This invention relates to the field of testing formations surrounding an earth borehole with a formation testing tool and, more particularly, to improvements in formation sampling, pressure measurement, and other measurements.
Existing well logging devices can provide useful information about hydraulic properties of formations, such as pressures and fluid flow rates, and can obtain formation fluid samples for uphole analysis. Reference can be made, for example, to U.S. Pat. Nos. 3,934,468 and 4,860,581. In a logging device of this general type, a setting arm or setting pistons can be used to controllably urge the body of the logging device against a side of the borehole at a selected depth. The side of the device that is urged against the borehole wall includes a packer which surrounds a probe. As the setting arm extends, the probe is inserted into the formation, and the packer then sets the probe in position and forms a seal around the probe, whereupon formation pressure can be measured and fluids can be withdrawn from the formation.
In certain prior art application of formation testing, a gravel pack is provided at the place where the formation is perforated, to help maintain the integrity of the perforation and to prevent sand from clogging the opening. This gravel pack is generally not made too fine, as it would then tend to clog easily. From experience, it has been recognized that even when a gravel pack is employed at the probe, some sand tends to flow with fluid being sampled. This sand can cause problems with down hole pumps either plugging or by compromising the seals in the pump. As a result of the sand entering the pump, formation tester logging jobs may have to be terminated prematurely or multiple trips in the well may be necessary to acquire all the desired fluid samples. In addition, sampling during cased hole formation tester jobs can be compromised due to metal shavings from the casing entering the formation tester's down hole pump.
It is among the objects of the present invention to address this problem of prior art formation testing tools.
It is also among the objects of the present invention to improve formation testing methods and equipment to obtain enhanced information about the nature of formations being tested, including characteristics of solid components of the formations being tested.
In accordance with a form of the invention, there is set forth an apparatus for testing formations surrounding an earth borehole. A tool, movable through the borehole, is provided, the tool having a flow line running therethrough. Means, in the tool, are provided for establishing fluid communication between the formations and the flow line in the tool. A sand trap is provided in the tool for trapping sand in the fluid from the formations travelling in the flow line. In an embodiment of this form of the invention, the sand trap comprises a receptacle containing a screen that is operative to cause precipitation of sand in the formation fluid and also to filter sand from the formation fluid. In this embodiment, the tool includes a pump in the flow line, and the sand trap is located so that sand-containing fluid from the formations reaches the sand trap before reaching the pump.
In accordance with another form of the invention a method is set forth for testing formations surrounding an earth borehole, including the following steps: providing a tool movable through the borehole; providing a flow line in the tool; establishing fluid communication between the formations and the flow line of the tool; and providing a sand trap in communication with the flow line of the tool for trapping sand flowing with fluid from the formations. An embodiment of this form of the invention further comprises bringing the tool to the earth's surface, collecting the sand from the sand trap, and analyzing the sand to determine properties thereof.
In accordance with a feature of the present invention, the obtained sand is a sample of recovered reservoir rock at the point or points of measurement and sampling in the borehole. Among the advantages of having such samples are the following: knowing of sand texture (grain size, shape and sorting) can provide key indicators of depositional environment; the nature of the sand sample can provide information on types and degree of cementation, as well as porosity and permeability indications, and lithologic and facies verification; and indication of clay minerals in the sampled zone can help in deposition environment models and completion and production design. The foregoing can be especially useful in thin beds where formation properties change drastically within very short vertical distances. Evidence of good quality sands within the interbeds would reinforce reservoir characterization. Also, sand grain size and distribution can provide important information in sand control completion design, and gravel pack mesh size and gravel pack screen design can be significantly improved if one has a sand sample.
In accordance with a further feature of the invention, a useful pressure measurement can be taken when sand starts to flow, without fouling of the tool. The pressure inside the tool at which formation sand grains are mobilized represents a measurement of the formation failure pressure or differential pressure (difference between formation pressure and tool pressure). This measurement represents the condition of differential pressure at which the well will start producing sand along with formation fluids during the production phase. This value of differential pressure at which the formation will fail can be used to design well completion and production strategies.
Further features and advantages of the invention will become more readily apparent from the following detailed description when taken in conjunction with the accompanying drawings.
Referring to
The logging device or tool 100 has an elongated body 105 which encloses the downhole portion of the device, controls, chambers, measurement means, etc. One or more arms 123 can be mounted on pistons 125 which extend, e.g. under control from the surface, to set the tool. The logging device includes one or more probe modules each of which includes a probe assembly 210 which is movable with a probe actuator (not separately shown) and includes a probe (not separately shown) that is outwardly displaced into contact with the borehole wall, piercing the mudcake and communicating with the formations. The equipment and methods for taking pressure measurements and doing sampling are well known in the art, and the logging device 100 is provided with these known capabilities. Reference can be made, for example, to U.S. Pat. Nos. 3,934,468 and 4,860,581, which describe early versions of devices of this general type.
Modern commercially available services utilizing, for example, a modular formation dynamics tester (“MDT”—trademark of Schlumberger), can provide a variety of measurements and samples, as the tool is modularized and can be configured in a number of ways. Examples of some of the modules employed in this type of tool, are as follows: An electric power module is generally provided. It does not have a flowline or hydraulic bus, and will typically be the first (top) module in the string. A hydraulic power module provides hydraulic power to all modules that may require same, and such power can be propagated via a hydraulic bus. Probe modules, which can be single or plural probes, includes pistons for causing engagement of probe(s) for fluid communication with the formations. Sample modules contain sample chambers for collecting samples of formation fluids, and can be directly connected with sampling points or connected via a flowline. A pumpout module can be used for purging unwanted fluids. An analyzer module uses optical analysis to identify characteristics of fluids. A packer module includes inflatable packer elements which can seal the borehole circumference over the length of the packer elements.
Using the foregoing and other types of modules, the tool can be configured to perform various types of functions. Examples are permeability measurements, pressure gradient testing, PVT sampling, and interval testing. The present invention has application to all of these.
Referring to
As an example of a job that includes sampling, the tool is set, a pretest is taken, the pump is turned on and the formation fluid goes through the flow line of all the modules until reaching the exit port at which, after the contamination level reaches an acceptable level (as monitored by the fluid analyzer module), the exit port is shut off and the sample is routed into a chamber (for example, one of the bottles in module 250 and/or the large volume sample chamber of module 220). In order to capture sand in the formation fluid before it reaches the pump-out module, it is desirable to put the sand trap below the pump-out module. In an embodiment hereof, sand-containing formation fluid is routed through the sand trap in the module 250. The formation fluid then continues through the water line of the module, back into the flow line, through the pump-out module, and out the exit port to the well bore. The chambers above the pump-out, in module 216, can be filled in the same fashion as they would be conventionally.
Referring again to
Referring to
In operation, the formation fluid (typically a slurry of the fluid with some sand) from the flow line enters the sand trap assembly by flowing through apertures 516 of the top endcap and around the screen 525. At this time, the change in volume reduces the flow rate causing sand to precipitate to the bottom of the receptacle (e.g. at 581). The formation fluid passes through the screen providing further filtering. Then, the formation fluid, absent the sand, enters the top (531) of the stand pipe 530 and flows out through the bottom of the bottle into the water line, which returns the formation fluid to the main flow line.
The upper seal valve 338 may be opened and sample chambers above the pump-out may be filled. By opening the upper seal valve, any pressure drop occurring across the sand trap may be avoided (unlike a gravel packed probe where sample quality is compromised due to a large pressure drop across the gravel pack). It is not necessary to close the inlet to the sand trap before filling the sample chambers above the pump-out. Sand from the sand trap will not flow back out the top of the sand trap because the upper pressure relief valve (315) will not allow fluid to displace what is already inside the receptacle. The remaining bottles of the multisampler below the pump out may be filled with formation fluid by closing the upper seal valve, closing the inlet to the sand trap, and opening the valve to the desired sample bottle. The sample bottle may then be filled by pulling down the sample piston from the back side with the pump-out module.
Referring to
In accordance with a further feature of the invention, a useful pressure measurement can be taken when sand starts to flow, without fouling of the tool. The pressure inside the tool at which formation sand grains are mobilized represents a measurement of the formation failure pressure or differential pressure (difference between formation pressure and tool pressure). This measurement represents the condition of differential pressure at which the well will start producing sand along with formation fluids during the production phase. This value of differential pressure at which the formation will fail can be used to design well completion and production strategies.
Referring to
Number | Name | Date | Kind |
---|---|---|---|
2020856 | Schlumberger | Nov 1935 | A |
2176375 | McClinton | Oct 1939 | A |
2965176 | Brieger et al. | Dec 1960 | A |
3254531 | Briggs, Jr. | Jun 1966 | A |
3352361 | Urbanosky | Nov 1967 | A |
3434540 | Stein | Mar 1969 | A |
3816894 | Howard et al. | Jun 1974 | A |
3864970 | Bell | Feb 1975 | A |
3934468 | Brieger | Jan 1976 | A |
4493383 | Williams et al. | Jan 1985 | A |
4711299 | Caldwell et al. | Dec 1987 | A |
4830107 | Rumbaugh | May 1989 | A |
4860581 | Zimmerman et al. | Aug 1989 | A |
4924940 | Burroughs et al. | May 1990 | A |
5042297 | Lessi | Aug 1991 | A |
5295537 | Trainer | Mar 1994 | A |
5443119 | Chambers et al. | Aug 1995 | A |
RE35454 | Cobb | Feb 1997 | E |
5925242 | McGhee | Jul 1999 | A |
6561046 | Taylor et al. | May 2003 | B1 |
Number | Date | Country | |
---|---|---|---|
20040007058 A1 | Jan 2004 | US |