In industrial settings, control systems are used to monitor and control inventories of industrial and chemical processes, and the like. Typically, the control system performs these functions using field devices distributed at key locations in the industrial process and coupled to the control circuitry in the control room by a process control loop. Field devices generally perform a function, such as sensing a parameter or operating upon the process, in a distributed control or process monitoring system.
Some field devices include a transducer. A transducer is understood to mean either a device that generates an output signal based on a physical input or that generates a physical output based on an input signal. Typically, a transducer transforms an input into an output having a different form. Types of transducers include various analytical equipment, pressure sensors, thermistors, thermocouples, strain gauges, flow transmitters, positioners, actuators, solenoids, indicator lights, and others.
Typically, each field device also includes communication circuitry that is used for communicating with a process control room, or other circuitry, over a process control loop. In some installations, the process control loop is also used to deliver a regulated current and/or voltage to the field device for powering the field device. The process control loop also carries data, either in an analog or digital format.
Traditionally, analog field devices have been connected to the control room by two-wire process control current loops, with each device connected to the control room by a single two-wire control loop. Typically, a voltage differential is maintained between the two wires within a range of voltages from 12-45 volts for analog mode and 9-50 volts for digital mode. Some analog field devices transmit a signal to the control room by controlling the current running through the current loop to a current proportional to the sensed process variable. Other field devices can perform an action under the control of the control room by modulating the magnitude of the current through the loop. In addition to, or in the alternative, the process control loop can carry digital signals used for communication with field devices.
In some installations, wireless technologies have begun to be used to communicate with field devices. Wireless operation simplifies field device wiring and set-up. However, the majority of field devices are hardwired to a process control room and does not use wireless communication techniques.
Industrial process plants often contain hundreds or even thousands of field devices. Many of these field devices contain sophisticated electronics and are able to provide more data than the traditional analog 4-20 mA measurements. For a number of reasons, cost among them, many plants do not take advantage of the extra data that may be provided by such field devices. This has created a need for a wireless adapter for such field devices that can attach to the field devices and transmit data back to a control system or other monitoring or diagnostic system or application via a wireless network.
A process device wireless adapter includes a wireless communications module, a metallic housing, and an antenna. The wireless communications module is configured to communicatively couple to a process device and to a wireless receiver. The metallic housing surrounds the wireless communication module and has a first end and a second end. The first end is configured to attach to the process device. In one embodiment, the metallic shield contacts the housing second end such that the metallic shield and the housing form a continuous conductive surface. The antenna is communicatively coupled to the wireless communications module and separated from the wireless communications module by the metallic shield. Preferably, the wireless communications module illustratively includes a printed circuit board that has a length that is greater than its width.
Embodiments of the present invention generally include a wireless adapter configured to couple to a process device and to communicate to a process control room or a remote monitoring system or diagnostic application running on a computer. Process devices are commonly installed in areas that have limited access. Certain embodiments described herein include wireless adapters having improved form factors. The improved form factors enable wireless adapters to be coupled to process devices in a wide variety of environments, including environments that may not otherwise allow for a wireless adapter to be coupled to a process device. Process devices are also commonly installed in environments having electromagnetic interference (EMI) that may negatively impact the performance or operation of a wireless adapter. Some embodiments described herein include wireless adapters having electrically conductive enclosures that reduce or eliminate negative effects from EMI.
In this example, field device 14 includes circuitry 18 coupled to actuator/transducer 20 and to process control loop 16 via terminal board 21 in housing 23. Field device 14 is illustrated as a process variable generator in that it couples to a process and senses an aspect, such as temperature, pressure, pH, flow, or other physical properties of the process and provides and indication thereof. Other examples of field devices include valves, actuators, controllers, and displays.
Generally field devices are characterized by their ability to operate in the “field” which may expose them to environmental stresses, such as temperature, humidity and pressure. In addition to environmental stresses, field devices must often withstand exposure to corrosive, hazardous and/or even explosive atmospheres. Further, such devices must also operate in the presence of vibration and/or electromagnetic interference. Field devices of the sort illustrated in
Adapter 300 includes an enclosure main body or housing 302 and end cap 304. Housing 302 and cap 304 provide environmental protection for the components included within adapter 300. As can be seen in
In an embodiment, circuit board length 312 and width 314 are adjusted or selected to enable adapter 300 to be coupled to process device 350 in a wide variety of environments. For instance, process device 350 may be in an environment that only has a limited amount of space for the width 314 of a circuit board 310. In such a case, the width 314 of the circuit board is decreased such that it can fit within the environment. The length 312 of the circuit board is correspondingly increased to compensate for the reduced width 314. This enables circuit board 310 to be able to include all of the needed electronic components while having a form factor that fits within the process device environment. In one embodiment, length 312 is greater than width 314 (i.e. the ratio of length to width is greater than one). Embodiments of the present disclosure are not however limited to any particular ratios or dimensions. It should also be noted that the length and/or diameter of housing 302 and cap 304 are illustratively adjusted such that the overall length and diameter/width of wireless adapter 300 is minimized (i.e. the length and diameter of housing 302 and cap 304 are sized only as large as is needed to accommodate the enclosed components).
Wireless communications module 310 can also include transducers for a plurality of wireless communication methods. For example, primary wireless communication could be performed using relatively long distance communication methods, such as GSM or GPRS, while a secondary, or additional communication method could be provided for technicians, or operators near the unit, using for example, IEEE 802.11b or Bluetooth.
Field device 350 further includes power circuitry 352 and an actuator/transducer 354. In one embodiment, power from module 352 energizes controller 356 to interact with actuator/transducer 354 and wireless communications module 310. Power from module 352 may also energize components of wireless adapter 300. Process device controller 356 and wireless communications module 310 illustratively interact with each other in accordance with a standard industry protocol such as 4-20 mA, HART®, FOUNDATION™ Fieldbus, Profibus-PA, Modbus, or CAN. Alternatively, the wireless adapter may be powered by its own power source such as a battery or from other sources such as from energy scavenging.
Gasket 612 fits within an annular ring 613 of enclosure 606. Gasket 612 is in contact with both metallic enclosure 606 and metallic shield 608 such that the three components form a continuous conductive surface. This conductive surface protects wireless communications module 602 from EMI.
Metallic shield 608 has a small hole or aperture 609. Aperture 609 allows for an electrical connection 630 (e.g. a coaxial cable) to pass through shield 608 and to connect antenna 604 to wireless communications module 602. Alternatively, antenna 604 can be formed integrally with module 602, for example in the form of traces routed around an outside edge of a circuit board. In such a case, the integrally formed antenna 604 is passed through shield 608 through aperture 609.
Non-metallic end cap 610 and metallic shield 608 surround antenna 604 and provide physical protection (e.g. environmental protection) for the antenna. Wireless signals are able to pass through non-metallic end cap 610. This allows for antenna 604 to transmit and receive wireless signals. In an embodiment, shield 608 and antenna 604 are designed such that shield 608 is part of the ground plane of antenna 604.
Metallic enclosure 606 has a small hole or aperture 607. Aperture 607 allows for electrical conductors or connections 611 to pass through. Connections 611 illustratively couple wireless adapter 600 to a process device such that communication signals may be transferred between wireless adapter 600 and the process device. Adapter 600 illustratively communicates with a process device in accordance with an industry protocol, such as those set forth above (e.g. HART®). Connections 611 may also supply wireless adapter 600 with electrical power (e.g. current or voltage).
In another embodiment of a wireless adapter, the electronics enclosure (e.g. enclosure 606 in
In yet another embodiment of a wireless adapter, the adapter does not include an end cap (e.g. end cap 610 in
Wireless adapters are illustratively made to meet intrinsic safety requirements and provide flame-proof (explosion-proof) capability. Additionally, wireless adapters optionally include potting within their electronic enclosures to further protect the enclosed electronics. In such a case, the metallic shields of the wireless adapters may include one or more slots and/or holes to facilitate potting flow.
The term “field device” as used herein can be any device which is used in a process control or monitoring system and does not necessarily require placement in the “field.” Field devices include, without limitation, process variable transmitters, digital valve controllers, flowmeters, and flow computers. The device can be located anywhere in the process control system including in a control room or control circuitry. The terminals used to connect to the process control loop refer to any electrical connection and may not comprise physical or discrete terminals. Any appropriate wireless communication circuitry can be used as desired as can any appropriate communication protocol, frequency or communication technique. Power supply components are configured as desired and are not limited to the configurations set forth herein or to any other particular configuration. In some embodiments, the field device includes an address which can be included in any transmissions such that the device can be identified. Similarly, such an address can be used to determine if a received signal is intended for that particular device. However, in other embodiments, no address is utilized and data is simply transmitted from the wireless communication circuitry without any addressing information. In such a configuration, if receipt of data is desired, any received data may not include addressing information. In some embodiments, this may be acceptable. In others, other addressing techniques or identification techniques can be used such as assigning a particular frequency or communication protocol to a particular device, assigning a particular time slot or period to a particular device or other techniques. Any appropriate communication protocol and/or networking technique can be employed including token-based techniques in which a token is handed off between devices to thereby allow transmission or reception for the particular device.
As has been discussed, embodiments of the present invention improve wireless communications with a process device. Certain embodiments reduce electromagnetic interference with wireless adapters by providing a conductive surface that surrounds and protects the enclosed electrical communications modules or components. Antennas of wireless adapters are illustratively placed outside of the conductive surface such that they can communicate wirelessly with a control system. Antennas are optionally environmentally protected by enclosing the antennas with a non-metallic end cap that allows wireless signals to pass through. Additionally, embodiments include improved form factors that enable wireless adapters to be attached to process devices that are in confined environments that may not otherwise permit attachment of a wireless adapter. The form factors are illustratively improved by reducing a width of the wireless adapter and compensating for the width reduction by increasing a length of the adapter.
Although the present invention has been described with reference to particular embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.
The present application is based on and claims the benefit of U.S. provisional patent application Ser. No. 61/073,091, filed Jun. 17, 2008, and U.S. provisional application Ser. No. 61/073,098, filed Jun. 17, 2008, the contents of which are hereby incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
2533339 | Willenborg | Dec 1950 | A |
2640667 | Winn | Jun 1953 | A |
2883489 | Eadie, Jr. et al. | Apr 1959 | A |
3012432 | Moore d al. | Dec 1961 | A |
3218863 | Calvert | Nov 1965 | A |
3229759 | Grover et al. | Jan 1966 | A |
3232712 | Stearns | Feb 1966 | A |
3249833 | Vosteen | May 1966 | A |
3374112 | Danon | Mar 1968 | A |
3557621 | Ferran | Jan 1971 | A |
3568762 | Harbaugh | Mar 1971 | A |
3612851 | Fowler | Oct 1971 | A |
3631264 | Morgan | Dec 1971 | A |
3633053 | Peters | Jan 1972 | A |
3697835 | Satori | Oct 1972 | A |
D225743 | Seltzer | Jan 1973 | S |
3742450 | Weller | Jun 1973 | A |
3808480 | Johnston | Apr 1974 | A |
3881962 | Rubinstein | May 1975 | A |
3885432 | Herzl | May 1975 | A |
3924219 | Braun | Dec 1975 | A |
3931532 | Byrd | Jan 1976 | A |
4005319 | Nilsson et al. | Jan 1977 | A |
4008619 | Alcaide et al. | Feb 1977 | A |
4042757 | Jones | Aug 1977 | A |
4063349 | Passler et al. | Dec 1977 | A |
4084155 | Herzl et al. | Apr 1978 | A |
4116060 | Frederick | Sep 1978 | A |
4125122 | Stachurski | Nov 1978 | A |
4158217 | Bell | Jun 1979 | A |
4168518 | Lee | Sep 1979 | A |
4177496 | Bell et al. | Dec 1979 | A |
4227419 | Park | Oct 1980 | A |
4287553 | Braunlich | Sep 1981 | A |
4295179 | Read | Oct 1981 | A |
4322724 | Grudzinski | Mar 1982 | A |
4322775 | Delatorre | Mar 1982 | A |
4336567 | Anastasia | Jun 1982 | A |
4358814 | Lee et al. | Nov 1982 | A |
4361045 | Iwasaki | Nov 1982 | A |
4370890 | Frick | Feb 1983 | A |
4383801 | Pryor | May 1983 | A |
4389895 | Rud, Jr. | Jun 1983 | A |
4390321 | Langlois et al. | Jun 1983 | A |
4422125 | Antonazzi et al. | Dec 1983 | A |
4422335 | Ohnesorge et al. | Dec 1983 | A |
4434451 | Delatorre | Feb 1984 | A |
4455874 | Paros | Jun 1984 | A |
4458537 | Bell et al. | Jul 1984 | A |
4475047 | Ebert | Oct 1984 | A |
4476853 | Arbogast | Oct 1984 | A |
4485670 | Camarda et al. | Dec 1984 | A |
4490773 | Moffatt | Dec 1984 | A |
4510400 | Kiteley | Apr 1985 | A |
4542436 | Carusillo | Sep 1985 | A |
4562742 | Bell | Jan 1986 | A |
4570217 | Allen et al. | Feb 1986 | A |
4590466 | Wiklund et al. | May 1986 | A |
4639542 | Bass et al. | Jan 1987 | A |
4670733 | Bell | Jun 1987 | A |
4701938 | Bell | Oct 1987 | A |
4704607 | Teather et al. | Nov 1987 | A |
4749993 | Szabo et al. | Jun 1988 | A |
4785669 | Benson et al. | Nov 1988 | A |
4860232 | Lee et al. | Aug 1989 | A |
4875369 | Delatorre | Oct 1989 | A |
4878012 | Schulte et al. | Oct 1989 | A |
4926674 | Fossum et al. | May 1990 | A |
4951174 | Grantham et al. | Aug 1990 | A |
4977480 | Nishihara | Dec 1990 | A |
4982412 | Gross | Jan 1991 | A |
5009311 | Schenk | Apr 1991 | A |
5014176 | Kelleher et al. | May 1991 | A |
5023746 | Epstein | Jun 1991 | A |
5025202 | Ishii et al. | Jun 1991 | A |
5060295 | Borras et al. | Oct 1991 | A |
5079562 | Yarsunas et al. | Jan 1992 | A |
5094109 | Dean et al. | Mar 1992 | A |
D331370 | Williams | Dec 1992 | S |
5168419 | Delatorre | Dec 1992 | A |
5170671 | Miau et al. | Dec 1992 | A |
5194819 | Briefer | Mar 1993 | A |
5223763 | Chang | Jun 1993 | A |
5230250 | Delatorre | Jul 1993 | A |
5233875 | Obermeier et al. | Aug 1993 | A |
D345107 | Williams | Mar 1994 | S |
5313831 | Beckman | May 1994 | A |
5329818 | Frick et al. | Jul 1994 | A |
5412535 | Chao et al. | May 1995 | A |
5492016 | Pinto et al. | Feb 1996 | A |
5495769 | Broden et al. | Mar 1996 | A |
5506757 | Brorby | Apr 1996 | A |
5531936 | Kanatzidis et al. | Jul 1996 | A |
5542300 | Lee | Aug 1996 | A |
5554809 | Tobita et al. | Sep 1996 | A |
5554922 | Kunkel | Sep 1996 | A |
5599172 | McCabe | Feb 1997 | A |
5606513 | Louwagie et al. | Feb 1997 | A |
5610552 | Schlesinger et al. | Mar 1997 | A |
5614128 | Kanatzidis et al. | Mar 1997 | A |
5618471 | Kanatzidis et al. | Apr 1997 | A |
5637802 | Frick et al. | Jun 1997 | A |
5642301 | Warrior et al. | Jun 1997 | A |
5644185 | Miller | Jul 1997 | A |
5656782 | Powell, II et al. | Aug 1997 | A |
5665899 | Willcox | Sep 1997 | A |
5682476 | Tapperson et al. | Oct 1997 | A |
5705978 | Frick et al. | Jan 1998 | A |
5722249 | Miller, Jr. | Mar 1998 | A |
5726846 | Houbre | Mar 1998 | A |
5757608 | Bernot et al. | May 1998 | A |
5764891 | Warrior | Jun 1998 | A |
5787120 | Louagie et al. | Jul 1998 | A |
5793963 | Tapperson et al. | Aug 1998 | A |
5803604 | Pompei | Sep 1998 | A |
5811201 | Skowronski | Sep 1998 | A |
5851083 | Palan | Dec 1998 | A |
5870695 | Brown et al. | Feb 1999 | A |
5872494 | Palan et al. | Feb 1999 | A |
5899962 | Louwagie et al. | May 1999 | A |
5911162 | Denner | Jun 1999 | A |
5929372 | Oudoire et al. | Jul 1999 | A |
5954526 | Smith | Sep 1999 | A |
5957727 | Page, Jr. | Sep 1999 | A |
5978658 | Shoji | Nov 1999 | A |
5992240 | Tsuruoka et al. | Nov 1999 | A |
6013204 | Kanatzidis et al. | Jan 2000 | A |
6038927 | Karas | Mar 2000 | A |
6079276 | Frick et al. | Jun 2000 | A |
6104759 | Carkner et al. | Aug 2000 | A |
6109979 | Garnett | Aug 2000 | A |
6126327 | Bi et al. | Oct 2000 | A |
6127739 | Appa | Oct 2000 | A |
6150798 | Ferry et al. | Nov 2000 | A |
D439177 | Fandrey et al. | Mar 2001 | S |
D439178 | Fandrey et al. | Mar 2001 | S |
D439179 | Fandrey et al. | Mar 2001 | S |
D439180 | Fandrey et al. | Mar 2001 | S |
D439181 | Fandrey et al. | Mar 2001 | S |
D441672 | Fandrey et al. | May 2001 | S |
6236096 | Chang et al. | May 2001 | B1 |
6236334 | Tapperson et al. | May 2001 | B1 |
6255010 | George et al. | Jul 2001 | B1 |
6282247 | Shen | Aug 2001 | B1 |
6295875 | Frick et al. | Oct 2001 | B1 |
6312617 | Kanatzidis et al. | Nov 2001 | B1 |
6326764 | Virtudes | Dec 2001 | B1 |
6338283 | Navarro | Jan 2002 | B1 |
6360277 | Ruckley et al. | Mar 2002 | B1 |
6385972 | Fellows | May 2002 | B1 |
6405139 | Kicinski et al. | Jun 2002 | B1 |
6429786 | Bansemir et al. | Aug 2002 | B1 |
6441747 | Khair et al. | Aug 2002 | B1 |
6457367 | Behm et al. | Oct 2002 | B1 |
6480699 | Lovoi | Nov 2002 | B1 |
6484107 | Roper et al. | Nov 2002 | B1 |
6487912 | Behm et al. | Dec 2002 | B1 |
6504489 | Westfield et al. | Jan 2003 | B1 |
6508131 | Frick | Jan 2003 | B2 |
6510740 | Behm et al. | Jan 2003 | B1 |
6511337 | Fandrey et al. | Jan 2003 | B1 |
D471829 | Dennis et al. | Mar 2003 | S |
D472831 | Dennis et al. | Apr 2003 | S |
6546805 | Fandrey et al. | Apr 2003 | B2 |
6553076 | Huang | Apr 2003 | B1 |
6568279 | Behm et al. | May 2003 | B2 |
6571132 | Davis et al. | May 2003 | B1 |
6574515 | Kirkpatrick et al. | Jun 2003 | B1 |
6593857 | Roper et al. | Jul 2003 | B1 |
6609427 | Schnaare et al. | Aug 2003 | B1 |
6640308 | Keyghobad et al. | Oct 2003 | B1 |
6661220 | Glehr | Dec 2003 | B1 |
6662662 | Nord et al. | Dec 2003 | B1 |
6667594 | Chian | Dec 2003 | B2 |
6680690 | Nilsson et al. | Jan 2004 | B1 |
6690182 | Kelly et al. | Feb 2004 | B2 |
6711446 | Kirkpatrick et al. | Mar 2004 | B2 |
6747573 | Gerlach et al. | Jun 2004 | B1 |
6765968 | Nelson et al. | Jul 2004 | B1 |
6774814 | Hilleary | Aug 2004 | B2 |
6778100 | Schempf | Aug 2004 | B2 |
6792259 | Parise | Sep 2004 | B1 |
6823072 | Hoover | Nov 2004 | B1 |
6838859 | Shah | Jan 2005 | B2 |
6839546 | Hedtke | Jan 2005 | B2 |
6839790 | Barros De Almeida et al. | Jan 2005 | B2 |
6843110 | Deane et al. | Jan 2005 | B2 |
6891477 | Aronstam | May 2005 | B2 |
6891838 | Petite et al. | May 2005 | B1 |
6898980 | Behm et al. | May 2005 | B2 |
6904295 | Yang | Jun 2005 | B2 |
6907383 | Eryurek et al. | Jun 2005 | B2 |
6910332 | Fellows | Jun 2005 | B2 |
6942728 | Caillat et al. | Sep 2005 | B2 |
6984899 | Rice | Jan 2006 | B1 |
6995677 | Aronstam et al. | Feb 2006 | B2 |
6995685 | Randall | Feb 2006 | B2 |
7010294 | Pyotsia et al. | Mar 2006 | B1 |
7036983 | Green et al. | May 2006 | B2 |
7043250 | DeMartino | May 2006 | B1 |
7058542 | Hauhia et al. | Jun 2006 | B2 |
7073394 | Foster | Jul 2006 | B2 |
7088285 | Smith | Aug 2006 | B2 |
7109883 | Trimble et al. | Sep 2006 | B2 |
7116036 | Balasubramaniam et al. | Oct 2006 | B2 |
7136725 | Paciorek et al. | Nov 2006 | B1 |
7173343 | Kugel | Feb 2007 | B2 |
7197953 | Olin | Apr 2007 | B2 |
7233745 | Loechner | Jun 2007 | B2 |
7262693 | Karschnia et al. | Aug 2007 | B2 |
7271679 | Lundberg et al. | Sep 2007 | B2 |
7301454 | Seyfang et al. | Nov 2007 | B2 |
7319191 | Poon et al. | Jan 2008 | B2 |
7329959 | Kim et al. | Feb 2008 | B2 |
7351098 | Gladd et al. | Apr 2008 | B2 |
7518553 | Zhang et al. | Apr 2009 | B2 |
7539593 | Machacek | May 2009 | B2 |
7560907 | Nelson | Jul 2009 | B2 |
7626141 | Rodriguez-Medina et al. | Dec 2009 | B2 |
7726017 | Evans et al. | Jun 2010 | B2 |
7983049 | Leifer et al. | Jul 2011 | B2 |
8005514 | Saito et al. | Aug 2011 | B2 |
8150462 | Guenter et al. | Apr 2012 | B2 |
20010025349 | Sharood et al. | Sep 2001 | A1 |
20020011115 | Frick | Jan 2002 | A1 |
20020029130 | Eryurek et al. | Mar 2002 | A1 |
20020065631 | Loechner | May 2002 | A1 |
20020082799 | Pramanik | Jun 2002 | A1 |
20020095520 | Wettstein et al. | Jul 2002 | A1 |
20020097031 | Cook et al. | Jul 2002 | A1 |
20020105968 | Pruzan et al. | Aug 2002 | A1 |
20020148236 | Bell | Oct 2002 | A1 |
20020163323 | Kasai et al. | Nov 2002 | A1 |
20030032993 | Mickle et al. | Feb 2003 | A1 |
20030042740 | Holder et al. | Mar 2003 | A1 |
20030043052 | Tapperson et al. | Mar 2003 | A1 |
20030079553 | Cain et al. | May 2003 | A1 |
20030083038 | Poon et al. | May 2003 | A1 |
20030097521 | Pfandler et al. | May 2003 | A1 |
20030134161 | Gore et al. | Jul 2003 | A1 |
20030143958 | Elias et al. | Jul 2003 | A1 |
20030167631 | Hallenbeck | Sep 2003 | A1 |
20030171827 | Keyes et al. | Sep 2003 | A1 |
20030199778 | Mickle et al. | Oct 2003 | A1 |
20030204371 | Sciamanna | Oct 2003 | A1 |
20040081872 | Herman et al. | Apr 2004 | A1 |
20040085240 | Faust | May 2004 | A1 |
20040086021 | Litwin | May 2004 | A1 |
20040142733 | Parise | Jul 2004 | A1 |
20040159235 | Marganski et al. | Aug 2004 | A1 |
20040184517 | Westfield et al. | Sep 2004 | A1 |
20040199681 | Hedtke | Oct 2004 | A1 |
20040200519 | Sterzel et al. | Oct 2004 | A1 |
20040203434 | Karschnia et al. | Oct 2004 | A1 |
20040211456 | Brown et al. | Oct 2004 | A1 |
20040214543 | Osone et al. | Oct 2004 | A1 |
20040218326 | Duren et al. | Nov 2004 | A1 |
20040242169 | Albsmeier et al. | Dec 2004 | A1 |
20040249483 | Wojsznis et al. | Dec 2004 | A1 |
20040259533 | Nixon et al. | Dec 2004 | A1 |
20050011278 | Brown et al. | Jan 2005 | A1 |
20050017602 | Arms et al. | Jan 2005 | A1 |
20050023858 | Bingle et al. | Feb 2005 | A1 |
20050029236 | Gambino et al. | Feb 2005 | A1 |
20050040570 | Asselborn | Feb 2005 | A1 |
20050046595 | Blyth | Mar 2005 | A1 |
20050056106 | Nelson et al. | Mar 2005 | A1 |
20050072239 | Longsdorf et al. | Apr 2005 | A1 |
20050074324 | Yoo | Apr 2005 | A1 |
20050076944 | Kanatzidis et al. | Apr 2005 | A1 |
20050082949 | Tsujiura | Apr 2005 | A1 |
20050099010 | Hirsch | May 2005 | A1 |
20050106927 | Goto et al. | May 2005 | A1 |
20050109395 | Seberger | May 2005 | A1 |
20050115601 | Olsen et al. | Jun 2005 | A1 |
20050118468 | Adams et al. | Jun 2005 | A1 |
20050122653 | McCluskey et al. | Jun 2005 | A1 |
20050130605 | Karschnia et al. | Jun 2005 | A1 |
20050132808 | Brown et al. | Jun 2005 | A1 |
20050134148 | Buhler et al. | Jun 2005 | A1 |
20050139250 | DeSteese et al. | Jun 2005 | A1 |
20050146220 | Hamel et al. | Jul 2005 | A1 |
20050153593 | Takayanagi et al. | Jul 2005 | A1 |
20050164684 | Chen et al. | Jul 2005 | A1 |
20050197803 | Eryurek et al. | Sep 2005 | A1 |
20050201349 | Budampati | Sep 2005 | A1 |
20050208908 | Karschnia et al. | Sep 2005 | A1 |
20050222698 | Eryurek et al. | Oct 2005 | A1 |
20050228509 | James | Oct 2005 | A1 |
20050235758 | Kowal et al. | Oct 2005 | A1 |
20050242979 | Hamilton et al. | Nov 2005 | A1 |
20050245291 | Brown et al. | Nov 2005 | A1 |
20050276233 | Shepard et al. | Dec 2005 | A1 |
20050281215 | Budampati et al. | Dec 2005 | A1 |
20050289276 | Karschnia et al. | Dec 2005 | A1 |
20060002368 | Budampati et al. | Jan 2006 | A1 |
20060028327 | Amis | Feb 2006 | A1 |
20060036404 | Wiklund et al. | Feb 2006 | A1 |
20060058847 | Lenz et al. | Mar 2006 | A1 |
20060060236 | Kim | Mar 2006 | A1 |
20060063522 | McFarland | Mar 2006 | A1 |
20060077917 | Brahmajosyula et al. | Apr 2006 | A1 |
20060092039 | Saito et al. | May 2006 | A1 |
20060116102 | Brown et al. | Jun 2006 | A1 |
20060128689 | Gomtsyan et al. | Jun 2006 | A1 |
20060131428 | Wang et al. | Jun 2006 | A1 |
20060142875 | Keyes et al. | Jun 2006 | A1 |
20060148410 | Nelson et al. | Jul 2006 | A1 |
20060181406 | Petite et al. | Aug 2006 | A1 |
20060227729 | Budampati et al. | Oct 2006 | A1 |
20060274644 | Budampati et al. | Dec 2006 | A1 |
20060274671 | Budampati et al. | Dec 2006 | A1 |
20060278023 | Garneyer et al. | Dec 2006 | A1 |
20060282580 | Russell et al. | Dec 2006 | A1 |
20060287001 | Budampati et al. | Dec 2006 | A1 |
20060290328 | Orth | Dec 2006 | A1 |
20070006528 | Diebold et al. | Jan 2007 | A1 |
20070030816 | Kolavennu | Feb 2007 | A1 |
20070030832 | Gonia et al. | Feb 2007 | A1 |
20070039371 | Omata et al. | Feb 2007 | A1 |
20070054630 | Scheible et al. | Mar 2007 | A1 |
20070055463 | Florenz et al. | Mar 2007 | A1 |
20070135867 | Klosterman et al. | Jun 2007 | A1 |
20070229255 | Loechner | Oct 2007 | A1 |
20070233283 | Chen | Oct 2007 | A1 |
20070237137 | McLaughlin | Oct 2007 | A1 |
20070273496 | Hedtke | Nov 2007 | A1 |
20070275755 | Chae et al. | Nov 2007 | A1 |
20070279009 | Kobayashi | Dec 2007 | A1 |
20070280144 | Hodson et al. | Dec 2007 | A1 |
20070280178 | Hodson et al. | Dec 2007 | A1 |
20070280286 | Hodson et al. | Dec 2007 | A1 |
20070280287 | Samudrala et al. | Dec 2007 | A1 |
20070282463 | Hodson et al. | Dec 2007 | A1 |
20070285224 | Karschnia et al. | Dec 2007 | A1 |
20070288204 | Gienke et al. | Dec 2007 | A1 |
20080010600 | Katano | Jan 2008 | A1 |
20080030423 | Shigemoto | Feb 2008 | A1 |
20080054645 | Kulkarni et al. | Mar 2008 | A1 |
20080079641 | Grunig et al. | Apr 2008 | A1 |
20080083446 | Chakraborty et al. | Apr 2008 | A1 |
20080088464 | Gutierrez | Apr 2008 | A1 |
20080114911 | Schumacher | May 2008 | A1 |
20080123581 | Wells et al. | May 2008 | A1 |
20080141769 | Schmidt et al. | Jun 2008 | A1 |
20080268784 | Kantzes et al. | Oct 2008 | A1 |
20080273486 | Pratt et al. | Nov 2008 | A1 |
20080280568 | Kielb et al. | Nov 2008 | A1 |
20080310195 | Seberger et al. | Dec 2008 | A1 |
20090015216 | Seberger et al. | Jan 2009 | A1 |
20090066587 | Hayes et al. | Mar 2009 | A1 |
20090081957 | Sinreich | Mar 2009 | A1 |
20090120169 | Chandler et al. | May 2009 | A1 |
20090145656 | Tschudin | Jun 2009 | A1 |
20090167613 | Hershey et al. | Jul 2009 | A1 |
20090195222 | Lu et al. | Aug 2009 | A1 |
20090200489 | Tappel et al. | Aug 2009 | A1 |
20090250340 | Sasaki et al. | Oct 2009 | A1 |
20090253388 | Kielb et al. | Oct 2009 | A1 |
20090260438 | Hedtke | Oct 2009 | A1 |
20090309558 | Kielb | Dec 2009 | A1 |
20090311975 | Vanderaa et al. | Dec 2009 | A1 |
Number | Date | Country |
---|---|---|
672 368 | Nov 1989 | CH |
1251953 | May 2000 | CN |
1 429 354 | Jul 2003 | CN |
1 442 822 | Sep 2003 | CN |
100386602 | Apr 2005 | CN |
1969238 | May 2007 | CN |
2710211 | Sep 1978 | DE |
3340834 | May 1985 | DE |
3842379 | Jun 1990 | DE |
196 22 295 | May 1996 | DE |
201 07 112 | May 2001 | DE |
101 04 582 | Oct 2001 | DE |
100 41 160 | Mar 2002 | DE |
102 21 931 | May 2002 | DE |
10 2004 020 393 | Nov 2005 | DE |
0 518 916 | Feb 1991 | EP |
0 524 550 | Jan 1993 | EP |
0729294 | Aug 1996 | EP |
0 895 209 | Feb 1999 | EP |
0 945 714 | Sep 1999 | EP |
1 202 145 | May 2002 | EP |
1 192 614 | Jan 2003 | EP |
1 293 853 | Mar 2003 | EP |
1879294 | Jan 2008 | EP |
118699 | Feb 2008 | FI |
1 397 435 | Nov 1975 | GB |
2 403 043 | Jun 2004 | GB |
2-35803 | Feb 1990 | JP |
02067794 | Jul 1990 | JP |
4-335796 | Nov 1992 | JP |
06 199284 | Jul 1994 | JP |
8-125767 | May 1996 | JP |
8-249997 | Sep 1996 | JP |
09-182308 | Jul 1997 | JP |
2001-524226 | Nov 2001 | JP |
2002369554 | Dec 2002 | JP |
2003042881 | Feb 2003 | JP |
2003-051894 | Feb 2003 | JP |
2003051894 | Feb 2003 | JP |
2003134261 | May 2003 | JP |
2003-195903 | Jul 2003 | JP |
2004021877 | Jan 2004 | JP |
2004 146254 | May 2004 | JP |
2004208476 | Jul 2004 | JP |
2004-317593 | Nov 2004 | JP |
2005-122744 | May 2005 | JP |
2005207648 | Jul 2005 | JP |
2006-180603 | Jul 2006 | JP |
2007-200940 | Aug 2007 | JP |
2008-17663 | Jan 2008 | JP |
2008-504790 | Feb 2008 | JP |
2 131 934 | Jun 1999 | RU |
2168062 | May 2001 | RU |
2003128989 | Jan 2007 | RU |
WO 9113417 | Sep 1991 | WO |
WO 9507522 | Mar 1995 | WO |
WO 9953286 | Oct 1999 | WO |
WO 0101742 | Jan 2001 | WO |
WO 0148723 | Jul 2001 | WO |
WO 200151836 | Jul 2001 | WO |
WO 0205241 | Jan 2002 | WO |
WO 03023536 | Mar 2003 | WO |
WO 03089881 | Oct 2003 | WO |
WO 2004038998 | May 2004 | WO |
WO 2004082051 | Sep 2004 | WO |
WO 2004094892 | Nov 2004 | WO |
WO 2005060482 | Jul 2005 | WO |
WO 2005086331 | Sep 2005 | WO |
WO 2006109362 | Oct 2006 | WO |
WO 2007002769 | Jan 2007 | WO |
WO 2007031435 | Mar 2007 | WO |
WO 2007037988 | Apr 2007 | WO |
WO 20080098583 | Aug 2008 | WO |
WO 2009003146 | Dec 2008 | WO |
WO 2009003148 | Dec 2008 | WO |
WO 2009063056 | May 2009 | WO |
Entry |
---|
International Search Report and Written Opinion for application No. PCT/US2009/003611, dated Nov. 4, 2009. |
U.S. Appl. No. 12/855,128, filed Aug. 12, 2010. |
U.S. Appl. No. 12/870,448, filed Aug. 17, 2010. |
Office Action from Chinese patent Application No. 200580006438.X transmitted Jul. 9, 2008. |
Examiner's Consultation from European patent Application No. 05724190.3, dated Jun. 30, 2008. |
The second Office Action from Chinese patent Application No. 2005800142124 filed May 5, 2005. |
First Office Action from Russian patent application No. 2006145434 dated Oct. 5, 2007. |
Office Action from European Application No. 05746241.8, dated Aug. 29, 2007. |
Decision on refusal to grant a patent for invention for Russian patent application No. 2006145434, filed May 5, 2005. |
“Wireless R&D Aims to Boost Traffic,” by M. Moore, InTech with Industrial Computing, Feb. 2002, pp. 40-41. |
“System Checks Faraway Machines' Health,” by J. Strothman, InTech with Industrial Computing, Feb. 2002, pp. 42-43. |
Notification of Transmittal of the International Search Report or the Declaration—PCT/US03/10403 dated Aug. 13, 2003. |
“Wireless Management Toolkit XYR 5000”, by Honeywell International Inc., Phoenix, Arizona, 3 pgs., Oct. 2003. |
“Wireless Analog Input Transmitters XYR 5000”, by Honeywell International Inc., Phoenix, Arizona, 4 pgs., Oct. 2003. |
“Quad Analog Output Module Installation and User's Manual”, by Honeywell International Inc., Phoenix, Arizona, pp. ii, iii, iv and 1-12, Dec. 2003. |
International Search Report and Written Opinion of Application No. PCT/US2005/015848 dated Aug. 10, 2005. |
The third Office Action from Chinese patent Application No. 200580014212.4, dated Dec. 19, 2008. |
“Wireless Dual Analog Input Interface Transmitter Installation and User's Manual”, by Honeywell International Inc., Phoenix, Arizona, pp. ii-vi and 7-43, Dec. 2003. |
“XYR 5000 Wireless Dual Analog Input Interface, Model Selection Guide”, by Honeywell International Inc., Phoenix, Arizona, Dec. 2003. |
“Wireless Measure, Monitor & Control”, by Accutech, 4 pgs. May 2003. |
“Wireless Instrumentation, Multi-Input Field Unit”, by Accutech, 2 pgs., Dec. 2003. |
“Quad Analog Output Module”, by Accutech, 1 pg. Dec. 2003. |
3 pages from Website www.chemicalprocessing.com, Apr. 2004. |
The International Search Report and Written Opinion in Appln No: PCT/US2005/021757 dated Feb. 13, 2006. |
International Search Report for International Application No. PCT/US 03/27561, filed Mar. 9, 2003, dated Jun. 15, 2004. |
2002 Microchip Technology Inc., “Stand-Alone CAN Controller with SPI™ Interface,” pp. 1-75, Mar. 1, 2002. |
Rosemount Reference Manual 00809-0100-4022,Rev AA, Jul. 2002, “Model 4600 Oil & Gas Panel Transmitter,” 65 pages. |
Transmitter Schematic, Sold Jul. 2002, 5 pages. |
4 pages from Website http://content.honeywell.com/imc/eznews/eznews0403/news.htm 2004. |
Notification of Transmittal of the International Search Report and the Written Opinion for the international patent application No. PCT/US2010/047463 dated Dec. 1, 2010. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2006/025206 dated Nov. 10, 2006. |
“Mechatronic Drives in Mobile Hydraulics,” Internet Article, Soncebox News. No. 4, Oct. 2004. |
Office Action from European Application No. 05853808.3, dated Nov. 6, 2007. |
The International Search Report and Written Opinion in Application No. PCT/US2009/003619, dated Sep. 30, 2009. |
USA & Metric Thread Standards http://www.carrlarte.com/Catalog/index.cfm/29425071F0B221118070C1C513906103E0B05543B0B012009083C3B285357474A2D020609090C0015312A36515F554A5B. |
The International Search Report and Written Opinion in Application No. PCT/US2006/035728, dated Jan. 12, 2007. |
“Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority” for PCT/US2008/011451 dated Mar. 30, 2009. |
The International Search Report and Written Opinion in Application No. PCT/US2009/003616, dated Jan. 13, 2010. |
First Examination Report for Indian patent application No. 4676/CHENP/2006 dated Apr. 17, 2009. |
Second Examination Report for Indian patent application No. 4676/CHENP/2006 dated Apr. 8, 2010. |
The International Search Report and Written Opinion in Application No. PCT/US2009/003636, dated Oct. 6, 2009. |
The International Search Report and Written Opinion in Application No. PCT/US2009/003621, dated Sep. 30, 2009. |
Rejection Notice for Japanese patent application No. 2007527282 dated Jul. 22, 2010. |
Summons to attend oral proceedings for the European application No. 05746241.8 dated May 26, 2010. |
The sixth Office Action from Chinese application No. 2005800014212.4, dated Aug. 17, 2010. |
Conclusion and Notification on rehearing for Russian patent application No. 2006145434/09 issued on Sep. 17, 2010. |
The seventh Office Action from Chinese patent application No. 200580014212.4 issued on Jan. 31, 2011. |
The fourth Office Action from Chinese patent application No. 200580014212.4 issued on Jul. 24, 2009. |
Official Letter from Mexican patent application No. PA/A/2006/013488 dated Jun. 25, 2009. |
Notification of Transmittal of the International Search Report and the Written Opinion for International application No. PCT/US2009/062152 dated Jun. 2, 2010. |
First Office Action for Chinese application No. 200780018710.5 dated May 12, 2010. |
First Office Action for Chinese patent application 200680015575.4, filed Jun. 27, 2006. |
Search Report and Written Opinion for international patent application No. PCT/US2009/002476, dated Apr. 21, 2009. |
Third Office Action from Chinese patent application No. 200580006438.X, dated Sep. 28, 2009. |
Second Official Action from Russian patent application No. 2008116682, dated Apr. 13, 2009. |
First Official Action from Russian patent application No. 2006134646, dated Mar. 12, 2008. |
First Official Action from Russian patent application No. 2008103014, dated Jun. 9, 2009. |
First Communication from European patent application No. 06803540.1, dated Jun. 30, 2008. |
Fifth Office Action from Chinese patent application No. 200580014212.4, dated Nov. 13, 2009. |
Second Office Action for Chinese patent application No. 200680015575.4, dated Sep. 25, 2009. |
Third Official Action for Russian patent application No. 2008116682, dated Sep. 11, 2009. |
Notification on Results of Examining the Invention for Patentability from Russian patent application No. 2006145434 dated Aug. 1, 2008. |
First Rejection Notice issued for Japanese patent application No. 2007-527282 dated Dec. 14, 2009. |
Second Office Action from Russian patent application No. 2006145434 dated Apr. 2, 2008. |
First Office Action from Chinese Patent Application No. 2005800142124 dated Mar. 14, 2008. |
First Official Action from Russian patent application 2008116682, dated Jan. 16, 2009. |
Second Office Action from Chinese patent application 200580006438.X, dated Apr. 10, 2009. |
Examination Report of the European Patent Office in Application No. 05724190.3 dated Aug. 1, 2007. |
The Official Communication from European patent application No. 05746241.8 dated Nov. 12, 2010. |
The Minutes in accordance with Rule 124(4) EPC for European application No. 05746241.8 dated Nov. 4, 2010. |
Communication pursuant to Rules 161 and 162 EPC from European patent application No. 09767057.4 dated Jan. 26, 2011. |
Communication pursuant to Rules 161 and 162 EPC from European patent application No. 09767063.2 dated Jan. 28, 2011. |
Communication from corresponding EP application No. 08837236.2 dated Nov. 3, 2010. |
Notification of Transmittal of the International Search Report and the Written Opinion for the international patent application No. PCT/US2010/047444 dated Dec. 10, 2010. |
Third Office Action for Chinese patent application No. 200680015575.4, dated Jun. 2010. |
Fourth Official Action for Russian patent application No. 2008116682, dated Dec. 18, 2009. |
English machine translation of JP2004208476 A. |
“Every Little Helps.” Economist, vol. 278, No. 8469, p. 78, Mar. 18, 2006. |
“Thermal Design and Heat Sink Manufacturing & Testing—Total Thermal and Heat Sink . . . ,” http://www.enertron-inc/enertron-products/integrated-heat-sink.php, Mar. 31, 2006. |
Zahnd et al., “Piezoelectric Windmill: A Novel Solution to Remote Sensing,” Japanese Journal of Applied Physics, v. 44, No. 3, p. L104-L105, 2005. |
“Heat Pipe—Wikipedia, the free encyclopedia,” http://en.wikipedia.org/wiki/Heat—pipe, Mar. 31, 2006. |
“High Power Single PSE Controller With Internal Switch,” Linear Technology LTC4263-1, p. 1-20. |
Office Action from European patent application No. 07837769.4, dated Jul. 14, 2009. |
First Office Action from Australian patent application No. 2005248759, dated Apr. 30, 2009. |
Second Office Action from Australian patent application No. 2005248759, dated Aug. 28, 2009. |
Decision on Refusal to Grant from Russian patent application No. 2006145434 dated Feb. 18, 2011. |
Office Action from related European Application No. EP 09767062.4, dated Jul. 13, 2011, 5pgs. |
Written Opinion and Search Report from the related Singapore patent application No. 201009226-0 dated Mar. 16, 2012. |
Office Action from the related Russian patent application No. 2011101364 dated Feb. 8, 2012. |
Second Office Action for the related Chinese patent application No. 200680035248.5 dated Oct. 19, 2011, 22 pages. |
First Office Action from the related Chinese patent application No. 200980122611.0 dated Nov. 23, 2011. |
Official Action for the related Russian patent application No. 2011101386 transmitted Dec. 23, 2011. |
Official Action from Canadian patent application No. 2563337 dated Sep. 4, 2012. |
The International Search Report from PCT Application No. PCT/US2011/047026, dated Jul. 11, 2011, 4 pgs. |
The Written Opinion from International Search Report from PCT Application No. PCT/US2011/047026, dated Jul. 11, 2011, 8 pgs. |
Office Action from Chinese Patent Application No. 200880110323.9, dated Jan. 29, 2012. |
Written Opinion from Singapore Patent Application No. 201009093-4, dated Feb. 20, 2012. |
Communication Pursuant to Rules 161(1) and 162 EPC for application Serial No. EP 09767062.4, dated Jan. 27, 2011. |
Chinese Office Action from CN200980122835.1, dated Jul. 3, 2012. |
Chinese Office Action from CN200980122761.1, dated Aug. 31, 2012. |
First Office Action from Japanese patent application No. 2011514603, dated Jul. 10, 2012. |
First Office Action from Chinese patent application No. 200980122613.X, dated Aug. 15, 2012. |
Second Office Action from Chinese patent application No. 200980122611.0 dated Aug. 20, 2012. |
Communication Pursuant to Rules 161(1) and 162 Epc for application Serial No. EP 10752246.8, dated May 3, 2012. |
Written Opinion for the related Singapore patent application No. 2010092278 dated Feb. 16, 2012. |
Written Opinion for the related Singapore patent application No. 2010092245 dated Jan. 6, 2012. |
Japanese Office Action from JP 2011-514605, dated Jun. 19, 2012. |
Communication Pursuant to Rules 161(1) and 162 EPC for application Serial No. EP 10765871.8, dated Apr. 27, 2012. |
Office Action from Russian patent application No. 2011101386 dated Apr. 23, 2012, 4 pages. |
Official Action from the corresponding Canadian patent application No. 2726613 dated Jan. 11, 2013. |
Official Action from the related Canadian patent application No. 2726608 dated Dec. 5, 2012. |
Examination Report from the related Singapore patent application No. 2010092278 dated Jan. 7, 2013. |
Examination Report for the related Singapore application No. 201009226-0 dated Oct. 12, 2012. 11 pages. |
Official Action from related Russian patent application No. 2009139488, dated Oct. 8, 2012. 3 pages. |
Invitation to Response to Written Opinion for Singapore application No. 201009093-4 dated Nov. 5, 2012. |
Decision of Rejection (final rejection) for Japanese Patent Application No. 2011-514604, dated Jan. 29, 2013, 8 pages. |
Second Office Action for Chinese Patent Application No. 200980122835.1, dated Mar. 15, 2013, 20 pages. |
Official Action for Canadian Patent Application No. 2,726,601, dated Apr. 12, 2013, 3 pages. |
Second Office Action from Chinese patent application No. 200980I22613.X, dated May 9, 2013. |
First Office Action from the related Japanese patent application No. 2012527988, dated May 14, 2013. |
Office Action from the relaated Japanese patent application No. 2012527994 dated Jun. 11, 2013. |
Third Office Action in Chinese Appln. No. 200980122835.1 dated Sep. 24, 2013. 21 pages including English translation. |
Number | Date | Country | |
---|---|---|---|
20090311976 A1 | Dec 2009 | US |
Number | Date | Country | |
---|---|---|---|
61073091 | Jun 2008 | US | |
61073098 | Jun 2008 | US |