Aluminum alloys are important in many industries. Glassy Al-based alloys and their devitrified derivatives are currently being considered for applications in the aerospace industry. These alloys involve the addition of rare earth and transition metal elements. These alloys have high strength and, when processed appropriately, have high ductility.
One of the key requirements for high ductility is control of the second phase size during thermomechanical processing; in this case, forging extruded billet into various forged shapes.
When pure Al or Al-based alloys are forged, the alloys are heated, such as to 700° F. to 800° F., and are forged at high press speeds. There is normally no concern for adiabatic heating because the alloys are usually heat-treatable. In a heat treatment, they are solutionized, quenched and aged to a desired temper after forging.
Al-based alloys such as Al—Y—Ni—Co alloys are devitrified glass-forming aluminum alloys that derive their strength from a nanometer-sized grain structure and nanometer-sized intermetallic second phase or phases. Examples of such alloys are disclosed in co-owned U.S. Pat. Nos. 6,974,510 and 7,413,621, the disclosures of which are incorporated herein by reference in their entirety.
However, devitrified derivatives of glassy aluminum alloys have nanocrystalline microstructures that have mechanical properties that cannot be obtained when starting out with powder in the crystalline state. Standard forging practices will destroy the nanocrystalline microstructure and the important properties are lost.
The invention involves the forging of extruded billet, or forging mults, in a direction whose axis is parallel to the axis of extrusion that formed the alloy billet. The alloy itself is a devitrified derivative of glassy aluminum alloys such as those described in the above identified patents.
Of particular use are aluminum based alloys containing from 3 to 18.5 atomic percent nickel and 3 to 14.0 atomic percent yttrium.
The alloy billet is textured and has an axis of extrusion in which the microstructure is aligned. Forging in this direction changes the microstructure to give maximum strength, and also causes the plate phases within the subject alloys to become randomly oriented, resulting in improved ductility.
An alloy billet 11 that, for example, is 4 inches in diameter and 36 inches tall, is potted in a two inch diameter cylinder 13 of aluminum alloy 6061 or other such metals, as shown in
Cylinder 13 with billet 11 is then put in a steel plane strain die 15 in
In
During extrusion to form billet 11, the plate phases (Al23Ni6Y4 and Al19Ni5Y3) that give the alloy its strength, become aligned with the extrusion direction 17. This leads to low ductility in the extrusion direction and even lower ductility in the transverse direction. When forged parallel to the direction of extrusion, axis 17, the plate phases become randomly oriented and smaller in size. This leads to more uniform flow during plastic deformation, resulting in improved ductility.
To provide for the retention of the nano-scale microstructure during forging, the temperature of the forged product must be controlled. This is accomplished through careful control of the temperature of the dies and the billet. The temperature of the dies typically ranges from 500° F. to about 800° F. (260° C. to 426.7° C.). For more control, this temperature is maintained from about 675° F. to about 750° F. (357.2° C. to 398.9° C.) during forging the billet. The billet temperature is also controlled to be at a temperature from about 500° F. to about 800° F. (260° C. to (426.7° C.). Again, more control will use a temperature range from about 700° F. to about 750° F. (371.1° C. to 398.9° C.) during forging the billet. During forging, adiabatic heating is controlled by controlling the press speed. Good results have been attained at a press speed of from about 0.001 inches per second to 0.1 inches per second.
Once the product has been formed, normal finish operations are performed. In the airfoil of
While the invention has been described with reference to an exemplary embodiment(s), it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment(s) disclosed, but that the invention will include all embodiments falling within the scope of the appended claims.
This application is related to the following co-pending applications that are filed on even date herewith and are assigned to the same assignee: DIFFUSION BONDING OF GLASSY ALUMINUM-BASED ALLOYS, Ser. No. ______, Attorney Docket No. PA0009506U-U73.12-665KL; MASTER ALLOY PRODUCTION FOR GLASSY ALUMINUM-BASED ALLOYS, Ser. No. ______, Attorney Docket No. PA0009509U-U73.12-666KL; EXTRUSION OF GLASSY ALUMINUM-BASED ALLOYS, Ser. No. ______, Attorney Docket No. PA0009510U-U73.12-667KL; and PRODUCTION OF ATOMIZED POWDER FOR GLASSY ALUMINUM-BASED ALLOYS, Ser. No. ______, Attorney Docket No. PA0009512U-U73.12-668KL. All referenced incorporated herein.