This application is a 35 U.S.C. §371 National Phase Entry Application from PCT/JP2014/062849, filed May 14, 2014, and designating the United States, which claims priority under 35 U.S.C. §119 to Japanese Patent Application No. 2014-057529 filed Mar. 20, 2014, which is incorporated herein by reference in its entirety.
The present invention relates to a formed material manufacturing method for manufacturing a formed material having a tubular trunk portion and a flange portion formed on an end portion of the trunk portion, and the formed material.
As disclosed shown, for example, in Non-Patent Document 1 and so on, a formed material having a tubular trunk portion and a flange portion formed on an end portion of the trunk portion is manufactured by performing a drawing process. In the drawing process, the trunk portion is formed by stretching a raw material metal plate. Therefore, the plate thickness of the trunk portion becomes thinner than the plate thickness of the raw material. Meanwhile, the region of the metal plate corresponding to the flange portion undergoes overall shrinkage in response to formation of the trunk portion, and therefore the plate thickness of the flange portion becomes thicker than the plate thickness of the raw material.
A formed material such as that described above may be used as a motor case disclosed shown, for example, in Patent Document 1 and so on. In this case, the trunk portion is expected to perform as a shielding material that prevents magnetic leakage to the exterior of the motor case. Further, depending on the structure of the motor, the trunk portion is also expected to perform as a back yoke of a stator. The performance of the trunk portion as a shielding material or a back yoke improves as the thickness thereof increases. Therefore, when a formed material is manufactured by a drawing process as described above, a raw material metal plate having a thickness greater than the required plate thickness of the trunk portion is selected in consideration of the reduction in plate thickness that occurs during the drawing process. The flange portion, meanwhile, is often used to attach the motor case to an attachment object. The flange portion is therefore expected to have a fixed strength.
In a conventional formed material manufacturing method such as that described above, a formed material having a tubular trunk portion and a flange portion formed on an end portion of the trunk portion is manufactured by performing a drawing process, and therefore the plate thickness of the flange portion is thicker than the plate thickness of the raw material. The plate thickness of the flange portion may therefore become unnecessarily thick exceeding a plate thickness at which the flange portion exhibits an expected performance level. As a result, the formed material becomes unnecessarily heavy, which is problematic when the formed material is applied to a motor case or the like that needs to be lightweight.
The present invention has been designed to solve the problem described above, and an object thereof is to provide a formed material manufacturing method and a formed material, with which unnecessary increases in the thickness of the flange portion can be avoided, enabling reductions in weight of the formed material and the size of the raw material metal plate.
A formed material manufacturing method according to the present invention is a method of manufacturing a formed material having a tubular trunk portion and a flange portion formed on an end portion of the trunk portion, by performing at least two forming processes on a raw material metal plate, wherein the at least two forming processes include at least one drawing-out process and at least one drawing process performed after the drawing-out process, the drawing-out process is performed using a mold that includes a punch and a die having a pushing hole, a width of a rear end side of the punch is set to be wider than a width of a tip end side thereof so that a clearance between the die and the punch when the punch is pushed into the pushing hole in the die is narrower on the rear end side than on the tip end side, and ironing is performed on a region of the raw material metal plate corresponding to the flange portion by pushing the raw material metal plate into the pushing hole together with the punch during the drawing-out process.
Further, a formed material according to the present invention is manufactured by performing at least two forming processes on a raw material metal plate, the formed material having a tubular trunk portion and a flange portion formed on an end portion of the trunk portion, and the at least two forming processes including at least one drawing-out process and at least one drawing process performed after the drawing-out process, wherein a plate thickness of the flange portion is thinner than a plate thickness of a peripheral wall of the trunk portion by performing ironing on a region of the raw material metal plate corresponding to the flange portion during the drawing-out process.
Furthermore, a formed material according to the present invention is manufactured by performing at least two forming processes on a raw material metal plate, the formed material having a tubular trunk portion and a flange portion formed on an end portion of the trunk portion, and the at least two forming processes including at least one drawing-out process and at least one drawing process performed after the drawing-out process, wherein a plate thickness of the flange portion is thinner than a plate thickness of the raw material metal plate by performing ironing on a region of the raw material metal plate corresponding to the flange portion during the drawing-out process.
With the formed material manufacturing method and the formed material according to the present invention, ironing is performed on the region of the raw material metal plate corresponding to the flange portion by pushing the raw material metal plate into the pushing hole together with the punch during the drawing-out process, and therefore an unnecessary increase in the thickness of the flange portion can be avoided, enabling a reduction in the weight of the formed material. This configuration is particularly useful in an application such as a motor case that needs to be lightweight.
Embodiments of the present invention will be described below with reference to the drawings.
Hence, as shown in
Note that a width variation portion 31a constituted by an inclined surface on which a width of the punch 31 varies continuously is provided between the tip end side 310 and the rear end side 311 of the punch 31. The width variation portion 31a is disposed so as to contact a region of the raw material metal plate 2 corresponding to the lower side shoulder portion Rd (see
Although not shown in the drawing, the second and third drawing processes of
In the first to third drawing processes, shrinkage occurs in the region corresponding to the flange portion 11, leading to an increase in the thickness of this region. By ensuring that the plate thickness of the region corresponding to the flange portion 11 is reduced sufficiently in the drawing-out process, however, the plate thickness t11 of the flange portion 11 can be made thinner than the plate thickness t101 of the peripheral wall 101 of the trunk portion 10 in the final formed material 1. An amount by which the plate thickness of the region corresponding to the flange portion 11 is reduced during the drawing-out process can be adjusted appropriately by modifying the clearance c30-31 on the rear end side 311 of the punch 31 of the mold 3 used in the drawing-out process.
Next, examples will be described. The present inventors performed the drawing-out process under the following processing conditions using, as the raw material metal plate 2, a circular plate having a thickness of 1.8 mm and a diameter of 116 mm and formed by implementing Zn—Al—Mg plating on common cold rolled steel plate. Here, the Zn—Al—Mg alloy plating was implemented on both surfaces of the steel plate, and a plating coverage was set at 90 g/m2 on each surface.
Ironing rate of region corresponding to flange portion 11: −20 to 60%
Curvature radius of mold 3: 6 mm
Diameter of pushing hole 30a: 70 mm
Diameter of tip end side 310 of punch 31: 65.7 mm
Diameter of rear end side 311 of punch 31: 65.7 to 68.6 mm
Shape of width variation portion 31a: Inclined surface or right-angled step
Position of width variation portion 31a: Region corresponding to lower side shoulder portion Rd, region corresponding to flange portion 11, or region corresponding to trunk portion 10
Press forming oil: TN-20
<Evaluation of Ironing Rate>
At an ironing rate of 30% or lower (i.e. when the diameter of the rear end side 311 of the punch 31 was no greater than 67.5 mm), the processing could be performed without problems. When the ironing rate was higher than 30% and no higher than 50% (when the diameter of the rear end side 311 of the punch 31 was greater than 67.5 mm and no greater than 68.2 mm), on the other hand, a slight dragging mark was found in a part that slides against the die 30. Further, when the ironing rate exceeded 50% (when the diameter of the rear end side 311 of the punch 31 was greater than 67.9 mm), galling and cracking occurred against the inner wall of the die 30. It was therefore learned that the ironing rate of the region corresponding to the flange portion 11 during the drawing-out process is preferably no higher than 50%, and more preferably no higher than 30%. Note that the ironing rate is defined as {(pre-ironing plate thickness−post-ironing plate thickness)/pre-ironing plate thickness}×100. Here, a value of the plate thickness of the raw material metal plate can be used as the pre-ironing plate thickness.
<Evaluation of Shape of Width Variation Portion 31a>
When the width variation portion 31a was constituted by an inclined surface, as shown in
<Evaluation of Position of Width Variation Portion 31a>
When the width variation portion 31a was provided in contact with the region corresponding to the lower side shoulder portion Rd, it was possible to perform ironing favorably in the region corresponding to the flange portion 11. When the width variation portion 31a was provided in contact with the region corresponding to the flange portion 11, on the other hand, a part of the flange portion 11 could not be reduced in thickness sufficiently. Further, when the width variation portion 31a was provided in contact with the region corresponding to the trunk portion 10, a part of the trunk portion 10 became thinner than the target plate thickness. It was therefore learned that the width variation portion 31a is preferably provided in contact with the region corresponding to the lower side shoulder portion Rd.
Note that when a drawing-out process including ironing is performed, the region of the raw material metal plate 2 corresponding to the flange portion 11 is stretched. To form the formed material 1 subjected to a drawing-out process including ironing (the example of the invention) and the formed material 1 not subjected to a drawing-out process including ironing (the comparative example) at identical dimensions, either a smaller raw material metal plate 2 may be used while taking into consideration an amount by which the region corresponding to the flange portion 11 is stretched or an unnecessary part of the flange portion 11 may be trimmed.
In the formed material manufacturing method and the formed material 1 manufactured thereby, as described above, ironing is performed on the region of the raw material metal plate 2 corresponding to the flange portion 11 during the drawing-out process by pushing the raw material metal plate 2 into the pushing hole 30a together with the punch 31, and therefore an unnecessary increase in the thickness of the flange portion 11 can be avoided, enabling a reduction in the weight of the formed material 1. This configuration is particularly useful in an application such as a motor case, in which the formed material must be lightweight and the raw material metal plate must be small.
Further, the ironing rate of the ironing performed during the drawing-out process is set at no higher than 50%, and therefore galling and cracking can be avoided.
Furthermore, the width variation portion 31a constituted by the inclined surface on which the width of the punch 31 varies continuously is provided between the tip end side 310 and the rear end side 311 of the punch 31, and therefore plating residue caused by contact with the width variation portion 31a during the ironing can be avoided.
Moreover, the width variation portion 31a is disposed in contact with the region corresponding to the lower side shoulder portion Rd formed between the peripheral wall 101 of the trunk portion 10 and the flange portion 11, and therefore the flange portion 11 can be reduced in thickness sufficiently and the trunk portion 10 can be set at the target plate thickness more reliably.
Note that in the embodiment described above, the drawing-out process is performed only once, but two or more drawing-out processes may be performed before the drawing process. By performing a plurality of drawing-out processes, the thickness of the flange portion 11 can be reduced more reliably. Performing a plurality of drawing-out processes is particularly effective when the raw material metal plate 2 is thick. Note that even when a plurality of drawing-out processes are performed, the ironing rate of each process is still preferably set at no higher than 50% to avoid galling and the like. Further, by setting the ironing rate at 30% or lower, marks can also be avoided.
Furthermore, in the embodiment described above, the drawing process is performed three times, but the number of drawing processes may be modified appropriately in accordance with the size and required dimensional precision of the formed material 1.
Number | Date | Country | Kind |
---|---|---|---|
2014-057529 | Mar 2014 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2014/062849 | 5/14/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/141017 | 9/24/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4522049 | Clowes | Jun 1985 | A |
Number | Date | Country |
---|---|---|
59-178139 | Oct 1984 | JP |
2013-51765 | Mar 2013 | JP |
20000043810 | Jul 2000 | KR |
20080056775 | Jun 2008 | KR |
Entry |
---|
A communication issued in corresponding Korean application 10-2015-7021517 dated Nov. 30, 2015, 3 pages. |
Office Action issued in Japanese Patent Application No. 2014-117520 on Jun. 24, 2014 along with English translation, 9 pages. |
Masao Murakawa et al.: “Basics of Plastic Forming”, First Edition, Sangyo-Tosho Publishing Co. Ltd., Jan. 16, 1990, pp. 104 to 107. |
Number | Date | Country | |
---|---|---|---|
20160207085 A1 | Jul 2016 | US |