Notice: More than one reissue application has been filed for the reissue of U.S. Pat. No. 5,915,912. The reissue application numbers are application Ser. Nos. 09/894,897 (the present application) and 11/352,518, which is a division of reissue application Ser. No. 09/894,897.
The present invention concerns load trucks in general, and fork lift apparatus adapted to be mounted on conventional trucks and trailers in particular.
Lift-trucks are widely used for loading, lifting, handling and carriage of heavy loads, such as large containers and cars. Typically, a designated lifting-vehicle comprises an built-in fork lift mechanism, which is preferred over elaborate crane lifts. Relatively light weights can be loaded in front or back of non-designated vehicles, without significantly endangering the stability of the lifting-vehicle. However, heavy loads must be loaded in proximity to the center of gravity in order to avoid turning over of the lifting-vehicle during the loading and unloading process, especially while the lifting-vehicle is in motion. Hence, conventional fork lift trucks comprise a designated truck having a fork lift mounted in front thereof, with a balancing counterweight mounted in the rear of the truck. In certain cases the mast of the fork lift is tilted in order to maintain the center of gravity.
Still, for some purposes, such as for towing cars and other vehicles, it is preferable to use a retractable fork lift mechanism which is mounted on the side (or rear) of the lifting-vehicle. In the latter cases, when the vehicle is in motion, the prongs of the fork overlappingly rest over the lifting-vehicle's frame, with or without cargo. During the process of loading and unloading, the prongs extend from the frame of the vehicle and lift the cargo—from underneath, in a combined downward-upward and traversing motions. The prongs are situated during this process anywhere between the ground and at some elevation above the chassis of the lifting-vehicle. To enable these combined motions, the chassis of the lifting-vehicle is designed as an open, II shaped rectangle, whereby the prongs reciprocate through the open side of the chassis.
In the latter cases, the open side of the chassis is usually located at the side of the lifting vehicle—as required, for example, for loading and towing away cars which are unlawfully parked along the sides of a street. In such embodiments most of the weight of the lifting-vehicle itself is predisposed at the side of the lifting vehicle. This results from the accumulation of the necessary lifting equipment on the closed side of the II-shaped chassis. Although such accumulation contributes to counter-balance the weight of the loaded cargo, it is disadvantageous when there is no cargo loaded or when the loaded cargo is relatively lightweight.
The above embodiment entails several further disadvantages: The requirement of a II-shaped chassis necessary for the task of side loading, excludes the possibility of using conventional trucks and trailers having a “closed” chassis.
In addition, due to the unbalanced lack of a support beam in the open side of the II-shaped chassis, the strength of the chassis is disproportional reduced, even when the other support beams are reinforced, and especially when the chassis lacks a longitudinal support beam. Such weakened chassis is therefore suitable for transportation via regular roads and highways and the use of such lift trucks is usually restricted to special loading zones.
Moreover, the II-shaped chassis poses a serious obstacle for the power transmission from the engine, mounted on one side of the loading vehicle, to the wheels which are mounted on the other side of the vehicle. Similar problems arise with regard to the brake system and the shock-absorbers and even the very engagement of the wheels to the chassis is problematic with the II-shaped chassis.
In view of the above constructural restraints of such lift-trucks, which are designed for lifting a heavy load from their side, they comprise a hydraulic power source which serves both the motion of the vehicle on the ground and the operation of the lifting mechanism. Therefore, their speed on regular roads must be further restricted due to the hydraulic power source which is inferior to regular combustion engines.
Furthermore, some conventional fork lifts carry the load on the prongs while the lift-truck is in motion, a method which is unsafe and may be damaging to the load.
Finally, the II-shaped chassis is restricted to lifting loads from one side only of the lifting vehicle, a restriction which can be a major disadvantage. Such is the case, for instance, of a lifting truck used for towing-away cars which are unlawfully parked on both sides of a narrow street. When the lifting-truck is confined to drive in one direction only, the lifting of cars is possible only on one side of the road.
It is therefore, an object of this invention, to provide novel fork lift adapted to the loading of light and heavy loads on the side of the fork lift, which overcomes the above disadvantages.
In particular, an object of this invention is to provide a fork lift which can be mounted on conventional chassis of a vehicle, such as conventional trucks or trailers, and which can be dismounted therefrom.
Another object of this invention is to provide a fork lift which will enable the lifting vehicle to move fast and safely in roads and highways, using a safe chassis and enabling the use of combustion engine for the drive of the vehicle.
A further particular object of this invention, is to provide a fork lift which can be used for lifting loads from either side of the lifting vehicle.
Yet, a further object of this invention is to provide a fork lift wherein the loaded cargo can be safely supported - and is not carried by the prongs of the fork lift while the vehicle is in motion.
These and other objectives are provided by the invention to be described below.
There is thus provided according to the present invention a novel fork lift comprising retractably extendible loading prongs for lifting loads from either side of a vehicle, and a mechanism for displacing the prongs over and across the vehicle. The vehicle may comprise a non-designated truck or trailer.
According to a preferred embodiment, the mechanism for displacing the prongs comprises a front and a rear transverse girders adapted to be rigidly secured to a chassis of the vehicle, a front and a rear masts, means for simultaneously reciprocating the front and rear masts at their bottoms along the front and rear girders, correspondingly, a longitudinal beam coupled to the front and rear masts, means for reciprocating the beam in a downward-upward motion along the front and rear masts, respectively, a front and a rear uprights extending downward from the beam, the prongs comprise a front and a rear transverse prongs retractably engaged to the bottom of the front and rear uprights, correspondingly, and means for extending the front and rear transverse prongs from the front and rear uprights, correspondingly, toward either side of the vehicle.
Preferably, the beam comprises means, such as hydraulic pistons, for longitudinally moving the front or rear uprights along the beam and may also comprise means for lowering or raising the front or rear uprights.
Optionally, the lift fork further comprises a set of 4 extendible strut poles rigidly secured to the chassis for providing additional security against turning over of the vehicle during the process of loading and unloading. The lift fork may further comprise retractable deck-plates for placement of cargo during transport.
In the preferred embodiment, the means for simultaneously reciprocating the front and rear masts along the front and rear girders, may comprise sprocket wheels, preferably propelled by a hydraulic drive, wherein at least one sprocket wheel is mounted on each mast and is turned against mating toothed sprocket bars which are mounted on the front and rear girders, respectively.
Yet, another optional addition to the preferred embodiments, is a boom to which the front and rear masts are coupled at their tops, and optionally the means for reciprocating the beam in a downward-upward motion comprises front and back hydraulic pistons mounted on the boom, wherein each piston is coupled to a chain which is connected to the beam, through a system of pulleys.
Further optionally, the means for simultaneously extending the front and rear transverse prongs from the front and rear uprights, comprises sprocket wheels, each having a hydraulic drive, wherein each sprocket wheel is mounted on each upright and is turned against mating toothed sprocket bars which are mounted on the front and rear transverse prongs.
In an alternate preferred embodiment, the prongs comprise either horizontally or vertically pivotal prongs, wherein the prongs can be extended toward either side of the vehicle by their pivoting 180° or 90°. Optionally, the pivotal prongs comprise L-shaped double prongs which can be extend toward either side of the vehicle by their pivoting 90°. Further optionally, the prongs may be split prongs.
In a further alternate embodiment the mechanism for displacing the prongs comprises a front and a rear heightened girders adapted to be rigidly secured to the chassis of a vehicle, a longitudinal beam mounted to the front and rear girders, means for reciprocating the beam along the front and rear girders, front and rear uprights extending downward from the beam, means for reciprocating the front and rear uprights in a downward-upward motion, the prongs comprise a front and a rear transverse prongs retractably engaged to the bottom of the front and rear uprights, correspondingly, means for extending the front and rear transverse prongs from the front and rear uprights, correspondingly, toward either side of the vehicle. Alternately, the front and rear girders may be combined with raising and lowering mechanisms for providing the downward-upward motion of the beam in lieu of the means for reciprocating the front and rear uprights.
In yet a further alternate embodiment, the mechanism for displacing the prongs comprises a front and a rear arches adapted to be rigidly secured to a chassis of the vehicle, a longitudinal beam mounted on the front and rear arches, means for driving the beam along the arches, the prongs comprise a front and a rear transverse prongs retractably engaged to the beam, means for extending the front and rear transverse prongs from the beam toward either side of the vehicle, and means for retaining the prongs in a horizontal configuration.
Further features and advantages of the invention will be apparent from the description below, given by way of example only.
The present invention will be further understood and appreciated from the following detailed description, taken in conjunction with the following enclosed drawings in which like numerals designate correspondingly analogous elements or sections throughout, and in which:
FIGS. 6a(1)-6d are examples of optionally swinging prongs constructed and operative in accordance with the invention;
In FIGS. 6e-6f(2), there are shown examples of split prongs constructed and operative in accordance with the invention;
In reference to
Uprights 7a and 7b extend from a longitudinal beam 9 and can be displaced along beam 9 in order to adapt to the size of the load to be lifted. Equi-distancing of uprights 7a and 7b from the edges of beam 9, respectively, although not compulsory, will provide symmetrical distribution of the lifted weight along beam 9. The moving of uprights 7a and 7b along beam 9 may be carried out by two hydraulic pistons 8a and 8b as in the configuration shown for example in FIG. 2. Plungers 9a and 9b are coupled to uprights 7a and 7b at joints 10a and 10b, correspondingly. Meshing piston housings 10a and 10b are rigidly secured to beam 9. As plungers 9a and 9b reciprocate through piston housings 10a and 10b uprights 3a and 3b7a and 7b move along beam 9.
Longitudinal beam 9 is mounted to a front and a rear masts 12a and 12b. Beam 9 can raise or descent, with the aid of a suitable mechanism in a downward-upward motion along the front and rear masts and thus provide the lifting of the loads. Alternatively, the required lifting can be provided by a vertical motion of uprights 7a and 7b with regard to said beam 9 such as generally suggested in an alternate embodiment of the fork lift in FIG. 7a.
Preferably, masts 12a and 12b are coupled at their tops to a boom 13, providing extra strength and stability to the whole structure of the fork lift. In addition, boom 13 can be used as a stable support for a suitable lifting mechanism of beam 9. Such mechanism can be provided as shown in FIG. 2. Lifting chains 14a and 14b are coupled at one end to beam 9 and at the other end to hydraulic pistons 15a and 15b, which are mounted on boom 13. Hydraulic pistons 15a and 15b comprise corresponding piston housings 16a and 16b - rigidly secured to boom 13, and further comprise plungers 17a and 17b having pulleys 18a and 18b mounted at their edges. Chains 14a and 14b are connected to boom 13 in proximity of housings 16a and 16b and are correspondingly curled around pulleys 18a and 18b and pulleys 19a and 19b that are mounted on boom 13 in proximity to masts 12a and 12b. As apparent from
Masts 12a and 12b are coupled at their bottom to a front and a rear transverse girders 20a and 20b, correspondingly. Guiding wheels 18 are mounted on beam 9 which roll in meshing rails along masts 12a and 12b, as shown in
Girders 20a and 20b are adapted to be coupled firmly to chassis 2 and comprise means for simultaneously reciprocating Masts 12a and 12b along girders 20a and 20b and thus provide the necessary transverse movement of the lifting mechanism towards both sides of the fork lift.
As shown in
In the position shown in
In
The motions of all the operative parts of the fork lift—such as the motions of prongs 3a and 3b, uprights 7a and 7b, beam 9 and masts 12a and 12b, may be combined or simultaneous, and any suitable controlling device may be associated with the relevant driving means of these parts for their manual or computerized motion control.
If the load is a car, prongs 3a and 3b may be spread out until they engage the wheels of the car, in order to lock the wheels of the car. Alternate locking devices, such as devices 21a and 21b in
Optionally, a set of 4 telescopic extendible strut poles 25, as shown in
Optionally, the deck floor of vehicle 8 can be of a retractable or collapsible kind, such as with sliding platforms 27 in
The mechanism for reciprocating masts 12a and 12b along girders 20a and 20b is shown in
Prongs 3a and 3b can either simultaneously or separately extend from uprights 7a and 7b, by a driving mechanism as shown in FIGS. 4 and 5: Prong 3 is reciprocated by a sprocket wheel 4, which is preferably actuated by a hydraulic drive, and which is mounted on upright 7. Sprocket wheel 4 revolves against mating toothed sprocket bar 6 which is mounted on prong 3.
Alternate pivotal prongs 3 are shown in FIGS. 6a(1), and 6b(2). Simple bar shaped prongs 3 can pivot 180° in direction ‘r’ - either horizontally, as in FIG. 6a(1) and 6a(2), or vertically, as in FIG. 6b. Further optionally, telescopic prongs as prong 3b in FIG. 6a(2) and prongs 3a in
Prong 3 may comprise a split prong, as shown in
Notably, although the invention is primarily designed for lifting on the side of the loading vehicle, it is possible to install the lifting mechanism for rear or frontal lifting.
Referring now to
A further alternate lifting device may be provided by guiding beam 9 through rails such as rails 41 in FIG. 7a. Girders 20a and 20b may comprise extended legs 43 through which beam 9 reciprocates vertically. This can possibly be carried out by means of toothed wheels 45, as shown in
The support of beam 8 by girders 20a and 20b can be re-enforced, such as branch 49 in
Another alternate fork lift is demonstrated in FIG. 8. Arches 20a and 20b are rigidly secured to chassis 2. Longitudinal beam 9 is coupled to arches 20a and 20b and can be maneuvered along arches 20a and 20b, using any suitable driving means such as toothed wheels and bars analogous to those shown in FIG. 7a. The arcuate track along arches 20a and 20b, combines both the required lifting and the transverse carriage of the loads. Prongs 3a and 3b are extendible or pivotal and are coupled to beam 9 in any suitable manner such shown in the previous examples. Arches 20a and 20b may comprises telescopic extensions such as member 25 in order to allow the lowering of prongs 3a and 3b to the ground. Such member can also function as a strut pole similar to strut poles 25 in FIG. 2. Alternatively, intermediate upright such as 7b in
In order to ensure the permanently horizontal position of prongs 3a and 3b which is essential for the appropriate lifting, stabilizing or balancing means need to be applied. Such stabilizing means may comprise pivotal joints such as joint 51 having a suitable gear and which is controlled by a predetermined program in correlation to the position along arches 20a and 20b, or in real time by gyroscopic, manual or computerized controller. Alternate stabilizing means can be provided by coupling beam 9 with rectilinear guide such as mechanical guide 53 in FIG. 9a. T-shaped member 55 is rigidly coupled to beam 9 and comprises a horizontal rail (not shown) along its upper section 57. Reciprocatable bridging bar 59 is connecting section 57 to guide 53. Bar 59 can slide along section 57 which remains perpetually horizontal. Guide 53 comprises a rail compatible to sliding of bar 59 all along thereof. The confinement of bar 59 to horizontal movement at its connection to section 57 and to vertical movement at its connection to guide 53 ensures the permanently horizontal position of section 57 and prong 3.
Alternately stabilizing means 61 are shown in FIG. 8 and are presented in more detail in
It will be appreciated by those skilled in the art that the invention is not limited to what has been shown and described hereinabove by way of example only. Rather, the invention is limited solely by the claims which follow.
| Number | Date | Country | Kind |
|---|---|---|---|
| 116100 | Nov 1995 | IL | national |
| Number | Name | Date | Kind |
|---|---|---|---|
| 2605918 | Roscoe | Aug 1952 | A |
| 2985328 | Fitch | May 1961 | A |
| 3031091 | Erickson et al. | Apr 1962 | A |
| 3167201 | Quayle | Jan 1965 | A |
| 3168956 | Jinks et al. | Feb 1965 | A |
| 3187917 | Miller | Jun 1965 | A |
| 3235105 | Loomis | Feb 1966 | A |
| 3684114 | Cosgrove et al. | Aug 1972 | A |
| 3930587 | Bliss | Jan 1976 | A |
| 4326830 | Cusack | Apr 1982 | A |
| 4690609 | Brown | Sep 1987 | A |
| 4938652 | Sanderson | Jul 1990 | A |
| 4995774 | Nusbaum | Feb 1991 | A |
| 5403105 | Jameson | Apr 1995 | A |
| 5403145 | Cradeur et al. | Apr 1995 | A |
| Number | Date | Country |
|---|---|---|
| 1309825 | Oct 1962 | FR |
| 1 309 825 | Oct 1962 | FR |
| 1 546 105 | Oct 1968 | FR |
| 1546105 | Oct 1968 | FR |
| 2 305 385 | Mar 1975 | FR |
| 2305385 | Mar 1975 | FR |
| 2 325 536 | Sep 1975 | FR |
| 2325536 | Sep 1975 | FR |
| 2 517 268 | Nov 1981 | FR |
| 2517268 | Nov 1981 | FR |
| 2503644 | Apr 1982 | FR |
| 2 503 644 | Apr 1982 | FR |
| 2592644 | Jan 1986 | FR |
| 2 592 644 | Jan 1986 | FR |
| 998365 | Jul 1965 | GB |
| 998 365 | Jul 1965 | GB |
| 1245590 | Jan 1970 | GB |
| 1439145 | Jun 1976 | GB |
| 8201363 | Apr 1982 | WO |
| 82 01363 | Apr 1982 | WO |
| Number | Date | Country | |
|---|---|---|---|
| Parent | 08752565 | Nov 1996 | US |
| Child | 09894897 | US |