This disclosure generally relates to a telemetric forehead temperature measurement and, more particularly, to a forehead temperature measurement system that compensates or calibrates a forehead temperature measured by a thermal sensor so as to improve the measurement accuracy.
It has become a new normal to arrange an auto forehead temperature measuring system at an entrance of the store and the building. However, different from the forehead thermometer, a distance between a measured person and the auto forehead temperature measuring system is not fixed, and a system's field of view generally covers environmental objects that could degrade the measurement accuracy. Furthermore, the fluctuated environmental temperature is also a parameter that could affect a measured temperature. Therefore, the current auto forehead temperature measuring system has a larger temperature deviation, and false alarm happens from time to time when the measured temperature is compared with a temperature threshold.
Accordingly, the present disclosure provides a forehead temperature measurement system and a temperature measuring method thereof that can compensate or calibrate the temperature deviation caused by the distance from a measured person and by the environmental temperature fluctuation.
The present disclosure provides a forehead temperature measurement system including an image sensor and a thermal sensor that determines a temperature measuring range of the thermal sensor using the image sensor.
The present disclosure further provides a forehead temperature measurement system having two sets of field of view that selects a smaller field of view to improve the temperature measurement accuracy when a measured person is at a farther distance.
The present disclosure further provides a forehead temperature measurement system that calibrates a measured forehead temperature according to a ratio of a forehead region in a pixel of interest of a thermal image.
The present disclosure further provides a forehead temperature measurement system that calibrates a measured forehead temperature according to a forehead area and an environment temperature.
The present disclosure provides a forehead temperature measurement system including an image sensor, a thermal sensor and a processor. The image sensor is configured to output an image frame. The thermal sensor is configured to output a thermal image. The processor is coupled to the image sensor and the thermal sensor, and configured to recognize a forehead region and calculate a forehead area according to the image frame, map the forehead region to the thermal image to determine a mapped region, respectively determine a measured forehead temperature and an environment temperature according to temperature values inside and outside the mapped region, and calibrate the measured forehead temperature according to the forehead area and the environment temperature.
The present disclosure further provides a forehead temperature measurement system including a first image sensor, a second image sensor, a first thermal sensor and a processor, The first image sensor is configured to output a first image frame. The first thermal sensor is configured to output a first thermal image. The processor is coupled to the first image sensor, the second image sensor and the first thermal sensor, and configured to recognize a first forehead region and calculate a forehead area according to the first image frame, map the first forehead region to the first thermal image to determine a measured forehead temperature when the forehead area is larger than an area threshold, and control the second image sensor to capture a second image frame when the forehead area is smaller than the area threshold.
The present disclosure further provides a forehead temperature measurement system including a first image sensor, a first thermal sensor and a processor. The first image sensor is configured to output a first image frame. The first thermal sensor is configured to output a first thermal image. The processor is coupled to the first image sensor and the first thermal sensor, and configured to recognize a forehead region according to the first image frame, map the forehead region to the first thermal image to determine a mapped region, determine an environment temperature according to a temperature value outside the mapped region, find a pixel of interest which has a maximum temperature inside the mapped region, and recognize a ratio of the forehead region in a corresponding region in the first image frame corresponding to the pixel of interest, and calculate a measured forehead temperature according to the maximum temperature, the ratio and the environment temperature when the ratio is lower than a ratio threshold.
The present disclosure further provides a forehead temperature measurement system including an image sensor, a thermal sensor and a processor. The image sensor is configured to output an image frame. The thermal sensor is configured to output a thermal image. The processor is coupled to the image sensor and the thermal sensor, and configured to recognize a forehead region according to the image frame, map the forehead region to the thermal image to determine a mapped region, determine a maximum temperature inside the mapped region as a measured forehead temperature, and calibrate the measured forehead temperature according to uniformity of temperature differences between the measured forehead temperature and adjacent temperatures of the measured forehead temperature.
Other objects, advantages, and novel features of the present disclosure will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.
It should be noted that, wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
The forehead temperature measurement system of the present disclosure firstly determines a forehead region in an image frame captured by an image sensor using the image recognition technique, and then determines a measured forehead temperature according to a mapped region, corresponding to the forehead region, in a thermal image captured by a thermal sensor. Furthermore, the forehead temperature measurement system of the present disclosure further compensates or calibrates the measured forehead temperature according to an area of the forehead region so as to improve the measurement accuracy.
Please refer to
The forehead temperature measurement system 100 includes a sensing chip 11 and a lens 13, wherein the lens 13 is arranged at a side of the sensing chip 11 for receiving light so as to adjust the light path and field of view FOV.
The sensing chip 11 includes an image sensor 21, a thermal sensor 23 and a processor 25. The image sensor 21 and the thermal sensor 23 both receive optical energy via the lens 13. The sensing chip 11 is coupled to external devices via a substrate on which the sensing chip 11 is arranged.
The image sensor 21 (and 21′ if included) is, for example, a CCD image sensor or a CMOS image sensor, and is used to output an image frame IF at a predetermined frequency. For example,
In one aspect, the image sensor 21 and the thermal sensor 23 have an identical field of view FOV so as to receive optical energy from the same space, but the present disclosure is not limited thereto. In another aspect, the FOV of the image sensor 21 is larger than or smaller than that of the thermal sensor 23.
In one aspect, a pixel number of the image frame IF is higher than a pixel number of the thermal image IT. The image frame IF includes, for example, 240×240 pixels so as to contain enough details or features for the processor 25 to perform the image recognition, e.g., including face recognition and recognizing a forehead region of a face. The thermal image IT includes, for example, 8×8 pixels so as to detect temperatures of 64 points within the FOV.
The processor 25 is coupled to the image sensor 21 and the thermal sensor 23 to respectively receive the image frame IF and the thermal image IT. The processor 25 is, for example, a digital signal processor (DSP), an application specific integrated circuit (ASIC) or a field programmable gate array (FPGA), and implements functions thereof using hardware and/or firmware. Said functions include recognizing a forehead region FH and calculating a forehead area according to the image frame IF, mapping the forehead region FH to the thermal image IT to determine a mapped region Amap, determining a measured forehead temperature according to a temperature value inside the mapped region Amap, and compensating or calibrating the measured forehead temperature using the method mentioned below.
The mapping of the forehead region FH is illustrated by examples below.
In one example, the thermal image IT is interpolated to form an interpolated thermal image having the same number of pixels as the image frame IF, and a corresponding mapped region Amap in the interpolated thermal image is obtained by overlapping the image frame IF on the interpolated thermal image.
In another example, one pixel of the thermal image IT (e.g., one rectangle in
In one aspect, the measured forehead temperature is the maximum temperature inside the mapped region Amap of the thermal image IT, but the present disclosure is not limited thereto. In another aspect, the measured forehead temperature is an average of multiple measured temperature values inside the mapped region Amap of the thermal image IT. One pixel of the thermal image IT detects one measured temperature value.
To improve the measurement accuracy, the forehead temperature measurement system 100 of the present disclosure further calibrates or compensates the measured forehead temperature. That is, the measured temperature value of a pixel outside the mapped region Amap of the thermal image IT is not used as the measured forehead temperature but is used to compensate or calibrate the measured forehead temperature.
Please refer to
It should be mentioned that although
In one aspect, the first image sensor 21 and the first thermal sensor 23 have a first field of view, e.g., FOV1=60. The second image sensor 21′ and the second thermal sensor 23′ have a second field of view, e.g., FOV2=30.
The first image sensor 21 outputs a first image frame IF1, e.g., shown by a human face image when FOV1=60. The first thermal sensor 23 outputs a first thermal image IT1, e.g., shown by a pixel array including 8×8 pixels. The second image sensor 21′ outputs a second image frame IF2, e.g., shown by a human face image when FOV2=30. The second thermal sensor 23′ outputs a second thermal image IT2, e.g., shown by a pixel array including 8×8 pixels.
More specifically, the processor 25 recognizes a first forehead region (e.g., FH as shown in
When the forehead area is smaller than the area threshold, the processor 25 controls the second image sensor 21′ to capture a second image frame IF2, recognizes a second forehead region according to the second image frame IF2, maps the second forehead region to a second thermal image IT2 captured by the second thermal sensor 23′ to determine a second mapped region Amap2, and determines a measured forehead temperature according to a temperature value inside the second mapped region Amap2.
In
If the processor 25 needs to calibrate the measured forehead temperature calculated from the second image frame IF2 and the second thermal sensor IT2 using the method mentioned below, the processor 25 further calculates a forehead area according to the second image frame IF2 and an environment temperature according to the second thermal sensor IT2.
Please refer to
In one aspect, the environment temperature is a measured temperature value, e.g., shown as 20° C. in
It is appreciated that the environment temperature is not limited to the measured temperature value of pixA in
However, when the ratio is higher than the ratio threshold, the influence from the environment temperature is considered ignorable, and the processor 25 takes the maximum temperature of the pixel of interest pixB as the measured forehead temperature.
Furthermore, the temperature measuring of FIG: 4 is combinable to the temperature measuring of
Please refer to
Please refer to
Step S51: After receiving the image frame IF, the processor 25 recognizes a forehead region FH in the image frame IF and calculates a forehead area of the forehead region FH. For example, the processor 25 is embedded with an image recognition algorithm (e.g., a model constructed using AI algorithm, but not limited to) for recognizing the forehead region FH. The processor 25 further calculates a number of pixels in the image frame IF occupied by the forehead region FH as a forehead area.
Step S53: After receiving the thermal image IT, the processor 25 then maps the forehead region FH to the thermal image IT to determine a mapped region Amap in the thermal image IT. The processor 25 takes a maximum temperature or an average temperature inside the mapped region Amap as a measured forehead temperature, and takes a temperature value outside the mapped region Amap (e.g., a measured temperature value of a pixel adjacent to the mapped region Amap or an averaged measured temperature values of multiple pixels adjacent to the mapped region Amap) as an environment temperature.
Step S55: Finally, the processor 25 calibrates the measured forehead temperature according to the forehead area and the environment temperature. For example, when the forehead area is smaller, a calibration for calibrating the forehead temperature is larger. For example, when the environment temperature is lower, a calibration for calibrating the forehead temperature is larger. The calibration is, for example, a temperature increment to cause the calibrated forehead temperature to be higher than the measured forehead temperature. In one aspect, when the forehead area is larger than or equal to a predetermined area, the calibration associated with the forehead area is reduced to 0. In another aspect, when the environment temperature is larger than or equal to a predetermined temperature, the calibration associated with the environment temperature is reduced to 0.
Therefore, the forehead temperature measurement system 100 of the present disclosure further includes a memory for previously storing the corresponding relationship between the forehead area and the environment temperature as well as calibrations of the measured forehead temperature such that the processor 25 determines a current calibration according to a current forehead area and a current environment temperature based on the corresponding relationship. The processor 25 then adds the current calibration to a current measured forehead temperature to obtain a calibrated forehead temperature.
In one aspect, before shipment, the forehead temperature measurement system 100 is used to measure a user to calculate measured forehead temperatures under different forehead areas (e.g., corresponding to different distances) and different environment temperatures. Reference temperatures of the same user under the same conditions are obtained by using an accurate temperature sensor (e.g., forehead thermosensor or contact temperature sensor). Then, the forehead area and the environment temperature are used as variables, and the measured forehead temperatures are fitted to the reference temperatures using the fitting method to obtain a fitted equation to be recorded in the memory.
The corresponding relationship is not limited to be obtained using the fitting method as long as the recorded relationship can calibrate the measured forehead temperatures corresponding to different forehead areas and environment temperatures to be close to or even equal to the reference temperatures (i.e. obtaining the calibrations corresponding to different forehead areas and environment temperatures).
Similarly, the embodiment of
Please refer to
Please refer to
Please refer to
After receiving the image frame IF, the processor 25 recognizes a forehead region 1111 in the image frame IF and calculates a forehead area of the forehead region FH. For example, the processor 25 is embedded with an image recognition algorithm (e.g., a model constructed using AI algorithm, but not limited to) for recognizing the forehead region FH. The processor 25 further calculates a number of pixels in the image frame IF occupied by the forehead region FH as the forehead area.
After receiving the thermal image IT, the processor 25 then maps the forehead region FH to the thermal image IT to determine a mapped region Amap in the thermal image IT. The processor 25 takes a maximum temperature inside the mapped region Amap as a measured forehead temperature, and takes temperature values adjacent to a pixel associated with the measured forehead temperature as the adjacent pixels. As shown in
In one aspect, the temperature compensation of this aspect is performed only when the processor 25 identifies that the forehead area is smaller than a predetermined area threshold. When the forehead area is larger than or equal to the predetermined area threshold, the measured forehead temperature is directed outputted without compensation.
Finally, the processor 25 calibrates the measured forehead temperature according to the measured forehead temperature and the adjacent temperatures. For example in a scenario that the mapped region Amap includes 3 pixels, the processor 25 firstly calculates a first temperature difference and a second temperature difference between the measured forehead temperature and two adjacent temperatures (e.g., including a first adjacent temperature and a second adjacent temperature), and then calibrates the measured forehead temperature according to uniformity of the first temperature difference and the second temperature difference.
Please refer to
Please refer to
Please refer to
In other words, if the uniformity is lower (e.g., case 1), the calibration is larger (i.e. more temperature being added to the measured forehead temperature); otherwise, if the uniformity is higher (e.g., case 3), the calibration is smaller (i.e. less temperature being added to the measured forehead temperature).
The forehead temperature measurement system 100 of the present disclosure further includes a memory for previously storing the corresponding relationship between the uniformity and calibrations of the measured forehead temperature such that the processor 25 determines a current calibration according to a current measured forehead temperature and current adjacent temperatures based on the corresponding relationship. The processor 25 then adds the current calibration to the current measured forehead temperature (measured T shown in
In one aspect, before shipment, the forehead temperature measurement system 100 is used to measure a user to calculate uniformity under different measured forehead temperatures and adjacent temperatures. Reference temperatures of the same user under the same conditions are obtained by using an accurate temperature sensor e.g., forehead thermosensor or contact temperature sensor). Then, the measured forehead temperature and the adjacent temperature are used as variables, and the measured forehead temperatures are fitted to the reference temperatures using the fitting method to obtain a fitted equation to be recorded in the memory.
The corresponding relationship is not limited to be obtained using the fitting method as long as the recorded relationship can calibrate the measured forehead temperatures corresponding to different measured forehead temperatures and adjacent temperatures (or uniformity) to be close to or even equal to the reference temperatures (i.e. obtaining the calibrations corresponding to different uniformity).
Similarly, the embodiment of
Furthermore, the embodiment of
In the present disclosure, the measured forehead temperature or the calibrated forehead temperature is outputted to a display to be shown thereon and/or compared with a temperature threshold to determine whether to generate a warning. For example, the forehead temperature measurement system 100 is arranged to directly output the measured forehead temperature or the calibrated forehead temperature, or to output a flag signal (e.g., outputting digital value 1 when the forehead temperature exceeds 38° C., but not limited to) to indicate that the body temperature is too high.
It should be mentioned that the values mentioned in the above embodiments and drawings, e.g., including temperatures, FOVs, area ratios and pixel numbers are only intended to illustrate but not to limit the present disclosure.
In the present disclosure, the forehead area is, for example, a length, a width or length×width of the forehead region FH.
It should be mentioned that although the above embodiments are illustrated in the way that a forehead area is calculated by the processor 25 according to the image frame IF, e.g., a pixel number of the forehead region FH in the image frame IF, the present disclosure is not limited thereto. In another aspect, the processor 25 calculates the forehead area according to the mapped region Amap in the thermal image IT, e.g., a number of pixels of the mapped region Amap in the thermal image IT.
As mentioned above, the conventional auto forehead temperature measuring system suffers from a temperature deviation caused by the distance of a measured person and the fluctuation of environment temperature. Accordingly, the present disclosure further provides a forehead temperature measurement system capable of compensating or calibrating a measured forehead temperature (e.g.,
Although the disclosure has been explained in relation to its preferred embodiment, it is not used to limit the disclosure. It is to be understood that many other possible modifications and variations can be made by those skilled in the art without departing from the spirit and scope of the disclosure as hereinafter claimed.
The present application claims the priority benefit of U.S. Provisional Application Ser. No. 63/071,383, filed on Aug. 28, 2020, the disclosure of which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
63071383 | Aug 2020 | US |