Formation of signal paths to increase maximum signal-carrying frequency of a fluid-based switch

Information

  • Patent Grant
  • 6894237
  • Patent Number
    6,894,237
  • Date Filed
    Monday, April 14, 2003
    21 years ago
  • Date Issued
    Tuesday, May 17, 2005
    19 years ago
Abstract
A switch has a channel plate that defines at least a portion of a number of cavities. A switching fluid is held within one or more of the cavities, and is movable between at least first and second switch states in response to forces that are applied to the switching fluid. A plurality of planar signal conductors extend from edges of the switch to within the one or more cavities holding the switching fluid, and are in wetted contact with the switching fluid. Corners in paths of the planar signal conductors may be limited to greater than 90°, about 135°, or equal to or greater than 135°. In one embodiment, signal path corners are so limited, but the planar signal conductors do not extend to the edges of the switch. In another embodiment, the one or more cavities holding the switching fluid are at least partly defined by a bent switching fluid channel.
Description
BACKGROUND

Fluid-based switches such as liquid metal micro switches (LIMMS) have proved to be valuable in environments where fast, clean switching is desired. The maximum signal-carrying frequencies of these switches depend on many factors, including 1) the time required to propagate any signals that cause the switch's switching fluid to assume a desired state, and 2) the time required to propagate a signal through the switch's current state. Any development that decreases either or both of these times is desirable.


SUMMARY OF THE INVENTION

One aspect of the invention is embodied in a switch. The switch comprises a channel plate that defines at least a portion of a number of cavities. A switching fluid is held within one or more of the cavities, and is movable between at least first and second switch states in response to forces that are applied to the switching fluid. A plurality of planar signal conductors extend from edges of the switch to within the one or more cavities holding the switching fluid. The planar signal conductors are in wetted contact with the switching fluid.


Another aspect of the invention is embodied in a device comprising a substrate and a switch. The switch is mounted on the substrate and is electrically coupled to one or more conductive elements on the substrate. The switch is configured as described in the preceding paragraph.


Yet another aspect of the invention is also embodied in a switch. The switch comprises a channel plate that defines at least a portion of a number of cavities. A switching fluid is held within one or more of the cavities, and is movable between at least first and second switch states in response to forces that are applied to the switching fluid. The switch further comprises a plurality of surface contacts, and a plurality of conductive vias that are electrically coupled to corresponding ones of the plurality of surface contacts. A plurality of planar signal conductors extend from corresponding ones of the conductive vias to within the one or more cavities holding the switching fluid. The planar signal conductors are in wetted contact with the switching fluid. A path taken by one of the planar signal conductors comprises a corner, and the tightest corner in a path taken by any of the planar signal conductors is about 135°.


Other embodiments of the invention are also disclosed.





BRIEF DESCRIPTION OF THE DRAWINGS

Illustrative embodiments of the invention are illustrated in the drawings, in which:



FIG. 1 is a plan view of a first exemplary embodiment of a switch;



FIG. 2 illustrates an elevation of the layers of the switch shown in FIG. 1;



FIG. 3 is a plan view of the channel plate of the switch shown in FIG. 1;



FIG. 4 is a plan view showing a correspondence of elements in/on the channel plate and substrate of the switch shown in FIG. 1;



FIG. 5 is a plan view of the substrate of the switch shown in FIG. 1;



FIGS. 6-9 illustrate various ways to couple the switch shown in FIG. 1 to a substrate;



FIG. 10 is a plan view illustrating a first alternate embodiment of the switch shown in FIG. 1; and



FIG. 11 is a plan view illustrating a second alternate embodiment of the switch shown in FIG. 1.





DETAILED DESCRIPTION OF THE INVENTION


FIGS. 1-5 illustrate a first exemplary embodiment of a switch 100. The switch comprises a channel plate 102 that defines at least a portion of a number of cavities 300, 302, 304, 306, 308 (FIG. 3). One or more of the cavities may be at least partly defined by a switching fluid channel 310 in the channel plate 102. The remaining portions of the cavities 300-308, if any, may be defined by a substrate 104 that is mated and sealed to the channel plate 102. See FIG. 2.


The channel plate 102 and substrate 104 may be sealed to one another by means of an adhesive, gasket, screws (providing a compressive force), and/or other means. One suitable adhesive is Cytop™ (manufactured by Asahi Glass Co., Ltd. of Tokyo, Japan). Cytop™ comes with two different adhesion promoter packages, depending on the application. When a channel plate 102 has an inorganic composition, Cytop™'s inorganic adhesion promoters should be used. Similarly, when a channel plate 102 has an organic composition, Cytop™'s organic adhesion promoters should be used.


As shown in FIG. 3, a switching fluid 312 (e.g., a conductive liquid metal such as mercury) is held within the cavity 304 defined by the switching fluid channel 310. The switching fluid 312 is movable between at least first and second switch states in response to forces that are applied to the switching fluid 312. FIG. 3 illustrates the switching fluid 312 in a first state. In this first state, there is a gap in the switching fluid 312 in front of cavity 302. The gap is formed as a result of forces that are applied to the switching fluid 312 by means of an actuating fluid 314 (e.g., an inert gas or liquid) held in cavity 300. In this first state, the switching fluid 312 wets to and bridges contact pads 106 and 108 (FIGS. 1 & 4). The switching fluid 312 may be placed in a second state by decreasing the forces applied to it by means of actuating fluid 314, and increasing the forces applied to it by means of actuating fluid 316. In this second state, a gap is formed in the switching fluid 312 in front of cavity 306, and the gap shown in FIG. 3 is closed. In this second state, the switching fluid 312 wets to and bridges contact pads 108 and 110 (FIGS. 1 & 4).


As shown in FIGS. 1 & 5, a plurality of planar signal conductors 112, 114, 116 extend from edges of the switch 100 to within the cavity 304 defined by the switching fluid channel 310. When the switch 100 is assembled, these conductors 112-116 are in wetted contact with the switching fluid 312. The ends of the planar signal conductors 112-116 to which the switching fluid 312 wets may be plated (e.g., with Gold or Copper), but need not be. The ends of the planar signal conductors 112-116 that extend to the edges of the switch 100 may extend exactly to the edge of the switch 100, or may extend to within a short distance of the exact edge of the switch 100 (as shown in FIG. 1). For purposes of this description, the conductors 112-116 are considered to extend to a switch's “edges” in either of the above cases.


Ideally, the switch 100 would be mounted to a substrate 600 (e.g., a printed circuit board) as shown in FIG. 6, such that the switch's planar signal conductors 112-116 are coplanar with the conductive elements on a substrate 600 to which they need to be electrically coupled. In this manner, coplanar wirebonds 602, 604 (such as ribbon wirebonds) could be used to couple the switch's planar signal conductors 112-116 to the substrate's conductive elements.


Use of the planar signal conductors 112-116 for signal propagation eliminates the routing of signals through vias, and thus eliminates up to four right angles that a signal would formerly have had to traverse (i.e., a first right angle where a switch input via 120 is coupled to a substrate, perhaps at a solder ball or other surface contact; a second right angle where the switch input via 120 is coupled to internal switch circuitry 114; a third right angle where the internal switch circuitry 116 is coupled to a switch output via 122; and a fourth right angle where the switch output via 122 is coupled to the substrate). Elimination of these right angles eliminates a cause of unwanted signal reflection, and reductions in unwanted signal reflection tend to result in signals propagating more quickly through the affected signal paths.


Realizing that not all environments may be conducive to edge coupling of the switch 100, the switch 100 may also be provided with a plurality of conductive vias 118, 120, 122 for electrically coupling the planar signal conductors 112-116 to a plurality of surface contacts such as solder balls (see solder balls 800, 806 in FIG. 8, for example). Alternately, the vias 118-122 could couple the planar signal conductors 112-116 to other types of surface contacts (e.g., pins, or pads of a land grid array (LGA)).


To further increase the speed at which signals may propagate through the switch 100, a number of planar ground conductors 124, 126, 128 may be formed adjacent either side of each planar signal conductor 112-116 (FIGS. 1 & 5). The planar signal and ground conductors 112-116, 124-128 form a planar coaxial structure for signal routing, and 1) provide better impedance matching, and 2) reduce signal induction at higher frequencies.


As shown in FIGS. 1 & 5, a single ground conductor may bound the sides of more than one of the signal conductors 112-116 (e.g., ground conductor 124 bounds sides of signal conductors 112 and 116). Furthermore, the ground conductors 124-128 may be coupled to one another within the switch 100 for the purpose of achieving a uniform and more consistent ground. If the substrate 104 comprises alternating metal and insulating layers 200-206 (FIG. 2), then the ground conductors 124-128 may be formed in a first metal layer 206, and may be coupled to a V-shaped trace 506 in a second metal layer 202 by means of a number of conductive vias 500, 502, 504 formed in an insulating layer 204.


Similarly to the planar signal conductors 112-116, the planar ground conductors 124-128 may extend to the edges of the switch 100 so that they may be coupled to a printed circuit board or other substrate via wirebonds. However, again realizing that not all environments may be conducive to edge coupling of the switch 100, the ground conductors 124-128 may also be coupled to a number of conductive vias 508 that couple the ground conductors 124-128 to a number of surface contacts of the switch 100.


In the prior description, it was disclosed that switching fluid 312 could be moved from one state to another by forces applied to it by an actuating fluid 314, 316 held in cavities 300, 308. However, it has yet to be disclosed how the actuating fluid 314, 316 is caused to exert a force (or forces) on switching fluid 312. One way to cause an actuating fluid (e.g., actuating fluid 314) to exert a force is to heat the actuating fluid 314 by means of a heater resistor 400 that is exposed within the cavity 300 that holds the actuating fluid 314. As the actuating fluid 314 is heated, it tends to expand, thereby exerting a force against switching fluid 312. In a similar fashion, actuating fluid 316 can be heated by means of a heater resistor 402. Thus, by alternately heating actuating fluid 314 or actuating fluid 316, alternate forces can be applied to the switching fluid 312, causing it to assume one of two different switching states. Additional details on how to actuate a fluid-based switch by means of heater resistors are described in U.S. Pat. No. 6,323,447 of Kondoh et al. entitled “Electrical Contact Breaker Switch, Integrated Electrical Contact Breaker Switch, and Electrical Contact Switching Method”, which is hereby incorporated by reference.


Another way to cause an actuating fluid 314 to exert a force is to decrease the size of the cavities 300, 302 that hold the actuating fluid 314. FIG. 10 therefore illustrates an alternative embodiment of the switch 100, wherein heater resistors 400, 402 are replaced with a number of piezoelectric elements 1000, 1002, 1004, 1006 that deflect into cavities 302, 306 when voltages are applied to them. If voltages are alternately applied to the piezoelectric elements 1000, 1002 exposed within cavity 302, and the piezoelectric elements 1004, 1006 exposed within cavity 306, alternate forces can be applied to the switching fluid 312, causing it to assume one of two different switching states. Additional details on how to actuate a fluid-based switch by means of piezoelectric pumping are described in U.S. patent application Ser. No. 10/137,691 of Marvin Glenn Wong filed May 2, 2002 and entitled “A Piezoelectrically Actuated Liquid Metal Switch”, which is hereby incorporated by reference.


Although the above referenced patent and patent application disclose the movement of a switching fluid by means of dual push/pull actuating fluid cavities, a single push/pull actuating fluid cavity might suffice if significant enough push/pull pressure changes could be imparted to a switching fluid from such a cavity.


To enable faster cycling of the afore-mentioned heater resistors 400, 402 or piezoelectric elements 1000-1006, each may be coupled between a pair of planar conductors 130/126, 132/128 that extend to a switch's edges. As shown in FIG. 1, some of these planar conductors 126, 128 may be the planar ground conductors that run adjacent to the planar signal conductors 112-116. If desired, conductive vias 510, 512 may be provided for coupling these conductors 130, 132 to surface contacts on the switch 100.


Although the switching fluid channel 310 shown in FIGS. 1, 3 & 4 comprises a bend, the channel need not. A switch 1100 comprising a straight switching channel 1102 is shown in FIG. 11 (other elements shown in FIG. 11 correspond to elements shown in FIG. 1, and are referenced by the prime (′) of the reference numbers used in FIG. 1—i.e., 102′-132′, 300′, 308′, 400′ & 402′). If a bent switching fluid channel 310 is used, one planar signal conductor 114 may present within the cavity 304 defined by the switching fluid channel 310 “at” the bend, and additional ones of the planar signal conductors 112, 116 may present within the cavity 304 “on either side of” the bend. An advantage provided by the bent switching fluid channel 310 is that signals propagating into and out of the switching fluid 312 held therein need not take right angle turns. Thus, in an ideal connection environment, the switch 100 illustrated in FIGS. 1-5 can be used to eliminate all right angle turns in signal paths, thereby reducing signal reflections, increasing the speed at which signals can propagate through the switch, and ultimately increasing the maximum signal-carrying frequency of the switch 100.


To make it easier to couple signal routes to the switch 100, it may be desirable to group signal inputs on one side of the switch, and group signal outputs on another side of the switch. If this is done, it is preferable to limit the tightest corner taken by a path of any of the planar signal conductors to greater than 90°, or more preferably to about 135°, and even more preferably to equal to or greater than 135° (i.e., to reduce the number of signal reflections at conductor corners).


By way of example, the switch 100 illustrated in FIGS. 1-5 may be coupled to the substrate (e.g., a printed circuit board) of a larger device as shown in any of FIGS. 6-9.


In FIG. 6, the switch 100 is mechanically coupled to a substrate 600 by means of an adhesive, solder, socket or other means. However, all electrical connections between the switch 100 and substrate 600 are made by wirebonds 602, 604 (e.g., ribbon wirebonds) that are coplanar with 1) the planar signal conductors 112-116 of the switch 100, and 2) conductive elements on the substrate 600.


In FIG. 7, the switch 100 is mechanically coupled to a substrate 700 by means of an adhesive, solder, socket or other means, but electrical connections between the switch 100 and conductive elements on the substrate 700 (e.g., traces on the substrate) are made by means of wirebonds (e.g., ribbon wirebonds).


In the configurations shown in FIGS. 6 & 7, it should be noted that the conductive vias 118-122, 508-512 shown in FIGS. 1 & 5 could be eliminated to keep signal inductance to a minimum, thereby increasing the maximum signal-carrying frequency of the switch 100.


In FIG. 8, the switch 100 is mechanically coupled to a substrate 812 by means of solder balls (e.g., of a ball grid array (BGA)), but electrical connections between the switch 100 and conductive elements on the substrate 812 are made by a combination of solder balls 800-806 and wirebonds 808, 810. Preferably, at least the planar signal conductors 112-116 are coupled to conductive elements on the substrate 812 by means of wirebonds 808, 810. However, the planar conductors 126-132 coupled to heater resistors 400, 402 (or the piezoelectric elements 1000-1006 shown in FIG. 10) and/or the planar ground conductors 124-128 may be coupled to conductive elements on the substrate 812 via solder balls 800-806.


In FIG. 9, the switch 100 is both mechanically and electrically coupled to the substrate 900 via surface contacts (e.g., solder balls 902, 904, 906, 908). In this configuration, the planar conductors 112-116, 124-132 need not extend to the edges of the switch 100. However, the switch 100 can still benefit from signal paths with acute angle corners and/or a bent switching fluid channel 310, even though signals will need to propagate into the switch 100 via right angle turns at solder balls 902-908 and conductive vias 118-122, 508-512.


It is envisioned that the switch mounting configurations shown in FIGS. 6 & 7 will likely be used in applications where higher signal-carrying frequencies are needed, and the switch mounting configurations illustrated in FIGS. 8 & 9 will likely be used in applications where somewhat more moderate signal-carrying frequencies are sufficient.


Although the above description has been presented in the context of the switches 100, 1100 shown and described herein, application of the inventive concepts is not limited to the fluid-based switches shown herein.


While illustrative and presently preferred embodiments of the invention have been described in detail herein, it is to be understood that the inventive concepts may be otherwise variously embodied and employed, and that the appended claims are intended to be construed to include such variations, except as limited by the prior art.

Claims
  • 1. A switch, comprising: a) a channel plate defining at least a portion of a number of cavities; b) a switching fluid, held within one or more of the cavities, that is movable between at least first and second switch states in response to forces that are applied to the switching fluid; and c) a plurality of planar signal conductors extending from edges of the switch to within the one or more cavities holding the switching fluid, and in wetted contact with the switching fluid.
  • 2. The switch of claim 1, wherein: a) the one or more cavities holding the switching fluid are at least partly defined by a bent switching fluid channel in the channel plate; b) one of the planar signal conductors presents within the cavity defined by the bent switching fluid channel at the bend; and c) different ones of the planar signal conductors present within the cavity defined by the bent switching fluid channel on either side of the bend.
  • 3. The switch of claim 2, wherein the tightest corner in a path taken by any of the planar signal conductors is about 135°; the switch further comprising planar ground conductors adjacent either side of each planar signal conductor.
  • 4. The switch of claim 1, wherein a path taken by one of the planar signal conductors comprises a corner, and wherein a tightest corner in a path taken by any of the planar signal conductors is greater than 90°.
  • 5. The switch of claim 4, wherein the tightest corner in a path taken by any of the planar signal conductors is about 135°.
  • 6. The switch of claim 4, wherein the tightest corner in a path taken by any of the planar signal conductors is equal to or greater than 135°.
  • 7. The switch of claim 1, further comprising planar ground conductors adjacent either side of each planar signal conductor.
  • 8. The switch of claim 1, further comprising: a) a plurality of surface contacts; and b) a plurality of conductive vias that electrically couple ones of the planar signal conductors to the surface contacts.
  • 9. The switch of claim 1, further comprising: a) an actuating fluid to apply said forces to the switching fluid, held within one or more of the cavities; b) one or more heater resistors, exposed within cavities holding the actuating fluid; and c) a pair of planar conductors extending from edges of the switch to each heater resistor.
  • 10. The switch of claim 9, wherein one of the planar conductors coupled to each heater resistor is a planar ground conductor that runs adjacent to one of the planar signal conductors.
  • 11. The switch of claim 1, further comprising: a) an actuating fluid to apply said forces to the switching fluid, held within one or more of the cavities; b) one or more piezoelectric elements, exposed within cavities holding the actuating fluid; and c) a pair of planar conductors extending from edges of the switch to each piezoelectric element.
  • 12. The switch of claim 11, wherein one of the planar conductors coupled to each piezoelectric element is a planar ground conductor that runs adjacent to one of the planar signal conductors.
  • 13. A switch, comprising: a) a channel plate defining at least a portion of a number of cavities; b) a switching fluid, held within one or more of the cavities, that is movable between at least first and second switch states in response to forces that are applied to the switching fluid; c) a plurality of surface contacts; d) a plurality of conductive vias, electrically coupled to corresponding ones of the plurality of surface contacts; and e) a plurality of planar signal conductors extending from corresponding ones of the conductive vias to within the one or more cavities holding the switching fluid, and in wetted contact with the switching fluid; wherein a path taken by one of the planar signal conductors comprises a corner, and wherein a tightest corner in a path taken by any of the planar signal conductors is about 135°.
  • 14. The switch of claim 13, wherein: a) the one or more cavities holding the switching fluid are at least partly defined by a bent switching fluid channel in the channel plate; b) one of the planar signal conductors presents within the cavity defined by the bent switching fluid channel at the bend; and c) different ones of the planar signal conductors present within the cavity defined by the bent switching fluid channel on either side of the bend.
  • 15. The switch of claim 13, wherein the tightest corner in a path taken by any of the planar signal conductors is equal to or greater than 135°.
  • 16. The switch of claim 13, further comprising planar ground conductors adjacent either side of each planar signal conductor.
  • 17. A device, comprising: a) a substrate; and b) a switch, mounted on the substrate and electrically coupled to one or more conductive elements on the substrate, comprising: i) a channel plate defining at least a portion of a number of cavities; ii) a switching fluid, held within one or more of the cavities, that is movable between at least first and second switch states in response to forces that are applied to the switching fluid; and iii) a plurality of planar signal conductors extending from edges of the switch to within the one or more cavities holding the switching fluid, and in wetted contact with the switching fluid.
  • 18. The device of claim 17, further comprising wirebonds coupling the plurality of planar signal conductors to conductive elements on the substrate.
  • 19. The device of claim 18, wherein the switch further comprises: a) an actuating fluid to apply said forces to the switching fluid, held within one or more of the cavities; b) one or more heater resistors, exposed within cavities holding the actuating fluid; c) a plurality of conductive vias; and d) a pair of planar conductors extending between each heater resistor and ones of said conductive vias; the device further comprising solder balls coupling the conductive vias to conductive elements on the substrate.
  • 20. The device of claim 18, wherein the switch further comprises: a) an actuating fluid to apply said forces to the switching fluid, held within one or more of the cavities; b) one or more heater resistors, exposed within cavities holding the actuating fluid; and c) a pair of planar conductors extending from edges of the switch to each heater resistor;
  • 21. The device of claim 18, wherein the switch further comprises: a) an actuating fluid to apply said forces to the switching fluid, held within one or more of the cavities; b) one or more piezoelectric elements, exposed within cavities holding the actuating fluid; c) a plurality of conductive vias; and d) a pair of planar conductors extending between each piezoelectric element and ones of said conductive vias;
  • 22. The device of claim 18, wherein the switch further comprises: a) an actuating fluid to apply said forces to the switching fluid, held within one or more of the cavities; b) one or more piezoelectric elements, exposed within cavities holding the actuating fluid; and c) a pair of planar conductors extending from edges of the switch to each piezoelectric element;
  • 23. The device of claim 18, wherein the planar signal conductors of the switch are coplanar with conductive elements on the substrate to which they are electrically coupled.
  • 24. The device of claim 18, wherein the switch further comprises planar ground conductors adjacent either side of each planar signal conductor.
  • 25. The device of claim 24, further comprising wirebonds coupling the planar ground conductors to conductive elements on the substrate.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is related to U.S. patent application Ser. No. 10/414,343 of Marvin Glenn Wong, et al. filed on the Apr. 14, 2003 entitled “Bent Switching Fluid Cavity” (which is hereby incorporated by reference).

US Referenced Citations (79)
Number Name Date Kind
2312672 Pollard, Jr. Mar 1943 A
2564081 Schilling Aug 1951 A
3430020 Tomkewitsch et al. Feb 1969 A
3529268 Rauterberg Sep 1970 A
3539743 Winter Nov 1970 A
3600537 Twyford Aug 1971 A
3639165 Rairden, III Feb 1972 A
3657647 Beusman et al. Apr 1972 A
4103135 Gomez et al. Jul 1978 A
4200779 Zakurdaev et al. Apr 1980 A
4238748 Goullin et al. Dec 1980 A
4245886 Kolodzey et al. Jan 1981 A
4336570 Brower Jun 1982 A
4419650 John Dec 1983 A
4434337 Becker Feb 1984 A
4475033 Willemsen et al. Oct 1984 A
4505539 Auracher et al. Mar 1985 A
4582391 Legrand Apr 1986 A
4628161 Thackrey Dec 1986 A
4652710 Karnowsky et al. Mar 1987 A
4657339 Fick Apr 1987 A
4742263 Harnden, Jr. et al. May 1988 A
4786130 Georgiou et al. Nov 1988 A
4797519 Elenbaas Jan 1989 A
4804932 Akanuma et al. Feb 1989 A
4988157 Jackel et al. Jan 1991 A
5278012 Yamanaka et al. Jan 1994 A
5415026 Ford May 1995 A
5502781 Li et al. Mar 1996 A
5644676 Blomberg et al. Jul 1997 A
5675310 Wojnarowski et al. Oct 1997 A
5677823 Smith Oct 1997 A
5751074 Prior et al. May 1998 A
5751552 Scanlan et al. May 1998 A
5828799 Donald Oct 1998 A
5841686 Chu et al. Nov 1998 A
5849623 Wojnarowski et al. Dec 1998 A
5874770 Saia et al. Feb 1999 A
5875531 Nellissen et al. Mar 1999 A
5886407 Polese et al. Mar 1999 A
5889325 Uchida et al. Mar 1999 A
5912606 Nathanson et al. Jun 1999 A
5915050 Russell et al. Jun 1999 A
5972737 Polese et al. Oct 1999 A
5994750 Yagi Nov 1999 A
6021048 Smith Feb 2000 A
6180873 Bitko Jan 2001 B1
6201682 Mooij et al. Mar 2001 B1
6207234 Jiang Mar 2001 B1
6212308 Donald Apr 2001 B1
6225133 Yamamichi et al. May 2001 B1
6278541 Baker Aug 2001 B1
6304450 Dibene, II et al. Oct 2001 B1
6320994 Donald et al. Nov 2001 B1
6323447 Kondoh et al. Nov 2001 B1
6351579 Early et al. Feb 2002 B1
6356679 Kapany Mar 2002 B1
6373356 Gutierrez et al. Apr 2002 B1
6396012 Bloomfield May 2002 B1
6396371 Streeter et al. May 2002 B2
6408112 Bartels Jun 2002 B1
6446317 Figueroa et al. Sep 2002 B1
6453086 Tarazona Sep 2002 B1
6470106 McClelland et al. Oct 2002 B2
6487333 Fouquet Nov 2002 B2
6501354 Gutierrez et al. Dec 2002 B1
6512322 Fong et al. Jan 2003 B1
6515404 Wong Feb 2003 B1
6516504 Schaper Feb 2003 B2
6559420 Zarev May 2003 B1
6633213 Dove Oct 2003 B1
6678943 Feng et al. Jan 2004 B1
6689976 Dove et al. Feb 2004 B1
6717495 Kondoh et al. Apr 2004 B2
20020037128 Burger, et al. Mar 2002 A1
20020146197 Yoon-Joong Oct 2002 A1
20020150323 Naoki et al. Oct 2002 A1
20020168133 Saito Nov 2002 A1
20030035611 Shi Feb 2003 A1
Foreign Referenced Citations (12)
Number Date Country
312 051 May 1919 DE
0593836 Apr 1994 EP
2418539 Sep 1979 FR
2458138 Dec 1980 FR
2667396 Apr 1992 FR
36-18575 Oct 1961 JP
47-21645 Oct 1972 JP
62-276838 Dec 1987 JP
63-294317 Dec 1988 JP
8-125487 May 1996 JP
9-161640 Jun 1997 JP
WO99-46624 Sep 1999 WO
Related Publications (1)
Number Date Country
20040200705 A1 Oct 2004 US