This disclosure relates to characterization of subterranean formations.
Commercial-scale hydrocarbon production from conventional reservoirs and source rocks requires significant capital. It is therefore beneficial to obtain as much accurate data as possible about a formation in order to assess its commercial viability and subsequently, to optimize cost and design of development. Data can be collected before production, such as during drilling and logging applications, and during production. Hydrocarbon assessment can be used to predict production, estimate reserves, and evaluate quality of conventional reservoirs and source rocks. Reservoir characterization and monitoring can aid in preventive action, so that potential or impending problems can be mitigated or prevented proactively in contrast to dealing with problems reactively, after process disruptions have already occurred. Exploration and reservoir management are a few of the many areas that can benefit from comprehensive formation evaluation and reservoir performance monitoring.
This disclosure describes technologies relating to characterization of subterranean formations and fluids disposed within the same. Certain aspects of the subject matter can be implemented as a wellbore tool. The wellbore tool includes a body, multiple moveable arms, multiple housings, multiple actuators, a temperature sensor, a pressure sensor, and a heat source, such as a microwave source or electrical heat source. The body has a longitudinal axis and an outer circumferential surface. The body is configured to be disposed within a wellbore formed in a subterranean formation. At least a portion of each of the moveable arms is positioned within the body. Each housing is positioned external to the body and coupled to a respective moveable arm. Each actuator is positioned within the body and coupled to a respective moveable arm. Each actuator is configured to move the respective moveable arm. The body defines multiple openings on the outer circumferential surface of the body. Each moveable arm is configured to move through a respective opening in response to being moved by the respective actuator. The temperature sensor is disposed on an outer surface of one of the housings. The temperature sensor is configured to measure a temperature of the subterranean formation. The pressure sensor is disposed on an outer surface of one of the housings. The pressure sensor is configured to measure a pressure of the subterranean formation. The heat source (for example, the microwave source) is disposed on an outer surface of one of the housings. In cases where the heat source includes a microwave source, the microwave source is configured to generate microwave radiation.
This, and other aspects, can include one or more of the following features.
The wellbore tool can include a computer positioned within the body. The computer can be configured to communicate with the temperature sensor, the pressure sensor, and the microwave source. The computer can include a processor and a computer-readable medium storing instructions executable by the processor to perform operations. The operations can include sending a signal to a first actuator to initiate movement of the respective moveable arm to which the first actuator is coupled. The operations can include receiving temperature data from the temperature sensor. The operations can include receiving pressure data from the pressure sensor. The operations can include transmitting the received temperature data, the received pressure data, or both of the received temperature data and the received pressure data to a surface location via a wireline coupled to the body.
Each moveable arm can be segmented into a first segment, a second segment, and a third segment. Each moveable arm can include a first joint, a second joint, and a third joint. The first joint can couple the first segment and the second segment. The first segment can be coupled to a respective actuator. The second joint can couple the second segment, the third segment, and a respective housing. The third joint can couple the third segment and the body. The third joint can be fixed in location relative to the body.
Each actuator can be configured to move the first segment of the respective moveable arm in a direction parallel to the longitudinal axis of the body. In response to the first segment moving in the direction parallel to the longitudinal axis of the body, the second segment, the third segment, the first joint, the second joint, and the third joint can be cooperatively configured to move the respective housing in a direction perpendicular to the longitudinal axis of the body.
The temperature sensor and the pressure sensor can be disposed on the same housing.
The temperature sensor can be configured to contact a wall of the wellbore and measure a force exerted by the wall of the wellbore onto the temperature sensor during contact. The pressure sensor can be configured to contact the wall of the wellbore and measure a force exerted by the wall of the wellbore onto the pressure sensor during contact. The microwave source can be configured to contact the wall of the wellbore and measure a force exerted by the wall of the wellbore onto the microwave source during contact.
The temperature sensor can be one of multiple temperature sensors, and each temperature sensor can be disposed on a different housing.
The pressure sensor can be one of multiple pressure sensors, and each pressure sensor can be disposed on a different housing.
The temperature sensor, the pressure sensor, and the microwave source can be disposed on the same housing.
Certain aspects of the subject matter can be implemented as a method. A temperature sensor is radially extended from a body of a wellbore tool disposed within a wellbore formed in a subterranean formation. A wall of the wellbore is contacted with the temperature sensor. A temperature of the subterranean formation is measured by the temperature sensor. A pressure of the subterranean formation is measured by a pressure sensor of the wellbore tool. A microwave source is radially extended from the body of the wellbore tool. The wall of the wellbore is contacted with the microwave source. Microwave radiation is generated by the microwave source within the wellbore. Data corresponding to the measured temperature, the measured pressure, or both the measured temperature and the measured pressure is transmitted to a surface location external to the wellbore.
This, and other aspects, can include one or more of the following features.
The body of the wellbore tool can be centralized within the wellbore by radially extending multiple temperature sensors and multiple pressure sensors from the body of the wellbore tool and contacting the wall of the wellbore with the temperature sensors and the pressure sensors.
Generating microwave radiation can occur after contacting the wall of the wellbore with the microwave source. Generating microwave radiation by the microwave source can occur until the measured temperature is substantially equal to a threshold temperature, after which generating microwave radiation ceases.
Measuring the temperature of the subterranean formation can continue during generation of microwave radiation and for a time period after the generation of microwave radiation ceases.
Measuring the pressure of the subterranean formation can continue during generation of microwave radiation and for the time period after the generation of microwave radiation ceases.
Certain aspects of the subject matter can be implemented as a computer-implemented method. A temperature data point is received from a temperature sensor disposed within a wellbore formed in a subterranean formation. A pressure data point is received from a pressure sensor disposed within the wellbore. A force data point is received from the temperature sensor. It is determined whether the temperature sensor is in contact with a wall of the wellbore based on the force data point received from the temperature sensor. A force data point is received from the pressure sensor. It is determined whether the pressure sensor is in contact with a wall of the wellbore based on the force data point received from the pressure sensor. A force data point is received from a microwave source disposed within the wellbore. It is determined whether the microwave source is in contact with the wall of the wellbore based on the force data point received from the microwave source. A start signal is sent to the microwave source to begin generation microwave radiation after determining that the microwave source is in contact with the wall of the wellbore. A stop signal is sent to the microwave source to cease generating microwave radiation after determining that a temperature measured by the temperature sensor is substantially equal to a threshold temperature based on the received temperature data point. The received temperature data, the received pressure data point, or both of the received temperature data point and the received pressure data point are transmitted to a surface location external to the wellbore.
This, and other aspects, can include one or more of the following features.
The received temperature data point and the received pressure data point can be linked to a time point. The steps of receiving temperature data, receiving pressure data, and linking the received temperature data point and the received pressure data point to the time point can be repeated to generate a set of transient temperature data and a set of transient pressure data. The set of transient temperature data, the set of transient pressure data, or both sets of transient temperature data and transient pressure data can be transmitted to the surface location external to the wellbore.
At least one of a fluid composition, fluid density, fluid phase tortuosity, thermal conductivity, diffusivity, heat capacity, water saturation, water salinity, wettability, or permeability of the subterranean formation can be determined based on the set of transient temperature data, the set of transient pressure data, or both sets of transient temperature data and transient pressure data.
An extend signal can be sent to an actuator coupled to a moveable arm coupled to a housing, thereby causing the actuator to extend the moveable arm to initiate contact between the housing and the wall of the wellbore. The temperature sensor, the pressure sensor, and the microwave source can be disposed on an outer surface of the housing.
A retract signal can be sent to the actuator, thereby causing the actuator to retract the moveable arm to release contact between the housing and the well of the wellbore.
The details of one or more implementations of the subject matter of this disclosure are set forth in the accompanying drawings and the description. Other features, aspects, and advantages of the subject matter will become apparent from the description, the drawings, and the claims.
This disclosure relates to characterization of subterranean formations and fluids disposed within the same. A formation evaluation (FE) tool includes sensors (such as temperature sensors and pressure sensors) and a heating source (such as a microwave source). The FE tool can be disposed within a wellbore formed in a subterranean formation. Each of the sensors and the heating source can extend radially to contact a wall of the wellbore. The extending capability of these components allows them to function as centralizers to centralize the FE tool and also as calipers for characterizing wellbore size and shape. Once the FE tool is positioned at a desired location within the wellbore, the microwave source generates microwave radiation. The generated microwave radiation induces rotation in polar molecules present in the subterranean formation (for example, water), which produces thermal energy in a process known as dielectric heating. In some implementations, once a desired temperature is reached, the microwave source is turned off. Data (such as temperature and pressure data) are collected during this process and also for a time period after the microwave source is turned off. The transient temperature and pressure data can be processed to determine one or more properties of the subterranean formation, such as fluid composition and density (water, hydrocarbon, or both), fluid phase tortuosity, thermal conductivity, water saturation, water salinity, wettability, and permeability (such as vertical, horizontal, and diagonal permeability).
The subject matter described in this disclosure can be implemented in particular implementations, so as to realize one or more of the following advantages. The FE tool can allow for quick and non-invasive measurements that can be used for in situ formation characterization. Observing transient behavior (for example, transient temperature behavior) of the subterranean formation can shed light on various properties of both the formation itself and the fluids contained within the formation. Multiple properties can be determined based on a single set of transient temperature data. The FE tool can be used multiple times at varying depths within the wellbore, which can allow for a comprehensive evaluation of the subterranean formation. Transient temperature measurements and analysis can be combined with transient pressure measurements and analysis along with other formation evaluation measurements for a more comprehensive characterization of subterranean formations.
In some implementations, the well 100 is a gas well that is used in producing hydrocarbon gas (such as natural gas) from the subterranean zones of interest 110 to the surface 106. While termed a “gas well,” the well need not produce only dry gas, and may incidentally or in much smaller quantities, produce liquid including oil, water, or both. In some implementations, the well 100 is an oil well that is used in producing hydrocarbon liquid (such as crude oil) from the subterranean zones of interest 110 to the surface 106. While termed an “oil well,” the well not need produce only hydrocarbon liquid, and may incidentally or in much smaller quantities, produce gas, water, or both. In some implementations, the production from the well 100 can be multiphase in any ratio. In some implementations, the production from the well 100 can produce mostly or entirely liquid at certain times and mostly or entirely gas at other times. For example, in certain types of wells it is common to produce water for a period of time to gain access to the gas in the subterranean zone. The concepts herein, though, are not limited in applicability to gas wells, oil wells, or even production wells, and could be used in wells for producing other gas or liquid resources or could be used in injection wells, disposal wells, observation wells, or other types of wells used in placing fluids into the Earth.
The wellbore of the well 100 is typically, although not necessarily, cylindrical. All or a portion of the wellbore is lined with a tubing, such as casing. In some implementations, the casing is omitted or ceases in the region of the subterranean zone of interest 110. This portion of the well 100 without casing is often referred to as “open hole.”
The well 100 can include a wellhead (not shown) that defines an attachment point for other equipment to be attached to the well 100. The well 100 can include a FE tool 200 residing in the wellbore, for example, at a depth that is nearer to subterranean zone 110 than the surface 106. The FE tool 200 is of a type configured in size and robust construction for installation within a well 100. The FE tool 200 can be made to fit in and, in certain instances, seal to a wall of the well 100 (for example, the wellbore wall).
Additionally, the construction of the components of the FE tool 200 are configured to withstand the impacts, scraping, and other physical challenges the FE tool 200 will encounter while being passed hundreds of feet/meters or even multiple miles/kilometers into and out of the well 100. For example, the FE tool 200 can be disposed in the well 100 at a depth of up to 20,000 feet (6,096 meters). Beyond just a rugged exterior, this encompasses having certain portions of any electronics being ruggedized to be shock resistant and remain fluid tight during such physical challenges and during operation. Additionally, the FE tool 200 is configured to withstand and operate for extended periods of time at the pressures and temperatures experienced in the well 100, which temperatures can exceed 400 degrees Fahrenheit (° F.)/205 degrees Celsius (° C.) and pressures over 2,000 pounds per square inch gauge (psig), and while submerged in the well fluids (gas, water, or oil as examples). Finally, the FE tool 200 can be configured to interface with one or more of the common deployment systems, such as coiled tubing (that is, not-jointed tubing, but rather a continuous, unbroken and flexible tubing formed as a single piece of material), or wireline with an electrical conductor (that is, a monofilament or multifilament wire rope with one or more electrical conductors, sometimes called e-line) and thus have a corresponding connector (for example, a jointed tubing connector, coiled tubing connector, or wireline connector).
The FE tool 200 can operate in a variety of downhole conditions of the well 100. For example, the initial pressure within the well 100 can vary based on the type of well, depth of the well 100. In some examples, the pressure in the well 100 proximate a bottomhole location is much higher than atmospheric, where the pressure in the well 100 is above about 14.7 pounds per square inch absolute (psia), or about 101.3 kiloPascal (kPa). The FE tool 200 can operate in above atmospheric well pressures, for example, at well pressure between 14.7 psia (101.3 kPa) and 5,000 psia (34,474 kPa).
The FE tool 200 includes multiple moveable arms 210a. At least a portion of each moveable arm 210a is positioned within the body of the FE tool 200. The FE tool 200 includes multiple housings 210b. Each housing 210b is positioned external to the body of the FE tool 200. Each housing 210b is coupled to a respective one of the moveable arms 210a. The FE tool 200 includes multiple actuators 210c. Each actuator 210c is positioned within the body of the FE tool 200. Each actuator 210c is coupled to a respective one of the moveable arms 210a and is configured to move the respective moveable arm 210a. The body of the FE tool 200 defines multiple openings 210d on its outer circumferential surface 201b. Each moveable arm 210a is configured to move through a respective one of the openings 210d in response to being moved by the respective actuator 210c. The moveable arms 210a, housings 210b, and actuators 210c are described in more detail later.
The FE tool 200 includes a temperature sensor 212, a pressure sensor 214, and a heat source 216. The temperature sensor 212 is disposed on an outer surface of one of the housings 210b. The pressure sensor 214 is disposed on an outer surface of one of the housings 210b. The heat source 216 is disposed on an outer surface of one of the housings 210b. In some implementations, the FE tool 200 includes multiple temperature sensors 212, and each temperature sensor 212 is disposed on a different one of the housings 210b. In some implementations, the FE tool 200 includes multiple pressure sensors 214, and each pressure sensor 214 is disposed on a different one of the housings 210b. In some implementations, the FE tool 200 includes multiple heat sources 216, and each heat source 216 is disposed on a different one of the housings 210b. Any combination of the temperature sensor 212, the pressure sensor 214, and the heat source 216 can be disposed on any one of the housings 210b. For example, a temperature sensor 212 and a pressure sensor 214 can be disposed on one or more of the housings 210b. For example, a temperature sensor 212, a pressure sensor 214, and a heat source 216 can be disposed on one or more of the housings 210b.
The temperature sensor 212 is configured to measure temperature. For example, the temperature sensor 212 is configured to measure temperature within the wellbore. For example, the temperature sensor 212 is configured to measure temperature of the subterranean formation. For example, the temperature sensor is configured to measure a temperature of a region of the subterranean formation near the wellbore. In some implementations, the temperature sensor 212 is configured to detect changes in temperature with a response time of less than 1 second. In some implementations, the temperature sensor 212 is configured to measure temperature with an accuracy of within 2 degrees Fahrenheit (° F.), within 1° F., within 0.5° F., within 0.2° F., or within 0.1° F. In some implementations, the temperature sensor 212 provides temperature measurements with a resolution of 0.01° F. or 0.005° F. In some implementations, the temperature sensor 212 is configured to contact a wall of the wellbore and measure a force exerted by the wall of the wellbore onto the temperature sensor 212 during contact.
The pressure sensor 214 is configured to measure a pressure. For example, the pressure sensor 214 is configured to measure a pressure within the wellbore. For example, the pressure sensor 214 is configured to measure a pressure within the subterranean formation. In some implementations, the pressure sensor 214 is configured to detect changes in pressure with a response time of less than 1 second. In some implementations, the pressure sensor 214 is configured to measure pressure within the wellbore with an accuracy of within 5 pounds per square inch (psi), within 4 psi, within 3 psi, within 2 psi, or within 1 psi. In some implementations, the pressure sensor 214 provides pressure measurements with a resolution of 0.1 psi, 0.05 psi, or 0.01 psi. In some implementations, the pressure sensor 214 is configured to contact a wall of the wellbore and measure a force exerted by the wall of the wellbore onto the pressure sensor 214 during contact. The pressure sensor 214 can include substantially the same features as the temperature sensor 212 for measuring force during contact with the wellbore wall.
The heat source 216 is configured to generate heat. For example, the heat source 216 can include a microwave source or an electric heater. In some implementations, the heat source 216 is a microwave source 216 that generates microwave radiation. In some implementations, the microwave source 216 is configured to contact a wall of the wellbore and measure a force exerted by the wall of the wellbore onto the heat source 216 during contact. The microwave source 216 can include substantially the same features as the temperature sensor 212 and the pressure sensor 214 for measuring force during contact with the wellbore wall.
The actuators 210c can extend the moveable arms 210a radially far enough from the body of the FE tool 200, such that the outer surfaces of the housings 210b (and in turn, the temperature sensor(s) 210b, the pressure sensor(s) 220b, and the microwave source(s) 230b) are in contact with the wellbore wall. In this way, the moveable arms 210a, the housings 210b, and the actuators 210c can work together to provide centralizing functionality to the FE tool 200 (that is, centering the FE tool 200 within the wellbore).
In some implementations, the FE tool 200 includes a computer 500 that is positioned within the body of the FE tool 200. The computer 500 is configured to communicate with the temperature sensor(s) 212, the pressure sensor(s) 214, and the microwave source(s) 216. In some implementations, the computer 500 wirelessly communicates with the temperature sensor(s) 212, the pressure sensor(s) 214, and the microwave source(s) 216. In some implementations, the computer 500 is physically connected to the temperature sensor(s) 212, the pressure sensor(s) 214, and the microwave source(s) 216, for example, by wires, and the computer 500 communicates to the temperature sensor(s) 212, the pressure sensor(s) 214, and the microwave source(s) 216 through the wired connections.
The computer 500 includes a processor and a computer-readable medium that stores instructions executable by the processor to perform various operations. The various operations include sending a signal to at least one of the actuators 210c to initiate movement of the respective moveable arm 210a. The various operations include receiving temperature data from the temperature sensor(s) 212. The various operations include receiving pressure data from the pressure sensor(s) 214. The various operations include transmitting the received temperature data, the received pressure data, or both of the received temperature data and the received pressure data to a surface location (106), for example, via a wireline coupled to the body of the FE tool 200. The computer 500 is shown in more detail in
In some implementations, the FE tool 200 does not include the computer 500. In such implementations, the FE tool 200 is controlled by an external computer located at the surface 106 (external to the wellbore) that is connected to the FE tool 200, for example, by a wireline.
In some implementations, the FE tool 200 includes a borehole fluid sensor 250. The borehole fluid sensor 250 can include a borehole fluid temperature sensor and a borehole fluid pressure sensor. While the temperature sensor(s) 212 and pressure sensor(s) 214 are configured to contact the wellbore wall and measure temperature and pressure, respectively, of a region of the subterranean formation near the wellbore, the borehole fluid temperature sensor and the borehole fluid pressure sensor of the borehole fluid sensor 250 measure the temperature and pressure of the fluid residing within the wellbore. Although shown in
The actuator 210c is configured to move the moveable arm 210a. In some implementations, the actuator 210c is configured to move the first segment 2101 in a direction parallel to the longitudinal axis 201a of the FE tool 200. For example, in the orientation shown in
In some implementations, the microwave source 216 continuously generates microwave radiation until a threshold temperature is reached. In some implementations, the microwave source 216 intermittently generates microwave radiation (for example, in pulses). Throughout the microwave heat generating process and for a time period after the microwave heat stops being generated, the temperature sensor(s) 212 and the pressure sensor(s) 214 measure temperature and pressure, respectively. The gathered transient temperature and pressure data can be processed to determine one or more characteristics of the subterranean formation (for example, permeability and wettability), one or more characteristics of the fluid within the subterranean formation (for example, composition and salinity), or both.
At step 304, a wall of the wellbore is contacted with the temperature sensor 214. In some implementations, a force on the temperature sensor 212 is measured at step 304. Measuring the force on the temperature sensor 212 can help verify whether the temperature sensor 212 is in contact with the wall of the wellbore at step 304.
At step 306, a temperature of the subterranean formation is measured by the temperature sensor 212.
At step 308, a pressure of the subterranean formation is measured by a pressure sensor of the wellbore tool (for example, the pressure sensor 214 of the FE tool 200). In some implementations, the pressure sensor 214 is radially extended from the body of the FE tool 200. The pressure sensor 214 can be extended by moving a moveable arm (for example, the moveable arm 210a) with an actuator (for example, the actuator 210c). The actuator 210c can be controlled by a computer (for example, the computer 500) to move the moveable arm 210a, thereby radially extending the pressure sensor 214.
At step 310, a microwave source (for example, the microwave source 216) is radially extended from the body of the wellbore tool (200). The microwave source 216 can be extended at step 310 by moving a moveable arm (for example, the moveable arm 210a) with an actuator (for example, the actuator 210c). The actuator 210c can be controlled by a computer (for example, the computer 500) to move the moveable arm 210a, thereby radially extending the microwave source 216 at step 310.
At step 312, the wall of the wellbore is contacted with the microwave source 216. In some implementations, a force on the microwave source 216 is measured at step 312. Measuring the force on the microwave source 216 can help verify whether the microwave source 216 is in contact with the wall of the wellbore at step 312.
At step 314, microwave radiation is generated by the microwave source 216 within the wellbore. In some implementations, the microwave radiation generated by the microwave source 216 is continually generated at step 312 until a threshold temperature is reached. The threshold temperature is less than the cracking temperature of crude oil. In some implementations, the microwave radiation generated by the microwave source 216 is intermittently generated at step 312 (for example, pulses) until the threshold temperature is reached.
At step 316, data corresponding to the measured temperature (at step 306), the measured pressure (at step 308), or both the measured temperature and the measured pressure is transmitted to a surface location external to the wellbore (for example, the surface 106).
At step 404, a pressure data point is received from a pressure sensor (for example, the pressure sensor 214) disposed within the wellbore.
At step 406, a force data point is received from the temperature sensor 212.
At step 408, it is determined whether the temperature sensor 212 is in contact with a wall of the wellbore based on the force data point received from the temperature sensor 212 at step 406.
In some implementations, a force data point is received from the pressure sensor 214, and it is determined whether the pressure sensor 214 is in contact with the wall of the wellbore based on the force data point received from the pressure sensor 214.
At step 410, a force data point is received from a microwave source (for example, the microwave source 216) disposed within the wellbore.
At step 412, it is determined whether the microwave source 216 is in contact with the wall of the wellbore based on the force data point received from the microwave source 216 at step 410.
At step 414, a start signal is sent to the microwave source 216 to begin generating microwave radiation after determining that the microwave source 216 is in contact with the wall of the wellbore at step 412.
At step 416, a stop signal is sent to the microwave source 216 to cease generating microwave radiation. In some implementations, the stop signal is sent at step 416 after determining that a temperature measured by the temperature sensor 212 is substantially equal to a threshold temperature based on the temperature data point received from the temperature sensor 212 at step 402. In some implementations, the method 400 alternates between steps 414 and 416 (generating pulses of microwave radiation).
At step 418, the received temperature data point (step 402), the received pressure data point (step 404), or both of the received temperature data point and the received pressure data point are transmitted to a surface location external to the wellbore (for example, the surface 106).
At step 454, a geometry of the wellbore is measured. The geometry of the wellbore can be measured at step 454 by detecting the extent of protrusions of the housings 210b from the body of the FE tool 200. The geometry of the wellbore can be measured at step 454 by detecting the amount of force exerted by the wellbore wall onto the housings 210b (or the sensors 212, 214 and the microwave source 216).
At step 456, contact between the wellbore wall and the microwave source 216 is evaluated. If it is determined that the contact between the wellbore wall and the microwave source 216 is poor (for example, detection of low force exerted by the wellbore wall onto the microwave source 216), then the method proceeds to step 451 in which the position of the FE tool 200 is adjusted. Adjusting the position of the FE tool 200 at step 451 can include retracting the sensors (212, 214) and the microwave source 216 back toward the body of the FE tool 200 and then rotating the FE tool 200, moving the FE tool 200 to another location within the wellbore, or both. The method then returns to step 452.
If it is determined that the contact between the wellbore wall and the microwave source 216 is acceptable, then the method proceeds to step 458. At step 458, contact between the wellbore wall and the sensors (212, 214) is evaluated. If at step 458, it is determined that contact between one or more of the sensors (212, 214) and the wellbore wall is poor, then data collected from those sensors (at step 464) can be disregarded and omitted from analysis (at step 466).
At step 460, borehole fluid conditions (for example, temperature and pressure) are measured (for example, by the borehole fluid sensor 250). At step 460, borehole fluid properties are calculated based on the measured borehole fluid conditions. For example, fluid density can be determined by measuring a pressure gradient of the borehole fluid within the wellbore.
At step 461, formation conditions (for example, temperature and pressure) are measured (for example, by the temperature sensors 212 and pressure sensors 214).
At step 462, a microwave radiation generation sequence is performed. Microwave radiation can be generated, for example, by the microwave source 216. In some implementations, the microwave radiation generation sequence includes a constant generation of microwave radiation. In some implementations, the microwave radiation generation sequence includes an intermittent generation (for example, pulsing) of microwave radiation. The microwave radiation generation sequence can be performed until a threshold temperature is reached in the subterranean formation in response to the generated microwave radiation.
At step 463, temperature and pressure are measured (for example, by temperature sensors 212 and pressure sensors 214, respectively). Temperature and pressure can be recorded measured step 462, during step 462, and after step 462. The temperature measured at step 463 can be used to determine when microwave radiation generation at step 462 ceases. Temperature and pressure can be measured repeatedly at step 463.
At step 464, the temperatures and pressures measured at step 463 are stored (for example, in the memory of the computer system 500), transmitted to a surface location external to the wellbore (for example, the surface 106), or both. The temperatures and pressures can be associated with time instances, such that the temperatures and pressures are recorded as transient temperature data and transient pressure data, respectively.
At steps 466a and 466b, an analysis of the transient data is conducted. The analysis at step 466a includes an analysis of the transient temperature data. Temperature related formation properties can be calculated from analyzing the transient temperature data at step 466a. The analysis at step 466b includes an analysis of the transient pressure data. Pressure related formation properties can be calculated from analyzing the transient pressure data at step 466b. In some implementations, formation properties can be calculated from analyzing the transient temperature data and the transient pressure data together.
At step 468, the analyses conducted at steps 466a and 466b are integrated for a comprehensive formation evaluation of the subterranean formation. For example, the findings from the analyses conducted at steps 466a and 466b can be integrated with other data obtained about the subterranean formation (for example, from drilling and sampling).
One or more of the steps of method 300, method 400, or method 450 can occur simultaneously. One or more of the steps of method 300, method 400, or method 450 can be repeated. As one example, step 306 can be repeated throughout implementation of method 300 and during any of the other steps of method 300. As another example, step 402 can be repeated throughout implementation of method 400 and during any of the other steps of method 400. In some implementations, step 306 is repeated for a time period after microwave generation at step 314 has ceased (cooling phase). In some implementations, step 402 is repeated for a time period after step 416. In implementations where any of the steps of method 300 are repeated, step 316 can include transmitting a set of data obtained throughout the method 300. In implementations where any of the steps of method 400 are repeated, step 418 can include transmitting a set of data obtained throughout the method 400.
The illustrated computer 502 is intended to encompass any computing device such as a server, desktop computer, laptop/notebook computer, one or more processors within these devices, or any other suitable processing device, including physical or virtual instances (or both) of the computing device. Additionally, the computer 502 can include a computer that includes an input device, such as a keypad, keyboard, touch screen, or other device that can accept user information, and an output device that conveys information associated with the operation of the computer 502, including digital data, visual, audio information, or a combination of information.
The computer 502 includes a processor 505. Although illustrated as a single processor 505 in
The computer 502 includes a memory 507 that can hold data for the computer 502 or other components (or a combination of both) that can be connected to the network. Although illustrated as a single memory 507 in
The memory 507 stores computer-readable instructions executable by the processor 505 that, when executed, cause the processor 505 to perform operations, such as transmitting a signal to an actuator (for example, the actuator 210c) to move a respective moveable arm (for example, the moveable arm 210a). The computer 502 can also include a power supply 514. The power supply 514 can include a rechargeable or non-rechargeable battery that can be configured to be either user- or non-user-replaceable. The power supply 514 can be hard-wired. There may be any number of computers 502 associated with, or external to, a computer system containing computer 502, each computer 502 communicating over the network. Further, the term “client,” “user,” “operator,” and other appropriate terminology may be used interchangeably, as appropriate, without departing from this specification. Moreover, this specification contemplates that many users may use one computer 502, or that one user may use multiple computers 502.
In some implementations, the computer 502 includes an interface 504. Although not shown in
In some implementations, the computer 502 includes a database that can hold data for the computer 502 or other components (or a combination of both) that can be connected to the network. The database can be an integral component of the computer 502 or external to the computer 502.
The difference in the maximum temperatures measured by T1 and T2 (ΔT, the reduction of amplitude of T2 in comparison to T1) may indicate an effective volume of fluids (related to rock porosity and saturation) conducting heat from sensor T1 to sensor T2. The time delay between the maximum temperatures measured by T1 and T2 (Δt, the lag of T2 measuring a max temperature in comparison to T1) may indicate a difference in heat conductivity (which is proportional to rock permeability and wettability) of the regions from T1 to T2.
While this specification contains many specific implementation details, these should not be construed as limitations on the scope of what may be claimed, but rather as descriptions of features that may be specific to particular implementations. Certain features that are described in this specification in the context of separate implementations can also be implemented, in combination, in a single implementation. Conversely, various features that are described in the context of a single implementation can also be implemented in multiple implementations, separately, or in any suitable sub-combination. Moreover, although previously described features may be described as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can, in some cases, be excised from the combination, and the claimed combination may be directed to a sub-combination or variation of a sub-combination.
As used in this disclosure, the terms “a,” “an,” or “the” are used to include one or more than one unless the context clearly dictates otherwise. The term “or” is used to refer to a nonexclusive “or” unless otherwise indicated. The statement “at least one of A and B” has the same meaning as “A, B, or A and B.” In addition, it is to be understood that the phraseology or terminology employed in this disclosure, and not otherwise defined, is for the purpose of description only and not of limitation. Any use of section headings is intended to aid reading of the document and is not to be interpreted as limiting; information that is relevant to a section heading may occur within or outside of that particular section.
As used in this disclosure, the term “about” or “approximately” can allow for a degree of variability in a value or range, for example, within 10%, within 5%, or within 1% of a stated value or of a stated limit of a range.
As used in this disclosure, the term “substantially” refers to a majority of, or mostly, as in at least about 50%, 60%, 70%, 80%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.9%, 99.99%, or at least about 99.999% or more.
Values expressed in a range format should be interpreted in a flexible manner to include not only the numerical values explicitly recited as the limits of the range, but also to include all the individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range is explicitly recited. For example, a range of “0.1% to about 5%” or “0.1% to 5%” should be interpreted to include about 0.1% to about 5%, as well as the individual values (for example, 1%, 2%, 3%, and 4%) and the sub-ranges (for example, 0.1% to 0.5%, 1.1% to 2.2%, 3.3% to 4.4%) within the indicated range. The statement “X to Y” has the same meaning as “about X to about Y,” unless indicated otherwise. Likewise, the statement “X, Y, or Z” has the same meaning as “about X, about Y, or about Z,” unless indicated otherwise.
Particular implementations of the subject matter have been described. Other implementations, alterations, and permutations of the described implementations are within the scope of the following claims as will be apparent to those skilled in the art. While operations are depicted in the drawings or claims in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed (some operations may be considered optional), to achieve desirable results. In certain circumstances, multitasking or parallel processing (or a combination of multitasking and parallel processing) may be advantageous and performed as deemed appropriate.
Moreover, the separation or integration of various system modules and components in the previously described implementations should not be understood as requiring such separation or integration in all implementations, and it should be understood that the described components and systems can generally be integrated together or packaged into multiple products.
Accordingly, the previously described example implementations do not define or constrain the present disclosure. Other changes, substitutions, and alterations are also possible without departing from the spirit and scope of the present disclosure.
Number | Name | Date | Kind |
---|---|---|---|
3981187 | Howell | Sep 1976 | A |
8904857 | Tustin et al. | Dec 2014 | B2 |
20080185142 | Pelletier | Aug 2008 | A1 |
20110005745 | Goodwin | Jan 2011 | A1 |
20120131996 | Anish | May 2012 | A1 |
20120312530 | Pope et al. | Dec 2012 | A1 |
20130020128 | Calleri | Jan 2013 | A1 |
20190085687 | Noui-Mehidi | Mar 2019 | A1 |
20190129056 | Rasmus et al. | May 2019 | A1 |
20200003599 | Theuveny et al. | Jan 2020 | A1 |
20200088020 | Batarseh et al. | Mar 2020 | A1 |
Number | Date | Country |
---|---|---|
WO 2008150825 | Dec 2008 | WO |
Entry |
---|
Allied Horizontal Wireline Services, “Multi-arm Caliper MAC 40,” retrieved from URL <https://horizontalwireline.com/wp-content/uploads/2014/09/AHWS-Multi-Arm_Caliper.pdf>, retrieved on Feb. 12, 2020, available on or before 2014, 2 pages. |
Bristow et al., “Measurement of Soil Thermal Properties with a Dual-Probe Heat-Pulse Technique,” Soil Sci. Soc. Am. J. 58:1288-1294, Sep. 1994, 7 pages. |
glossary.oilfield.slb.com [online], “Distributed temperature log,” retrieved from URL <https://www.glossary.oilfield.slb.com/en/Terms/d/distributed_temperature_log.aspx>, retrieved on Feb. 12, 2020, available on or before 2020, 1 page. |
Meter Environment [online], “Thermal Properties: Why the TEMPOS method outperforms other techniques,” retrieved from URL <https://www.metergroup.com/environment/articles/thermal-properties-transient-methodoutperforms-techniques/>, retrieved on Feb. 12, 2020, avaiable on or before 2020, 6 pages. |
Mohamed et al., “Leak Detection by Temperature and Noise Logging,” Society of Petroleum Engineers, Abu Dhabi International Petroleum Conference and Exhibition, Nov. 11-14, 2012, Abu Dhabi, UAE, abstract retrieved from URL <https://archive.is/20130628032024/http://www.onepetro.org/mslib/servlet/onepetropreview#selection-191.0-191.96>, retrieved on Feb. 12, 2020, 2 pages, Abstract Only. |
Schlumberger, “PS Platform, Production services platform,” retrieved from URL <https://www.slb.com/-/media/files/production/product-sheet/ps_platform_ps.ashx>, retrieved on Feb. 12, 2020, available on or before 2014, 3 pages. |
PCT International Search Report and Written Opinion in International Appln. No. PCT/US2021/029896, dated Aug. 10, 2021, 16 pages. |
Number | Date | Country | |
---|---|---|---|
20210340859 A1 | Nov 2021 | US |