1. Field of the Invention
The present invention relates to a formatting container, for example for use in a system of packaging machine and portioning machine, as for example a scale or a volumetric filler.
2. Discussion of the Related Art
When manufacturing for example long, thin packagings, a product is usually added via respectively narrow pipes to a packaging machine. Herein, a product comes from an upstream portioning machine, like a scale. Thereby, it often occurs that the product does not leave the upstream portioning machine as a compact portion and therefore has to reach the packaging machine via a narrow pipe or a funnel. Therefore, it is possible that it has to be waited until all product parts relating to one portion have reached the packaging machine. As a pipe which connects portioning machine and packaging machine is often narrow, for example if slim packagings are to be manufactured, it is even possible in certain cases that dosing of a complete portion at the entrance of the pipe has to be avoided, so that the product does not wedge or pile up.
There is one possibility to discard the product from the portioning machine subsequently, successively or in a staggered manner to avoid a congestion at the entrance of the pipe. From a functional view, this solution is possible, however it has the significant disadvantage that a positioning- and filling-process entails an increased expenditure of time. Therefore, the maximum possible performance of packages per time unit is limited.
This solution however entails still the further disadvantage that a wedging of the product is not only possible at the entrance of the pipe, but also in the further course of the pipe. This occurs as single parts of the product are slowed down via friction at the walls of the pipe and thus, they can decelerate, and therefore they can also change their falling direction, thereby, however, colliding with other product parts, they can increase the pressure onto the walls, and, hence even increase the friction. The dropping in the pipe is thereby disturbed or hindered. Also this problem leads to a reduction of the possible performance in terms of packages per time unit. Furthermore, pipe walls can be contaminated by adhesion of product particles thereto, whereby even further increased friction occurs and hygienic problems can arise.
A further embodiment of the prior art is the provision of a container above the entrance of the pipe or a funnel for collecting the unevenly arriving product parts. In many applications, such collection containers are already provided. A collection container is usually formed according to the pipe diameter, respectively, and is therefore formed in a long and slim manner. Therefore, a portion of the product can be collected in a certain time interval and can be released as a complete portion in a compact manner. The collection container therefore has also the function to format the portion, being the reason why the collection container is also called “formatting container” in the following. However, a product congestion or a wedging or adhering of products can also occur in this collection container.
Therefore, a solution according to the prior art entails significant disadvantages.
It is therefore an object of the present invention to provide a formatting container which solves the above-mentioned problems. It is therefore necessary to provide a formatting container, which can discharge a product as an entire portion in a compact manner, being simultaneously formed in a way, that no product congestion can occur within the formatting container, which could lead to wedging or adhering of products, so that the formatting container is entirely drainable. Such a formatting container can be inserted into a system of a portioning machine and a packaging machine.
This object is solved by a formatting container comprising two or more side walls as circumferential boundary, the side walls including an internal space with an inlet and an outlet, wherein the outlet of the container is sealable, wherein the internal space is designed in a way, that the position of the side walls with respect to each other is variable, whereby the cross section of the container is variable.
The problem is also solved a scale comprising the aforementioned container.
The problem is also solved by a combination scale comprising the aforementioned container.
The problem is also solved by a process where the aforementioned container is used and the process includes firstly releasing of the outlet occurs, and subsequently the extension of the cross section of the container occurs via movement of the side walls.
The invention includes a formatting container, which preferably has an elongated, thin shape. In the vicinity of the entry of the formatting container, the cross section can be larger, whereas the cross section of the formatting container at the outlet can be smaller, so that a frustum of a cone is formed. Side walls of the formatting container are provided as movable side walls, wherein one side wall forms the one half, and the other side wall forms the opposing half of the side walls. The side walls can overlap in a way that a closed space is formed in the interior of the formatting container.
A movability of the side walls is provided in radial direction, so that an extended, but still substantially closed interior space is formed.
Further, the outlet of the formatting container is closed with two opening flaps. These are pivotably supported and can be pivoted away, so that the outlet of the container is released.
Below the container, a funnel is provided, wherein the inner diameter of the formatting container is preferably smaller than the inner diameter of the funnel.
In the following, a preferred embodiment is explained more in detail with reference to the enclosed figures.
The side walls are in a position with narrow cross section, the opening flaps 3 are closed. The side walls 2 overlap at two locations. If product is filled into the container 1 from above, the product falls into the container 1, wherein the first product parts lie on the opening flaps 3.
In the first step of the opening process, the opening flaps 3 pivot away towards a side direction and therefore release the outlet 6 of the container 1. In comparison to
In the second step of the opening process, the opening flaps 3 are still in the open state. However, both side walls 2 move towards a side direction in this step, i.e. move away from each other, and therefore cause an extended interior space of the container 1. Therefore, potentially tilted product accumulations or layers (PV) come loose and fall down as well in parts PT, so that they encounter the already falling mass of the product P, before they reach the funnel 4 together with the moving product P. In the cross sectional presentation it can be seen that, despite an open state, both side walls 2 still touch each other or overlap each other at two longitudinal edges of the outermost segment of the side walls 2.
In the first step of the closing process, both side walls 2 move towards each other again and, therefore, return to their initial position. However, this only occurs when the complete product portion P has dropped out or flown out of the container 1. The opening flaps 3 are still in the open state.
In the second step of the closing process, the opening flaps 3 close and return to their initial position. This also only occurs after the container 1 has emptied entirely. As soon as the opening flaps 3 are closed, new product PN can be filled into the container 1 from above again, which will lie on the opening flaps 3 in the next step again.
From
Both the movement of the side walls 2 and the movement of the opening flaps 3 is realized via a drive 5, which comprises levers and rollers. Thereby, the drive 5 both drives the side walls 2 and the opening flaps 3, so that the drive 5 is used as a common drive.
Herein, the drive is designed in a way, that firstly the releasing of the outlet occurs via pivoting the opening flaps 3, and subsequently, the extension of the cross section of the container 1 occurs via a movement of the side walls 2. Between the releasing of outlet 6 via pivoting the opening flaps 3 and the movement of the side walls 2, a certain time span t can exist. As a consequence, the product portion P being present in the container 1 starts dropping because of the pivoting of the opening flaps 3. Via the time span t, that much time is admitted, so that preferably the complete product portion P can start moving. Via the extension of the cross section of the container 1 by movement of the side walls 2, the tilted product parts PV can come loose and subsequently start moving, too. Therefore, it is ensured that the product portion P is released at most continuously or in a compact manner.
The above-mentioned container 1 can for example be used in a scale or combination scale.
The application is not limited to the specified embodiment.
For example, the design of the container 1 is not limited to two side walls 2. The container 1 can also be composed of more than two side walls 2.
Furthermore, it is possible that the side walls consist of one or more circular-arc-shaped or polygonal parts. Altogether, the entire cross section of the container 1 can then be circular, oval, triangular, rectangular or polygonal. Also a polygonal cross section with rounded edges is possible. The entire cross section is then composed of the sum of the cross sections of all side walls.
For side walls composed of more segments, one segment at the outermost position can be designed wider compared to the remaining segments to enable an overlapping of the side walls 2. However, also cross sections of a side wall 2 are possible, wherein all segments are designed equally wide, the overlapping nevertheless being possible.
Depending on the nature of the product P, it is not mandatorily necessary that the side walls 2 overlap each other (for example in the case of very large product particles). Moreover, side walls 2 and drive 5 can be designed in a way, that a gap or a slit between the side walls 2 can be formed in the opened state, without the product P dropping out towards a side direction.
The opening flaps 3 can also be designed in a way that they are not pivotable in a horizontal plane, but move in a different direction for opening.
Furthermore, other shapes of the opening flaps 3 are possible, for example semi-circular shapes.
Furthermore, with regard to the conical internal shape of the container 1, further variations are considerable, e.g. the container can comprise a constant cross section or can become wider in a downward direction.
The present invention relates to a container 1 for use in a scale or combination scale for example, which is used as formatting container. Herein, it consists of two or more side walls 2, whose position with respect to each other is variable. The outlet 6 of the container 1 is closed by two or more opening flaps 3, which are however pivotable or swingable, and therefore, can release the outlet 6 of the container 1. There is a common drive 5, which both moves the side walls 2 and the opening flaps 3. Therefore, it is possible that a container 1 can be entirely emptied, as blocked or accumulated product parts can drop downwards via enlargement of the cross section of the container 1 by a movement of the side walls 2.
Number | Date | Country | Kind |
---|---|---|---|
14190956.4 | Oct 2014 | EP | regional |