farther along the arm 200, the lack of a web between the flanges 206 and 208 and the tapering of the cantilever arm portions, it is as easy or easier to press the pins 214 and 216 together when adjusting the forehead support, even with the increased lateral strength of the improved arms. This is especially important because during the adjustment while the mask is on the wearer's head, the wearer cannot easily see the forehead support as he or she is performing the adjustment. The increased lateral strength helps resist accidental lateral deflection of the cantilever arm portions and pins, as well as providing a stronger support to the airflow tube. The end result is that at the outer portion of the arm 200 near the pins, the extending portion 204 has a greater stiffness and resistance to bending in the lateral or horizontal direction (i.e., the pivoting direction) than it does in the vertical direction (the non-pivoting direction). This is contrary to the embodiment shown in
Of course, the taper, shape and/or the thickness of the cantilevered arm portions can be altered to vary the stiffness of the cantilevered arm portions in the horizontal or vertical directions, as circumstances warrant. Further, under certain circumstances, it is contemplated that the stiffness of the cantilevered arm portions in the vertical direction can be less, similar to, or even greater than the comparable stiffness of the cantilevered arm portions of the related art design in the vertical direction.
The use of the wider flanges also allows the use of broader oval depressions 210 and 212. These broader depressions better accommodate the wearer's fingers and thus, give the wearer a more positive and more comfortable grip on the arms during adjustment.
The provision of the male and female locking portions assures that the two flange portions remained aligned with one another during the pressing together of the pins 214 and 216. Thus, the pins are also maintained in alignment during compression, making it easier for both pins to align with their respective slots in the bridge during adjustment of the bridge. Without the locking mechanism, the pins can be twisted and splayed with respect to another during compression, making it more difficult to position the pins in the desired respective slots in the bridge during adjustment. Further, the locking portions also prevent the user from laterally deflecting the pins with respect to one another when disassembling the arm from the bridge. Since the pins are short enough to clear the slots in the bridge when pressed together, the arm need not be rotated or the pins laterally displaced from one another to allow the pins to clear the slots in the bridge. This reduces that the chance that a user can operate the arms contrary to instructions and thereby place undue stresses on the arms that could lead to premature failure of the arms.
Finally, the provision of the undercut or recessed portions 236 and 238 on arc portions 230 and 232 reduces the amount of material of the arm that comes into contact with the airflow tube 12 (or other pivot point). This helps prevent sticking or binding of the arm as it is pivoted about the airflow tube during adjustment of the forehead support, as compared to the related arm embodiment. The radiused ends 240 and 242 are also less likely to catch and hang up on imperfections in the airflow tube during pivoting, as compared to the sharper ends of the related arm embodiment. Thus, the arm 200 more easily pivots about the airflow tube during adjustment of the forehead support.
These improvements in arm 200 thus make it easier to adjust the forehead support, as well as make it easier to disassemble the arms from the bridge to allow thorough cleaning of the bridge and other support components. They also help prevent actions by the user contrary to instructions that could increase the risk of breakage of the forehead support.
While several improvements have been discussed above, it is contemplated that an improved forehead support according to the present invention need not utilize all such improvements but can utilize one or more of such improvements in various combinations.
It is to be understood that while the invention has been described above in conjunction with preferred specific embodiments, the description and examples are intended to illustrate and not limit the scope of the invention.
This application is a continuation of application Ser. No. 10/685,001, filed Oct. 15, 2003, now U.S. Pat. No. 6,918,390, which is a continuation of application Ser. No. 09/935,778, filed Aug. 24, 2001, now U.S. Pat. No. 6,679,261, which claims the benefit of U.S. Provisional Application No. 60/227,472, filed Aug. 24, 2000, each incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5042478 | Kopala et al. | Aug 1991 | A |
5743414 | Baudino | Apr 1998 | A |
6029668 | Freed | Feb 2000 | A |
6119693 | Kwok et al. | Sep 2000 | A |
6463931 | Kwok et al. | Oct 2002 | B1 |
6532961 | Kwok et al. | Mar 2003 | B1 |
6557556 | Kwok et al. | May 2003 | B2 |
6679261 | Lithgow et al. | Jan 2004 | B2 |
6712072 | Lang | Mar 2004 | B1 |
6918390 | Lithgow et al. | Jul 2005 | B2 |
6926004 | Schumacher | Aug 2005 | B2 |
6973929 | Gunaratnam | Dec 2005 | B2 |
6997188 | Kwok et al. | Feb 2006 | B2 |
7036508 | Kwok | May 2006 | B2 |
7047965 | Ball | May 2006 | B1 |
7069932 | Eaton et al. | Jul 2006 | B2 |
7219670 | Jones et al. | May 2007 | B2 |
20040079375 | Lithgow et al. | Apr 2004 | A1 |
Number | Date | Country |
---|---|---|
WO 0078384 | Feb 2000 | WO |
WO 0057942 | Oct 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20050155605 A1 | Jul 2005 | US |
Number | Date | Country | |
---|---|---|---|
60227472 | Aug 2000 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10685001 | Oct 2003 | US |
Child | 11079822 | US | |
Parent | 09935778 | Aug 2001 | US |
Child | 10685001 | US |