The present invention relates to a novel path-controlled form dressing roller and a method for its production as well as its use for dressing diamond and CBN grinding wheels in ceramic, Bakelite, metallic, or resin bond as well as conventional grinding wheels with abrasives made of corundum or silicon carbide.
For the grinding of profiles into tool surfaces, grinding wheels that have geometrically defined profiles on their grinding surface are used. These profiles must initially be incorporated by dressing into the new wheel and then reworked from time to time due to the grinding wheel wear occurring during grinding. Grinding wheel wear can result in both inadmissible profile deviations and unsatisfactory grinding behavior, with the grinding forces, the temperature of the tool surface, and/or the surface roughness falling out of tolerance.
Diamond form dressing rollers that bear a layer of diamonds on their circumferential surface have proven their worth for the path-controlled dressing of conventional grinding wheels with abrasives made of corundum or silicon carbide. This diamond layer can consist of a diamond grit in a bond of galvanically deposited nickel or also of polycrystalline diamond aggregates that are held on the circumferential surface of the form dressing roller by a galvanically or chemically deposited nickel precipitate or by a sinter metal applied in a sinter process.
In some cases, very small concave radii must be incorporated into the circumferential grinding wheel surface in order to achieve very small corner radii on the workpiece, for example, 0.1 mm or 0.2 mm. For this, form dressing rollers are ground in their largest diameter such that a convex radius with a corresponding diameter is created. The wear on the form dressing roller occurring through the dressing of the fine edges is naturally high. When the wear exceeds the profile tolerance, the form dressing roller must be re-ground or even replaced.
EP 0 116 668 B1 disclosed a form dressing roller that solves the problem of wear on a diamond form dressing roller by a multilayer diamond coating perpendicular to the axis of rotation of the dressing roller and a single layer diamond coating in the direction of the axis of rotation. The diamond coating forms a profile perpendicular to the axis of rotation that generates itself under constant dressing conditions and thus permits a greater amount of wear without the profile falling out of tolerance. Fine profiles can be achieved with the known form dressing roller through the selection of a finer grit.
The dressing is composed of the profiling and sharpening of the grinding wheel. The profiling is required to return the profile of the grinding wheel to the desired shape and tolerance. The sharpening takes place in order to moreover restore the grinding capability of the grinding wheel, i.e., to bring the grinding forces, the generation of heat, and the surface roughness created on the workpiece back within the required limits.
From EP 1312 446 B1, a form dressing roller with a coating of diamond grains for dressing diamond grinding wheels is known. The form dressing roller has a closed cover ring. It has been demonstrated that the known form dressing roller cannot durably satisfy the increasing requirements for profile accuracy and for actual surface roughness on the dressed grinding wheel.
Good profile accuracy of the grinding wheel is critical to the outcome of the dressing operation. Before dressing, a dressing contour is predefined by a program. The role of dressing is to strictly adhere to the predefined profile in a predefined timeframe.
High actual surface roughness of the grinding wheel after dressing is critical to the outcome of the grinding operation. The actual surface roughness on the grinding wheel increased by dressing results in improved grinding action of the grinding wheel.
The object of the present invention consists in providing a path-controlled form dressing roller that produces better profile accuracy and a greater actual surface roughness on the grinding wheel, wherein the wear of the form dressing roller is so slight that even long profile strokes can be dressed with great profile accuracy on a diamond grinding wheel.
A further object of the present invention consists in providing an economical and environmentally friendly method for producing the path-controlled form dressing roller.
The object is accomplished through the characteristics of claims 1, 12, and 16. Preferred embodiments are apparent from the subclaims.
The object according to the invention is preferably accomplished by a form dressing roller with a carrier body, a freestanding cover ring with diamond grains in ceramic, metallic, or resin bond for dressing diamond and CBN grinding wheels in ceramic, Bakelite, metallic, or resin bond as well as conventional grinding wheels with abrasives made of corundum or silicon carbide, with clamping screws that secure the cover ring between the carrier body and an attachment ring and a receiving hole in the center of the carrier body, wherein the cover ring has at least 3 recesses and the cover width of the cover ring is preferably the diamond grain size and/or the rod width.
The rotating form dressing roller according to the invention for path-controlled dressing with a freestanding and discontinuous resin cover made of natural diamond, natural needle diamond, as well as synthetic diamonds in CVD form offers a long service life and results in a high-performance grinding wheel with high actual surface roughness. In CVD (chemical vapour deposition), a few-micron-thick diamond layer is deposited in a vacuum chamber on the substrates, for example, carbide tools. The starting material is typically a gas mixture of methane and hydrogen, with the former serving as a carbon source. The form dressing roller is suitable for dressing all bonded grinding wheels and grinding elements as well as for all diamond or CBN grinding wheels and CBN grinding discs. Similarly to diamond, cubic boron nitride (CBN) can be produced from the hexagonal modification of boron nitride using high pressure-high temperature synthesis. CBN does not completely reach the hardness of diamond, but is, for example, resistant to oxygen at high temperatures.
The form dressing roller according to the invention with large diamond grain sizes in a freestanding diamond cover with discontinuous cut offers a long service life and results in a high-performance grinding wheel with high actual surface roughness. Due to the freestanding diamond cover, it is possible to dress a large variety of complex profiles in one dressing cycle. Due to the discontinuous cut, high actual surface roughness and profile accuracy is produced on the grinding wheel. The form dressing roller according to the invention produces improved and more uniform workpiece quality and, thus, increased process reliability.
Path-controlled form dressing rollers with large carbide sizes and a closed cover produce high coverage ratios due to the cover widths, which results in low actual surface roughness and, thus, in a more closed grinding wheel topography.
The recesses effect a pressure reduction between the form dressing roller and the grinding wheel. The high pressure causes shape defects and profile distortion on the grinding wheel. The recesses facilitate the penetration of the individual diamond grain of the cover of the form dressing roller into the grinding wheel.
A preferred embodiment of the invention is a form dressing roller with a cover ring that has 3 to 12 recesses. By means of the dressing, high actual surface roughness is achieved on the grinding wheel. The high actual surface roughness results in improved grinding action of the grinding wheel.
A particularly preferred embodiment of the invention is a form dressing roller with a cover ring that has 4 to 6 and most preferably 5 recesses. With the number of said recesses on the cover ring of the form dressing roller, an increased actual surface roughness is achieved on the grinding wheel.
A preferred embodiment of the invention is a form dressing roller, wherein the cover ring has a cover height of 10 mm to 20 mm and a usable cover height of 4 mm to 6 mm. Improved profile accuracy is achieved on the grinding wheel by the indicated cover height of the cover ring.
A preferred embodiment of the invention is a form dressing roller, wherein the cover ring has a cover width of 0.4 mm to 2.0 mm and the cover width is the diamond grain size and/or the diamond rod size. Better profile accuracy as well as roundness of the workpiece is achieved by the indicated cover width of the cover ring.
A preferred embodiment of the invention is a form dressing roller, wherein the width of the recesses is 1 mm to 10 mm. The recesses in the form dressing roller effect better penetration of the form dressing roller diamonds into the grinding wheel bond during the dressing operation and, thus, a reduction of dressing forces. With the indicated width of the recesses of the form dressing roller, a good outcome is achieved in the reduction of dressing forces and in the increase of actual surface roughness.
A preferred embodiment of the invention is a form dressing roller, wherein the depth of the recesses corresponds to the usable depth of the cover. With the indicated depth of the recesses of the form dressing roller, a good outcome is achieved in the reduction of dressing forces and in the increase of the actual surface roughness on the grinding wheel.
A preferred embodiment of the invention is a form dressing roller, wherein the diameter of the form dressing roller is 80 mm to 250 mm. With the indicated diameters, form dressing rollers are very effective in increasing the profile accuracy as well as the service life of the form dressing roller.
A preferred embodiment of the invention is a form dressing roller, wherein the diameter of the receiving hole is 8 mm to 120 mm. This range for the receiving hole has proved very effective for better running accuracy has well as easier assembly of the form dressing roller.
A preferred embodiment of the invention is a form dressing roller, wherein the cover ring consists of at least one layer, wherein, in each layer, closely sized individual diamond grains or diamond rods are arranged in a plane perpendicular to the axis of rotation of the form dressing roller according to a predefined setting pattern. In the case of multilayer form dressing rollers, the diamond grains of one layer lie in the gaps between the diamond grains of the other layer and project partially into the other layer such that the circumferential surface geometry of the form dressing roller remains virtually constant as wear progresses. This embodiment of the invention, in particular the cover ring, has proved very effective.
Another accomplishment of the object of the invention is a method for producing the form dressing roller according to the invention, wherein
diamond grains are set according to a predefined setting pattern on a base with an adhesive layer for producing a layer,
bonding powder is added,
the layer is cold pressed and sintered to form the cover, and
the recesses are cut out of the cover.
With the form dressing roller produced according to the method according to the invention, the cover width is the diamond grain size and/or the diamond rod width. The cover ring with diamond grains produced is ground.
Another accomplishment of the object of the invention is a method for producing the form dressing roller according to the invention, wherein
diamond grains are set according to a predefined setting pattern on a base with an adhesive layer for producing a layer, wherein the recesses in the cover are formed,
bonding powder is added, and
the layer is cold pressed and sintered to form the cover.
With the form dressing roller produced according to the method according to the invention, the cover width is the diamond grain size and/or the diamond rod width. The cover ring with diamond grains produced is ground.
A preferred embodiment of the invention is a method for producing the form dressing roller according to the invention, wherein desired layers are stacked with relative displacement and/or rotation of the layers and the layer package is cold pressed and sintered to form the cover.
A preferred embodiment of the invention is a method for producing the form dressing roller according to the invention, wherein the form dressing roller produced is subsequently ground and finished.
The method according to the invention for producing the form dressing roller can be summarized as follows:
a two-part base body is rough turned,
a diamond cover ring is produced,
a diamond cover ring is mounted in the base body,
the complete diamond dressing system (DDS) form dressing roller is finished, balanced, polished, and cut to profile accuracy and running accuracy.
With the form dressing roller according to the invention, there is a freestanding diamond cover ring whose cover width is the diamond grain size and/or the diamond rod width used, with the grain size selected such that natural radii develop on the edges of the cover ring, which radii generate themselves and correspond to the smallest predefined concave radius on the grinding wheel.
As a bond for a form dressing roller according to the invention, a galvanic or sintered bond with high tungsten content is preferably used. The grain size is 1.5 mm, and the usable height of the diamond cover ring in the feed direction is preferably between 5 mm and 10 mm.
Another accomplishment of the object of the invention consists in that the form dressing roller for dressing diamond and CBN grinding wheels is used in ceramic, Bakelite, metallic, or resin bond as well as conventional grinding wheels with abrasives made of corundum or silicon carbide.
The invention is explained in detail in the following with reference to drawings. They depict:
With the form dressing roller according to the invention DDS CUT, in 400 workpieces, a somewhat lower surface roughness of 0.25 μm was obtained than with the prior art form dressing roller DDS of 0.32 μm. The surface roughness was, to be sure, somewhat higher with the prior art form dressing roller DDS; however, with the prior art form dressing roller, only 400 workpieces could be ground with the predefined surface roughness. Consequently, only one dressing cycle of 400 workpieces could be obtained with the prior art form roller DDS.
With the form dressing roller according to the invention DDS CUT, a surface roughness of 0.26 μm was obtained in 600 workpieces and 0.25 μm in 800 workpieces. The surface roughness was virtually constant over the 800 workpieces. The performance was doubled with the form dressing roller according to the invention (DDS CUT). A substantially better constant in the surface roughness of the ground workpieces was obtained. This result was surprising and unexpected.
With the form dressing roller according to the invention DDS CUT, a lower roundness of 1.3 μm was obtained than with the prior art form dressing roller DDS of 2.7 μm. The roundness error was higher with the prior art form dressing roller. With the prior art form dressing roller DDS, only 400 workpieces could be ground with the required accuracy. With the form dressing roller according to the invention DDS CUT, in 600 workpieces, a roundness of 1.3 μm was obtained and in 800 workpieces, a roundness of 1.2 μm was obtained. The roundness was virtually constant over the 800 ground workpieces. The performance as doubled with the form dressing roller according to the invention (DDS CUT). A substantially better constant in the roundness of the ground workpieces was obtained. The roundness results demonstrate that with the form dressing roller according to the invention (DDS CUT), constant roundness values can be achieved over the entire dressing cycle. The grinding wheels dressed with the prior art form dressing roller DDS had to already be dressed again after 400 workpieces since the surface roughness as well as the roundness fell outside the workpiece tolerance. This result was surprising and unexpected.
10 form dressing roller
1 carrier body
2 cover ring/cover/diamond sinter cover
3 recesses
4 clamping screws
5 receiving hole
6 clamping ring
6A inner edge of the clamping ring
6B outer edge of the clamping ring
Y enlargement according to
Z enlargement according to
Number | Date | Country | Kind |
---|---|---|---|
102013108918.6 | Aug 2013 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2014/067545 | 8/18/2014 | WO | 00 |