The present invention is directed to a formed web having chads. The chads may be formed in films or film-nonwoven laminates.
Webs, such as thermoplastic films, have a variety of uses including component materials of absorbent articles (such as topsheets and backsheets), packaging (such as flow wrap, shrink wrap, and polybags), trash bags, food wrap, dental floss, wipes, electronic components, and the like. For many of these uses of webs, it can be beneficial for the web to have a textured, three-dimensional surface which can provide the surface of the web with a desirable feel (e.g., soft, silky), visual impression, and/or audible impression, as well as one or more desirable properties, such as improved fluid handling or strength. Webs exhibiting a desirable feel can be made via a vacuum forming process, a hydroforming process, an embossing process, or the like.
There is a need to develop webs having a desirable feel, visual impression, and/or audible impression as well as additional properties. In the case of webs used in absorbent articles, it is desirable for a single portion of the web to comprise dual, or more, properties (such as improved softness, fluid handling, or other properties) in a predetermined location on the web.
A formed web comprising discrete three-dimensional elements formed therein, wherein at least some of the discrete three-dimensional elements comprise chads with corresponding apertures, wherein the aperture has a perimeter, wherein the chad has a length, wherein the chads are attached along a portion of the aperture perimeter which forms a connection segment, wherein the connection segment is less than about 50% of the entire aperture perimeter, and wherein the web comprises a film.
The following detailed description of specific embodiments of the present invention can be best understood when read in conjunction with the drawings enclosed herewith.
The present invention is directed to a web that overcomes one or more of the aforementioned shortcomings of the prior art. Compared to prior art webs, embodiments of the new web allow for the formation of a web which comprises discrete three-dimensional elements (“3-D elements”) in the form of “chads,” or flaps of web material, and associated apertures. The chads are only partially attached to the perimeter of the corresponding aperture and therefore provide desirable softness due to the chads' ability to bend and hinge. In the case of webs used in absorbent articles, such new structures may include those that provide a single portion of the web with multiple properties (such as improved softness, fluid handling, or other properties) in a predetermined location on the web.
Precursor Web
A precursor web 50 is converted into a formed web 60 according to the process described below. Suitable precursor webs 50 include materials that can be deformed beyond their yield point by the strain put on the web in the deformation zone of the process, such that the precursor web 50 is forced to conform between the forming elements 10 of the forming structures 110,120 to produce a web 60 having discrete three-dimensional elements (“3-D elements”) 62. Precursor web 50 comprises a film, such as polymeric or thermoplastic film, and is optionally laminated with cellulose, foils, such as metallic foils (e.g. aluminum, brass, copper, and the like), polymeric or thermoplastic films, webs comprising sustainable polymers, foams, fibrous nonwoven webs comprising synthetic fibers (e.g. TYVEK®), collagen films, chitosan films, rayon, cellophane, and the like. Suitable films include both cast and blown. Webs 50 can be similar to those described in U.S. application Ser. No. 12/879,567. The thickness of the precursor web 50 prior to forming will typically range from 5 to 150 microns, 10 to 100 microns, or 15 to 50 microns. Other suitable thicknesses include 10, 15, 20, 25, or 30 microns.
Thermoplastic precursor webs 50 will typically have a yield point and the precursor web 50 is preferably stretched beyond its yield point to form a web 60. That is, the precursor web 50 should have sufficient yield properties such that the precursor web 50 can be strained without rupture to an extent to produce the desired discrete 3-D elements 62. As disclosed below, process conditions such as temperature can be varied for a given polymer to permit it to stretch with or without rupture to form the web 60 having the desired discrete 3-D elements 62. In general, therefore, it has been found that preferred starting materials to be used as the precursor web 50 for producing the web 60 exhibit low yield and high-elongation characteristics. Examples of films suitable for use as the precursor web 50 comprise low density polyethylene (LDPE), linear low-density polyethylene (LLDPE), and blends of linear low-density polyethylene and low density polyethylene (LLDPE/LDPE).
At least a portion of two precursor webs 50 may be joined by an embossed seal, the seal including co-registered concentric discrete 3-D elements formed in the at least two webs, the discrete 3-D elements having open proximal ends. See US 2010/0233428 and U.S. application Ser. No. 12/879,531 for more details on sealing film/film, film/nonwoven, and quiet seals.
The precursor web 50 can also optionally include colorants, such as pigment, lake, toner, dye, ink or other agent used to impart a color to a material, to improve the visual appearance of the web 60. Suitable pigments herein include inorganic pigments, pearlescent pigments, interference pigments, and the like. Non-limiting examples of suitable pigments include talc, mica, magnesium carbonate, calcium carbonate, magnesium silicate, aluminum magnesium silicate, silica, titanium dioxide, zinc oxide, red iron oxide, yellow iron oxide, black iron oxide, carbon black, ultramarine, polyethylene powder, methacrylate powder, polystyrene powder, silk powder, crystalline cellulose, starch, titanated mica, iron oxide titanated mica, bismuth oxychloride, and the like. Suitable colored webs are described in US 2010/0233438 and US 2010/0233439. Precursor webs 50 can include various optional ingredients, such as those described in U.S. application Ser. No. 12/879,567.
Formed Web
A precursor web 50 is processed according to the process of the disclosure to form a formed web 60 that can have various desired structural features and properties such as desired soft hand feel, an aesthetically pleasing visual appearance, and improved sound effects (e.g., when handled or manually manipulated, the web 60 may create less sound as compared to the precursor web 50). A pair of mated forming structures 101 is provided to conform the precursor web 50 between the forming elements 10 of the first and second forming structures 110,120. A first web 60 having discrete three-dimensional elements (“3-D elements”) 62 is thereby produced, as shown in
The discrete 3-D elements 62 each have a height h measured from a minimum amplitude Amin between adjacent 3-D elements 62 to a maximum amplitude Amax at the closed or open distal end 66. The discrete 3-D elements 62 have a diameter d, which for a generally cylindrical structure is the outside diameter at a lateral cross-section. By “lateral” is meant generally parallel to the plane of the first surface 76. For generally columnar discrete 3-D elements 62 having non-uniform lateral cross-sections, and/or non-cylindrical structures of discrete 3-D elements 62, diameter d is measured as the average lateral cross-sectional dimension at ½ the height h of the discrete 3-D element. Thus, for each discrete 3-D element, an aspect ratio, defined as h/d, can be determined. The discrete 3-D element can have an aspect ratio h/d of at least 0.2, at least 0.3, at least 0.5, at least 0.75, at least 1, at least 1.5, at least 2, at least 2.5, or at least 3. The discrete 3-D elements 62 will typically have a height h of at least 30 microns, at least 50 microns, at least 65 microns, at least 80 microns, at least 100 microns, at least 120 microns, at least 150 microns, or at least 200 microns. Or, the discrete 3-D elements 62 can have taller heights h of up to 5 cm, 2.5 cm, up to 2 cm, up to 1.5 cm, up to 1 cm, up to 0.5 cm, up to 0.1 cm, or up to 0.02 cm. The 3-D elements 62 will typically be at least the same height as the thickness of the precursor web 50, or at least two times the thickness of the precursor web 50, or preferably at least three times the thickness of the precursor web 50. The discrete 3-D elements 62 may have a diameter d of 50 microns to 790 microns, 50 microns to 600 microns, 50 microns to 500 microns, 65 microns to 400 microns, or 75 microns to 300 microns. Or, the discrete 3-D elements 62 can have larger diameters up to 2.5 cm, up to 2 cm, up to 1.5 cm, up to 1 cm, up to 0.5 cm, up to 0.1 cm, or up to 0.08 cm. For discrete 3-D elements 62 that have generally non-columnar or irregular shapes, a diameter of the discrete 3-D elements can be defined as two times the radius of gyration of the discrete 3-D elements at ½ height. In one embodiment, the diameter of a discrete 3-D element is constant or decreases with increasing amplitude (amplitude increases to a maximum at closed or open distal end 66). The diameter, or average lateral cross-sectional dimension, of the discrete 3-D elements 62 can be a maximum at proximal portion and the lateral cross-sectional dimension steadily decreases to distal end. This structure 110,120 is desirable to help ensure the web 60 can be readily removed from the forming structures 110,120.
Thinning of the precursor web 50 can occur due to the relatively deep drawing required to form high aspect ratio discrete 3-D elements 62. For example, thinning can be observed at the closed 68 or open 67 distal ends 66 and/or along the sidewalls 70. By “observed” is meant that the thinning is distinct when viewed in magnified cross-section. Such thinning can be beneficial as the thinned portions offer little resistance to compression or shear when touched. For example, when a person touches the web 60 on the side exhibiting discrete 3-D elements 62, the fingertips of the person first contact the closed or open distal ends 67 of the discrete 3-D elements 62. Due to the high aspect ratio of the discrete 3-D elements 62, and the wall thinning of the precursor web 50 at the distal ends 66 and/or along the sidewalls 70, the discrete 3-D elements 62 offer little resistance to the compression or shear imposed on the web 60 by the person's fingers.
Thinning of the formed web 60 at the distal ends 66 and/or along the sidewalls 70 can be measured relative to the thickness of the precursor web 50 or relative to the thickness of the land area 61 that completely surrounds the discrete 3-D elements 62 of the web 60. The web 60 or 3-D elements 62 will typically comprise at least a portion which exhibits thinning of at least 25%, at least 50%, or at least 75% relative to the thickness of the precursor web 50. The web 60 or 3-D elements 62 will typically comprise at least a portion which exhibits thinning of at least 25%, at least 50%, at least 75%, or at least 85% relative to the thickness of the land area surrounding the discrete 3-D elements 62 of the web 60. In some cases, there is relatively little thinning at the distal end 66, e.g., when using protrusions 20 which are not relatively sharp. In such instances, it is believed that friction lock occurs, leading to relatively more thinning on the sidewalls 70.
A desirable feeling of softness, such as like the feeling of a velour fabric, is achieved when at least some of the discrete 3-D elements 62 comprise chads 73, shown in
Unlike the other 3-D elements 62 described herein, chads 73 are only partially connected to the perimeter of the apertures Pa. In one embodiment, Pa is equal to about the aperture diameter d multiplied by π. The chads 73 are attached at a connection segment CS along a portion of the aperture perimeter Pa. This enables the chads 73 to move more freely in more directions than 3-D elements 62 that are attached around the entire perimeter or at two or more connection segments along an aperture perimeter. The connection segment CS may be located on any portion of the perimeter of the aperture Pa relative to the machine direction. The connection segment CS is less than about 50%, less than about 40%, less than about 30%, less than about 20%, or less than about 10% of the entire aperture perimeter Pa. As the length of the connection segment CS gets shorter and shorter, the chad 73 can more easily hinge, move, bend, or rotate about its connection segment CS. Preferably, chads 73 are hingeable about the connection segment CS.
A 3-D element may comprise one chad 73 per aperture 83 or more than one chad 73 per aperture 83. In a preferred embodiment, there is one chad 73 per aperture 83. The aperture 83 may be flush with the web surface 76, or it may be above the plane of the web surface 76, such as in the form of a crater (e.g.,
The number, size, and distribution of chads 73 on the web 60 can be predetermined based on desired soft feel and visual effects. At least some, at least 25%, at least 50%, at least 75%, at least 95%, or all of the 3-D elements 62 formed in the web are chads 73. For applications such as a topsheet, backsheet, or release paper wrapper in disposable absorbent articles, or packaging, it can be desired that the chads 73 protrude only from one surface of web 60. Therefore, when the web 60 is used as a topsheet in a disposable absorbent article, the web 60 can be oriented such that the chads 73 are skin contacting for superior softness impression. In other embodiments, it will be desired to have chads 73 on both the first surface 76 and second surface 78 of the web 60. In the case of webs used in absorbent articles, such new structures may include those that provide a single portion of the web with multiple properties (such as improved softness, fluid handling, or other properties) in a predetermined location on the web. Chads 73 do not typically have areas the same as their apertures 83 and thus would not make good one-way valves.
The chads 73 will typically comprise at least a portion which exhibits thinning of at least 25%, at least 50%, or at least 75% relative to the thickness of the precursor web 50. The chads 73 will typically comprise at least a portion which exhibits thinning of at least 25%, at least 50%, at least 75%, or at least 85% relative to the thickness of the land area surrounding the chads 73. In a preferred embodiment, the chads 73 comprise at least a portion which exhibits thinning of at least 75% relative to the thickness of the land area surrounding the chads 73. To achieve desirable web softness, thinning can be maximized to obtain long and narrow chads 73. The change in caliper of the web 60 resulting from chads 73 is very little (however, crater-type apertures 83 may change the caliper of the web 60). One reason chads 73 may not change the bulk caliper of the web much, if at all, is because the chads 73 may lie down on top of the web 60 (e.g., touching the web or parallel to it) rather than rising perpendicular to the web 60. This may be due to the thin and flimsy nature of the chads 73 and/or the web 60 undergoing further processing (e.g., folding, packaging). At least a portion of a chad 73 (in addition to the connection segment portion) may touch the web 60; e.g., an absorbent article may comprise a topsheet which comprises chads which lie flat against the topsheet's body-contacting surface.
The “area density” of the discrete 3-D elements 62, which is the number of discrete 3-D elements 62 per unit area of first surface 76, can be optimized and the web 60 may include about 200 to about 3,000; or about 200 to about 10,000; about 220 to 8,000; about 240 to about 6,000; about 300 to about 5,000; or about 350 to about 3,000 discrete 3-D elements 62 per square centimeter. Or, the web 60 may include about 0.1 to about 10,000, 4 to about 10,000, about 95 to about 10,000, about 240 to about 10,000, about 350 to about 10,000, about 500 to about 5,000, or about 700 to about 3,000 discrete 3-D elements 62 per square centimeter. In general, the center-to-center spacing can be optimized for adequate tactile impression, while at the same time minimizing entrapment of materials, such as fluids, between discrete 3-D elements 62 when the web is used, e.g., as a topsheet. The center-to-center spacing C between adjacent discrete 3-D elements 62 can be less than about 800 microns or greater than about 800 microns. Other acceptable center-to-center spacings are from about 30 microns to about 700 microns, about 50 microns to about 600 microns, about 100 microns to about 500 microns, or about 150 microns to about 400 microns. Further acceptable center-to-center spacings are about 30 microns to about 32,000 microns, about 100 microns to about 5,000 microns, about 150 microns to about 1,000 microns, about 150 microns to about 600 microns, or about 180 microns to about 500 microns.
A second web 80 having second discrete 3-D elements 74 and/or third discrete 3-D elements 75 in addition to the first discrete 3-D elements 62 may be produced, as described below and shown in
Forming Structures
The forming process can be carried out via an apparatus that comprises a pair of rigid mated forming structures, such as those shown in
As illustrated in
As used herein, “grooves 39” are voids 30 which are non-circular in cross-section, have a length greater than a width, and are sized to encompass one or more protrusions 20. The length of the grooves 39 may be aligned with a machine direction MD or cross direction CD, or skewed a certain degree from the machine direction or cross direction or combinations thereof. Referring back to
The forming structures 110,120 can be a solid roll, or have a thickness of 25 to 25,000 microns, or 100 to 5,000 microns. The voids 30 can have a depth of 10 to 500 microns, or 25 to 5000 microns, or even greater. The depth of the voids 30 should be at least as tall as the tallest protrusions 20. Preferably, the voids 30 have a depth that is at least three times the total thickness of the webs. The depth of an aperture 34 corresponds to the thickness of the forming structures 110,120 because the aperture 34 has no bottom surface limiting its depth.
The perimeter of the voids 30 on the web contacting surface of the forming structures 110,120 can have a straight edge or can have a radius of curvature as measured from the web contacting surface of the forming structures 110,120 into the void 30. The radius of curvature can be 0 to 2000 microns, preferably 0 to 25 microns, and more preferably 2 to 25 microns. In one embodiment, an angled taper, commonly known as a chamfer, is used. In one embodiment a combination of straight edges and radii are used.
The voids 30 have at least one diameter, which for a generally cylindrical structure is the inside diameter. For example, a discrete void 32 may take the shape of an oval, while a continuous void 38 may take the shape of a groove 39; each void having two diameters, one in the length direction and one in the width direction. The diameter of the void 30 may be sized to encompass one or more protrusions.
The sidewalls of the voids 30 can be completely vertical, tapered, curved, or the sidewalls can include combinations thereof. In one embodiment, the voids 30 have tapered sidewalls. In one embodiment, sidewalls with an inward taper will typically have a degree of taper of 0° to 50°, 2° to 30°, or 5° to 25°. In another embodiment, the sidewalls of the voids comprise a combination of vertical and curved sidewalls.
Protrusions 20 on one forming structure 110,120 can have varying heights or the substantially same height. The protrusions 20 can have heights of 100 microns to 2,000 microns, at least 500 microns, at least 700 microns, at least 900 microns, or at least 1,100 microns. Or, the protrusions 20 can have larger heights of up to 7.5 cm, 5 cm, 2.5 cm, up to 2 cm, up to 1.5 cm, up to 1 cm, up to 0.5 cm, or up to 0.1 cm. Preferably, the protrusions 20 have a height that is at least three times the total thickness of the webs. The protrusions 20 can have a diameter, which for a generally cylindrical structure is the outside diameter. For non-uniform cross-sections, and/or non-cylindrical structures of protrusions 20, diameter dp is measured as the average cross-sectional dimension of protrusions 20 at ½ the height hp of the protrusions 20, as shown in
Various protrusion shapes are shown in
The sidewalls of the protrusions 20 can be completely vertical, tapered, curved, or combinations thereof. Tapered sidewalls can also allow the web 60 to more easily separate from the forming structures 110,120 after forming. In one embodiment, the sidewalls will typically have a degree of taper of from 0° to 50°, from 2° to 30°, or from 5° to 25°. In other embodiments, the protrusions 20 can be spherical, ellipsoid, or snowman-shaped, having different or varying diameters along the height of the protrusion 20. In a preferred embodiment, protrusions 20 comprise tips 21 with a smaller radii and sidewalls with a steeper degree of taper.
Forming elements 10 of a single forming structure 110,120 can have varying geometries, such as height of the protrusions 20 and depth of the voids 30, or combinations of both. For example, the forming elements 10 can gradually increase in height or over a range of tens or hundreds of adjacent protrusions 20, which can result in the web 60 having discrete 3-D elements 62 with varying heights. Other features of the forming structures 110,120 which result in corresponding features of the discrete 3-D elements 62 can be adjusted to form gradient characteristics in the discrete 3-D elements 62 of the web 60. As shown in
In certain embodiments, the shapes of the protrusions 20 mimic the shapes of the voids 30. For instance, protrusions 20 and voids 30 may both be generally cylindrical and tapered and may have matching or different angles of taper. Or, in certain embodiments, the shapes of the protrusions 20 do not mimic the shapes of the voids 30. For example, protrusions 20 may be circular while voids 30 may be squared or oval. The forming elements 10 of the forming structures 110,120 can have a variety of different cross-sectional shapes, such as generally columnar or non-columnar shapes, including circular, oval, hour-glass shaped, star shaped, polygonal, and the like, and combinations thereof. Polygonal cross-sectional shapes include, but are not limited to, rectangular, triangular, hexagonal, or trapezoidal.
In general, the forming structures 110,120 for a given portion thereof will include at least about 200, at least about 220; from about 240 to about 10,000; from about 300 to about 5,000; or from about 350 to about 3,000 forming elements 10 per square centimeter. Or, the forming structures 110,120 for a given portion thereof will include at least about 0.1 to about 10,000; 4 to about 10,000; about 95 to about 10,000; about 240 to about 10,000; about 350 to about 10,000; about 500 to about 5,000; or about 700 to about 3,000 forming elements 10 per square centimeter. One objective of the present invention is that there is sufficient web tension and/or friction between the precursor web 50 and the forming structures 110,120 to allow the web 60 formation to occur. The web 50 is held in place during forming by web tension and/or friction in the machine direction, cross direction, angle from the machine direction, or combination thereof.
Referring to
Forming elements 10 may be aligned in the machine direction, cross direction, or at an angle from the machine direction or cross direction. The forming elements 10 may be arranged in random arrays or non-random arrays. Examples of non-random arrays include rectangular, hexagonal, square, and combinations thereof. Arrays of forming elements 10 may be designed to increase the strength of the web 60, for example, by minimal alignment in the machine direction, the cross direction strength will be increased. Arrays of forming elements 10 may be designed to maximize ease of tearing the web 60, for example, with serrated or linear alignments.
In certain embodiments, a portion of the forming structures 110,120 can include area densities of forming elements 10 as described above, while other portions of the forming structures 110,120 may include no forming elements 10, as shown in
Process for Making a Formed Web
One process for making a formed web includes a forming step in which a precursor web is moved through a deformation zone located between a pair of mated forming structures. The forming structures each comprise forming elements such as protrusions and voids. The resultant web includes a plurality of discrete three-dimensional elements (“3-D elements”). The process may also include an additional forming step in which the web is moved through at least one other deformation zone located between a second pair of mated forming structures. The resultant web includes a plurality of discrete 3-D elements imparted by the first forming step, as well as those elements imparted by the second forming step, thereby providing a complex web. The second discrete 3-D elements may extend from the first or second side of the web, may be in the same or similar location as the first 3-D elements, may be placed between the first 3-D elements to increase area density, or may be larger or smaller or the same size as the first 3-D elements, e.g., a web may be formed which has a micro-texture as well as a macro-texture.
A suitable process comprises at least one pair of mated forming structures 101. The forming structures may comprise rollers, plates, belts, sleeves, or the like, or combinations thereof. Suitable pairs of forming structures 101 include, but are not limited to: a pair of counter-rotating rollers that define a nip therebetween, a pair of plates, a pair of belts, or the like.
If the mated pair 101 of forming structures 110,120 both include protrusions 20 and voids 30, the discrete 3-D elements 62 can be formed in the web 60 extending from the surface of the web 60 opposite the surface from which the discrete 3-D elements 62 formed by the voids 30 of the forming structures 110,120 are formed. See, for example,
As shown in
The forces in the deformation zone 130 upon the precursor web 50 are sufficient to cause the precursor web 50 to conform to the forming elements 10 to form a web 60 having discrete 3-D elements 62. The conformation of the precursor web 50 to the forming elements 10 can be partial, substantial, or complete conformation (unless rupture occurs), depending upon the web 50, the strain induced on the web 50, the temperature, and the topography of the forming structures 110,120.
The process can optionally be combined with other processes to further manipulate the web 60. For example, as shown in
The second pair of mated forming structures 210,220 may comprise third and fourth forming structures separate from the first and second forming structures. As shown in
While not being bound by theory, it is believed that factors such as the precursor web 50; the shape, size, variety, and center-to-center spacing of the protrusions 20 and voids 30; the strain induced on the precursor web 50; the temperature; and the topography of the forming structures 110,120; as well as the strain applied can be adjusted to produce a desired web 60 having, e.g., discrete 3-D elements 62 on one or both sides of the web 60, with closed or open distal ends 66 or closed or open sidewalls 70, etc. To obtain permanent deformation of the precursor web 50 and the first web 60 to form the first web 60 and the second web 80, respectively, the strain applied is generally sufficient to stretch the precursor beyond its yield point. Different levels of strain may be induced by varying the depth of engagement between the forming structures. In one embodiment, chads form at higher depths of engagement and/or higher temperatures.
When a micro-textured web is desired, the process disclosed herein allows for use of rigid forming structures having narrower center-to-center spacing between adjacent forming elements as well as a higher area density of forming elements to produce micro-textured webs having smaller scale spacing between adjacent discrete 3-D elements and a high density of discrete 3-D elements. Previously, rigid forming structures were designed to have fewer forming elements and wider spacing between adjacent elements because they were cheaper and easier to manufacture and had significantly increased life span as compared to forming structures having a higher area density of forming elements with narrower spacing between adjacent elements. Processes exist for making a micro-textured web using a compliant material, such as water, rubber, and air in conjunction with a rigid structure; however, up to this point, two rigid mated forming structures have not been able to create micro-textured webs with such small scale. It has been discovered that applying the forming structure techniques such as those disclosed in U.S. Pat. No. 7,655,176 to create both of the rigid, mated forming structures of the present invention can allow high speed innovative tooling for processes of the current invention. Now, it is possible to create small length scales of protrusions and voids on pairs of rigid mated forming structures.
The process can have relatively short dwell times. Dwell time refers to the amount of time strain is applied to a given portion of the precursor web 50 or the first web 60, usually the amount of time a given portion of the precursor web 50 or the first web 60 spends positioned in the deformation zone, or nip 130,230,330 between pairs of forming structures 101,201,301. Strain is typically applied to the precursor web 50 or the first web 60 for a dwell time of less than 5 seconds, less than 1 second, less than 0.5 second, less than 0.1 second, less than 0.01 second, or less than 0.005 second. For example, the dwell time can be 0.5 milliseconds to 50 milliseconds. Strain can be applied to the precursor web 50 during a first deformation zone 130 for a first dwell time and strain can be applied to the first web 60 during a second deformation zone 230 for a second dwell time. The first and second dwell times can be substantially equal or can be different. Even with such relatively short dwell times, webs can be produced with desirable structural features described herein. As a result, the process of the disclosure enables high speed production of webs. In other embodiments, the process can have relatively long dwell times, such as the method for incrementally stretching a web, described in US 2008/0224351.
The precursor web 50 or the first web 60 can be fed between the first and second forming steps at a rate of at least 0.01 meters per second, at least 1 meter per second, at least 5 meters per second, or at least 10 meters per second. Other suitable rates include, for example, at least 0.01, 0.05, 0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 meters per second. The rate at which the precursor web 50 is fed between the first pair of forming structures 101 can be substantially the same or different as the rate the first web 60 is fed between the second pair of forming structures 201.
Any or each of the forming steps of the process can be carried out at ambient temperature, meaning that no heat is intentionally applied to the forming structures and/or webs. It should be recognized, however, that heat can be generated due to the high strain of the precursor web 50. As a result, the forming structures may be cooled in order to maintain the process conditions at the desired temperature, such as ambient temperature. Any or each of the forming steps of the process can also be carried out with the web having an elevated temperature. For example, the temperature of the web can be less than the melting point of the precursor web 50. For example, the temperature of the web can be at least 10° C. below the melting point of the precursor web 50. In general, the process can be carried out at a temperature of from 10° C. to 200° C., from 10° C. to 120° C., from 10° C. to 80° C., or from 10° C. to 40° C. The web 50 can be heated by a preheating step or by actively heating one or both of the forming structures. The temperature can be measured by, for example, a non-contact thermometer, such as an infrared thermometer or a laser thermometer, measuring the temperature at the deformation zone 130,230. The temperature can also be determined using temperature sensitive material such as Thermolabel available from Paper Thermometer Company.
Uses of Formed Web
Formed webs of the present invention can be utilized in a number of different ways, such as component materials of absorbent articles (such as topsheets, backsheets or release paper wrappers, e.g., for a feminine hygiene article, diaper, or adult incontinence article), packaging (such as flow wrap, shrink wrap, or polybags), trash bags, food wrap, wipes, electronic components, wall paper, clothing, window coverings, placemats, book covers, and the like.
A formed web 60 may be produced using flat plate forming structures 110,120. The first forming structure 110 includes parallel continuous grooves 39 and parallel ridges 28 running in a first direction, with a center-to-center spacing of about 520 microns in a second direction. The ridges 28 have a taper angle of about 5 degrees from vertical. The grooves 39 have a depth of about 940 microns and a diameter at half-depth of about 320 microns. The second forming structure 120 includes about 320 teeth 26 per square centimeter, the teeth 26 having a general shape as shown in
The forming process is performed using a high speed research press (HSRP) at room temperature. The HSRP (described in detail in U.S. 2009/0120308) is designed to simulate a continuous production line process for embossing the precursor web 50. The HSRP is operated to simulate forming structure 110,120 roll diameters of 206 mm. The precursor web 50 is fed between the forming structures 110,120 in a pre-strained state of 1.5% in a first direction (parallel with the grooves and ridges) at a simulated rate of about 6 m/sec. The engagement is about 600 microns, at which point the sidewall clearances are about 105 microns in the second direction and the tip to valley clearance is about 330 microns.
A formed web 60 may be produced on an apparatus similar to that shown in
The forming process is performed by feeding the precursor web 50 into the nip 130 of the forming structures 102,103 at a line speed of 8 m/s at room temperature. The precursor web 50 is fed between the forming structures 102,103 in the machine direction (parallel with the grooves 39 and ridges 28). The web tension on the infeed side is about 1% to 5%, i.e., within the linear elastic region of the web. The web tension on the outfeed side should be greater than the infeed tension to keep the web moving. The outfeed wrap angle is 90°. The stripping idler roll 250 is positioned 0.8 mm away from the forming roll 103. The engagement is about 800 microns, at which point the sidewall clearances are about 95 microns in the second direction and the tip to valley clearance is about 200 microns.
This Example is the same as Example 4, except that both forming structures 102,103 are maintained at 70 degrees Celsius during the process rather than room temperature.
The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as “40 mm” is intended to mean “about 40 mm.”
All documents cited in the Detailed Description of the Invention are, in relevant part, incorporated herein by reference; the citation of any document is not to be construed as an admission that it is prior art with respect to the present invention. To the extent that any meaning or definition of a term in this written document conflicts with any meaning or definition of the term in a document incorporated by reference, the meaning or definition assigned to the term in this written document shall govern.
While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.
Number | Name | Date | Kind |
---|---|---|---|
2068456 | Hooper | Jan 1937 | A |
2130375 | Atkins | Sep 1938 | A |
2275425 | Grabec | Mar 1942 | A |
2404758 | Teague et al. | Jul 1946 | A |
2633441 | Buttress | Mar 1953 | A |
2748863 | Benton | Jun 1956 | A |
2924863 | Chavannes | Feb 1960 | A |
3073304 | Schaar | Jan 1963 | A |
3081500 | Griswold et al. | Mar 1963 | A |
3081512 | Griswold | Mar 1963 | A |
3085608 | Mathues | Apr 1963 | A |
3137893 | Gelpke | Jun 1964 | A |
3355974 | Carmichael | Dec 1967 | A |
3399822 | Kugler | Sep 1968 | A |
3496259 | Guenther | Feb 1970 | A |
3509007 | Kalwaites | Apr 1970 | A |
3511740 | Sanders | May 1970 | A |
3542634 | Such et al. | Nov 1970 | A |
3566726 | Politis | Mar 1971 | A |
3579763 | Sommer | May 1971 | A |
3594261 | Broerman | Jul 1971 | A |
3681182 | Kalwaites | Aug 1972 | A |
3681183 | Kalwaites | Aug 1972 | A |
3684284 | Tranfield | Aug 1972 | A |
3695270 | Dostal | Oct 1972 | A |
3718059 | Clayton | Feb 1973 | A |
3719736 | Woodruff | Mar 1973 | A |
3760671 | Jenkins | Sep 1973 | A |
3779285 | Sinibaldo | Dec 1973 | A |
3881987 | Benz | May 1975 | A |
3911187 | Raley | Oct 1975 | A |
3949127 | Ostermeier et al. | Apr 1976 | A |
3965906 | Karami | Jun 1976 | A |
4035881 | Zocher | Jul 1977 | A |
4042453 | Conway et al. | Aug 1977 | A |
4135021 | Patchell et al. | Jan 1979 | A |
4211743 | Kos et al. | Jul 1980 | A |
4276336 | Sabee | Jun 1981 | A |
4319868 | Riemersma et al. | Mar 1982 | A |
4343848 | Leonard, Jr. | Aug 1982 | A |
4377544 | Rasmussen | Mar 1983 | A |
4379799 | Holmes et al. | Apr 1983 | A |
4397644 | Matthews et al. | Aug 1983 | A |
4463045 | Ahr et al. | Jul 1984 | A |
4465726 | Holmes et al. | Aug 1984 | A |
4469734 | Minto et al. | Sep 1984 | A |
4546029 | Cancio et al. | Oct 1985 | A |
4588630 | Shimalla | May 1986 | A |
4626254 | Widlund et al. | Dec 1986 | A |
4629643 | Curro | Dec 1986 | A |
4636417 | Rasmussen | Jan 1987 | A |
4645500 | Steer | Feb 1987 | A |
4695422 | Curro et al. | Sep 1987 | A |
4741941 | Englebert et al. | May 1988 | A |
4758297 | Calligarich | Jul 1988 | A |
4772444 | Curro | Sep 1988 | A |
4778644 | Curro et al. | Oct 1988 | A |
4781962 | Zamarripa et al. | Nov 1988 | A |
4798604 | Carter | Jan 1989 | A |
4820294 | Morris | Apr 1989 | A |
4840829 | Suzuki et al. | Jun 1989 | A |
4859519 | Cabe, Jr. et al. | Aug 1989 | A |
4886632 | Van Iten et al. | Dec 1989 | A |
4895749 | Rose | Jan 1990 | A |
4921034 | Burgess et al. | May 1990 | A |
4935087 | Gilman | Jun 1990 | A |
4953270 | Gilpatrick | Sep 1990 | A |
5019062 | Ryan et al. | May 1991 | A |
5062418 | Dyer et al. | Nov 1991 | A |
5144730 | Dilo | Sep 1992 | A |
5158819 | Goodman et al. | Oct 1992 | A |
5165979 | Watkins et al. | Nov 1992 | A |
5171238 | Kajander | Dec 1992 | A |
5180620 | Mende | Jan 1993 | A |
5188625 | Van Iten et al. | Feb 1993 | A |
5223319 | Cotton et al. | Jun 1993 | A |
5242632 | Mende | Sep 1993 | A |
5281371 | Tamura et al. | Jan 1994 | A |
5324279 | Lancaster | Jun 1994 | A |
5382245 | Thompson et al. | Jan 1995 | A |
5383870 | Takai et al. | Jan 1995 | A |
5387209 | Yamamoto et al. | Feb 1995 | A |
5414914 | Suzuki et al. | May 1995 | A |
5415640 | Kirby et al. | May 1995 | A |
5429854 | Currie et al. | Jul 1995 | A |
5437653 | Gilman et al. | Aug 1995 | A |
5470326 | Dabi et al. | Nov 1995 | A |
5508080 | Sorimachi et al. | Apr 1996 | A |
5518801 | Chappell et al. | May 1996 | A |
5533991 | Kirby et al. | Jul 1996 | A |
5536555 | Zelazoski et al. | Jul 1996 | A |
5554145 | Roe et al. | Sep 1996 | A |
5560794 | Currie et al. | Oct 1996 | A |
5565255 | Young | Oct 1996 | A |
5567501 | Srinivasan et al. | Oct 1996 | A |
5573719 | Fitting | Nov 1996 | A |
5575874 | Griesbach, III et al. | Nov 1996 | A |
5580418 | Alikhan | Dec 1996 | A |
5599420 | Yeo et al. | Feb 1997 | A |
5624427 | Bergman et al. | Apr 1997 | A |
5626571 | Young et al. | May 1997 | A |
5628097 | Benson et al. | May 1997 | A |
5648142 | Phillips | Jul 1997 | A |
5650215 | Mazurek et al. | Jul 1997 | A |
5656119 | Srinivasan et al. | Aug 1997 | A |
5658639 | Curro et al. | Aug 1997 | A |
5667619 | Alikhan | Sep 1997 | A |
5667625 | Alikhan | Sep 1997 | A |
5670110 | Dirk et al. | Sep 1997 | A |
5691035 | Chappell et al. | Nov 1997 | A |
5700255 | Curro et al. | Dec 1997 | A |
5704101 | Majors et al. | Jan 1998 | A |
5709829 | Giacometti | Jan 1998 | A |
5714107 | Levy et al. | Feb 1998 | A |
5723087 | Chappell et al. | Mar 1998 | A |
5743776 | Igaue et al. | Apr 1998 | A |
5804021 | Abuto et al. | Sep 1998 | A |
5814389 | Giacometti | Sep 1998 | A |
5817394 | Alikhan et al. | Oct 1998 | A |
5824352 | Yang | Oct 1998 | A |
5841107 | Riva | Nov 1998 | A |
5858504 | Fitting | Jan 1999 | A |
5858515 | Stokes et al. | Jan 1999 | A |
5879494 | Hoff et al. | Mar 1999 | A |
5891544 | Chappell et al. | Apr 1999 | A |
5895623 | Trokhan et al. | Apr 1999 | A |
5914084 | Benson et al. | Jun 1999 | A |
5916661 | Benson et al. | Jun 1999 | A |
5919177 | Georger et al. | Jul 1999 | A |
5925026 | Arteman et al. | Jul 1999 | A |
5945196 | Rieker et al. | Aug 1999 | A |
5964742 | McCormack et al. | Oct 1999 | A |
5968029 | Chappell et al. | Oct 1999 | A |
5986167 | Arteman et al. | Nov 1999 | A |
5993432 | Lodge et al. | Nov 1999 | A |
6007468 | Giacometti | Dec 1999 | A |
6025050 | Srinivasan et al. | Feb 2000 | A |
6027483 | Chappell et al. | Feb 2000 | A |
6039555 | Tsuji et al. | Mar 2000 | A |
6080276 | Burgess | Jun 2000 | A |
6096016 | Tsuji et al. | Aug 2000 | A |
6114263 | Benson et al. | Sep 2000 | A |
6117524 | Hisanaka et al. | Sep 2000 | A |
6120718 | Kotek et al. | Sep 2000 | A |
6129801 | Benson et al. | Oct 2000 | A |
H1927 | Chen et al. | Dec 2000 | H |
6155083 | Goeser et al. | Dec 2000 | A |
6168849 | Braverman et al. | Jan 2001 | B1 |
6176954 | Tsuji et al. | Jan 2001 | B1 |
6247914 | Lindquist et al. | Jun 2001 | B1 |
D444631 | Woodbridge et al. | Jul 2001 | S |
6264872 | Majors et al. | Jul 2001 | B1 |
6287407 | Stein et al. | Sep 2001 | B1 |
6383431 | Dobrin et al. | May 2002 | B1 |
6395122 | Hisanaka et al. | May 2002 | B1 |
6395211 | Dettmer et al. | May 2002 | B1 |
6398895 | Stein et al. | Jun 2002 | B1 |
6410823 | Daley | Jun 2002 | B1 |
6420625 | Jones et al. | Jul 2002 | B1 |
6423884 | Oehmen | Jul 2002 | B1 |
6451718 | Yamada et al. | Sep 2002 | B1 |
6452064 | Thoren et al. | Sep 2002 | B1 |
6458447 | Cabell et al. | Oct 2002 | B1 |
6468626 | Takai | Oct 2002 | B1 |
6479130 | Takai et al. | Nov 2002 | B1 |
D466702 | Carlson et al. | Dec 2002 | S |
6506329 | Curro et al. | Jan 2003 | B1 |
6537936 | Busam et al. | Mar 2003 | B1 |
6599612 | Gray | Jul 2003 | B1 |
6620485 | Benson et al. | Sep 2003 | B1 |
6632504 | Gillespie et al. | Oct 2003 | B1 |
D481872 | Hennel et al. | Nov 2003 | S |
6647549 | McDevitt et al. | Nov 2003 | B2 |
6669878 | Yamada et al. | Dec 2003 | B2 |
6716498 | Curro et al. | Apr 2004 | B2 |
6719742 | McCormack et al. | Apr 2004 | B1 |
6726870 | Benson et al. | Apr 2004 | B1 |
6736916 | Steinke et al. | May 2004 | B2 |
6739024 | Wagner | May 2004 | B1 |
6794626 | Kiermeier et al. | Sep 2004 | B2 |
6808791 | Curro et al. | Oct 2004 | B2 |
6818802 | Takai et al. | Nov 2004 | B2 |
6830800 | Curro et al. | Dec 2004 | B2 |
6837956 | Cowell et al. | Jan 2005 | B2 |
6846172 | Vaughn et al. | Jan 2005 | B2 |
6846445 | Kim et al. | Jan 2005 | B2 |
6855220 | Wildeman | Feb 2005 | B2 |
6863960 | Curro et al. | Mar 2005 | B2 |
6872274 | Kauschke et al. | Mar 2005 | B2 |
6884494 | Curro et al. | Apr 2005 | B1 |
6946182 | Allgeuer | Sep 2005 | B1 |
6989187 | Thomas | Jan 2006 | B2 |
7005558 | Johansson et al. | Feb 2006 | B1 |
7037569 | Curro et al. | May 2006 | B2 |
7297226 | Schulz | Nov 2007 | B2 |
7402723 | Stone et al. | Jul 2008 | B2 |
7521588 | Stone et al. | Apr 2009 | B2 |
7642207 | Boehmer et al. | Jan 2010 | B2 |
7655176 | Stone et al. | Feb 2010 | B2 |
7799254 | Harvey et al. | Sep 2010 | B2 |
20010005540 | Hisanaka | Jun 2001 | A1 |
20010014796 | Mizutani et al. | Aug 2001 | A1 |
20020026169 | Takai | Feb 2002 | A1 |
20020039867 | Curro et al. | Apr 2002 | A1 |
20020103469 | Chen et al. | Aug 2002 | A1 |
20020105110 | Dobrin et al. | Aug 2002 | A1 |
20020107495 | Chen et al. | Aug 2002 | A1 |
20020119720 | Arora et al. | Aug 2002 | A1 |
20020132544 | Takagaki | Sep 2002 | A1 |
20030003269 | Lee | Jan 2003 | A1 |
20030021951 | Desai et al. | Jan 2003 | A1 |
20030028165 | Curro et al. | Feb 2003 | A1 |
20030085213 | Burckhardt et al. | May 2003 | A1 |
20030187170 | Burmeister | Oct 2003 | A1 |
20030191442 | Bewick-Sonntag et al. | Oct 2003 | A1 |
20030191443 | Taylor et al. | Oct 2003 | A1 |
20030201582 | Gray | Oct 2003 | A1 |
20030228445 | Vaughn et al. | Dec 2003 | A1 |
20040046290 | Kim et al. | Mar 2004 | A1 |
20040121686 | Wong et al. | Jun 2004 | A1 |
20040122395 | Stone et al. | Jun 2004 | A1 |
20040122396 | Maldonado et al. | Jun 2004 | A1 |
20040126531 | Harvey et al. | Jul 2004 | A1 |
20040131820 | Turner et al. | Jul 2004 | A1 |
20040137200 | Chhabra et al. | Jul 2004 | A1 |
20040157036 | Provost et al. | Aug 2004 | A1 |
20040161586 | Cree et al. | Aug 2004 | A1 |
20040209041 | Muth et al. | Oct 2004 | A1 |
20040229008 | Hoying et al. | Nov 2004 | A1 |
20040242097 | Hasenoehrl et al. | Dec 2004 | A1 |
20040265533 | Hoying et al. | Dec 2004 | A1 |
20040265534 | Curro et al. | Dec 2004 | A1 |
20050019526 | Mizutani | Jan 2005 | A1 |
20050064136 | Turner et al. | Mar 2005 | A1 |
20050096614 | Perez et al. | May 2005 | A1 |
20050123726 | Broering et al. | Jun 2005 | A1 |
20050191496 | Gray et al. | Sep 2005 | A1 |
20050279470 | Redd et al. | Dec 2005 | A1 |
20060019056 | Turner et al. | Jan 2006 | A1 |
20060087053 | O'Donnell et al. | Apr 2006 | A1 |
20060286343 | Curro et al. | Dec 2006 | A1 |
20070029694 | Cree et al. | Feb 2007 | A1 |
20070062658 | Wiwi et al. | Mar 2007 | A1 |
20070144693 | Ruthven et al. | Jun 2007 | A1 |
20070261224 | McLeod | Nov 2007 | A1 |
20080138574 | Maschino | Jun 2008 | A1 |
20080200320 | Buckner et al. | Aug 2008 | A1 |
20080224351 | Curro et al. | Sep 2008 | A1 |
20080264275 | Wilhelm et al. | Oct 2008 | A1 |
20090026651 | Lee et al. | Jan 2009 | A1 |
20090302504 | Di Berardino | Dec 2009 | A1 |
20100036346 | Hammons et al. | Feb 2010 | A1 |
20100102488 | Stone et al. | Apr 2010 | A1 |
20100201024 | Gibson | Aug 2010 | A1 |
20100230857 | Muhs et al. | Sep 2010 | A1 |
20100230858 | Stone et al. | Sep 2010 | A1 |
20100230866 | Gray et al. | Sep 2010 | A1 |
20100230867 | Gray et al. | Sep 2010 | A1 |
20100233428 | Stone et al. | Sep 2010 | A1 |
20100233438 | Stone et al. | Sep 2010 | A1 |
20100233439 | Stone et al. | Sep 2010 | A1 |
20100247844 | Curro et al. | Sep 2010 | A1 |
20100255258 | Curro et al. | Oct 2010 | A1 |
20120064280 | Hammons et al. | Mar 2012 | A1 |
20120064298 | Orr et al. | Mar 2012 | A1 |
20120273146 | Curro et al. | Nov 2012 | A1 |
20120273148 | Orr et al. | Nov 2012 | A1 |
20120273990 | O'Donnell et al. | Nov 2012 | A1 |
20120276238 | Strube et al. | Nov 2012 | A1 |
20120276341 | Lake et al. | Nov 2012 | A1 |
20120276637 | Zhou et al. | Nov 2012 | A1 |
20120277393 | Curro et al. | Nov 2012 | A1 |
20120277704 | Marinelli et al. | Nov 2012 | A1 |
20120277705 | Marinelli et al. | Nov 2012 | A1 |
20120277706 | Marinelli et al. | Nov 2012 | A1 |
20120277707 | Orr et al. | Nov 2012 | A1 |
20120277708 | Marinelli et al. | Nov 2012 | A1 |
20120277709 | Marinelli et al. | Nov 2012 | A1 |
20120277710 | Marinelli et al. | Nov 2012 | A1 |
20120295060 | Mullane | Nov 2012 | A1 |
Number | Date | Country |
---|---|---|
2912578 | Jun 2007 | CN |
34 39 555 | Apr 1986 | DE |
403187 | Dec 1990 | EP |
509012 | Oct 1992 | EP |
0 598 970 | Jun 1994 | EP |
598970 | Jun 1994 | EP |
955159 | Nov 1999 | EP |
963747 | Dec 1999 | EP |
1004412 | May 2000 | EP |
900083 | Jul 1962 | GB |
1344054 | Jan 1974 | GB |
2333683 | Aug 1999 | GB |
2333724 | Aug 1999 | GB |
2003126143 | May 2003 | JP |
9515138 | Jun 1995 | WO |
WO 9713633 | Apr 1997 | WO |
WO 0059438 | Oct 2000 | WO |
WO 0108869 | Feb 2001 | WO |
02100632 | Dec 2002 | WO |
2005011936 | Feb 2005 | WO |
WO 2008120959 | Oct 2008 | WO |
Entry |
---|
Machine Translation of JP 2003126143 A, May 2003. |
International Search Report dated Oct. 5, 2012, 9 pages. |
U.S. Appl. No. 12/879,531, filed Sep. 10, 2010, Keith Joseph Stone. |
U.S. Appl. No. 12/879,567, filed Sep. 10, 2010, Sara Beth Gross. |
U.S. Appl. No. 12/879,531, Process for Making a Film/Nonwoven Laminate. |
U.S. Appl. No. 12/879,567, Process for Making an Embossed Web. |
PCT International Search Report, mailed Apr. 12, 2006, 6 pages. |
Nagarajan, Abbott, Yao; Rubber-Assisted Embossing Process; School of Polymer, Textile & Fiber Eng., Georgia Institute of Technology, Atlanta, GA 30332; ANTEC (2007) vol. 5, pp. 2921-2925, 5 pages. |
Chang, Yang; Gas pressurized hot embossing for transcription of micro-features; Microsystem Technologies (2003) vol. 10, pp. 76-80, 5 pages; Springer-Verlag. |
Dreuth, Heiden; Thermoplastic structuring of thin polymer films; Sensors and Actuators (1999) vol. 78, pp. 198-204, 7 pages; Institute of Applied Physics, University of Giessen, Heinrich-Buff-Ring 16 D-35392 Giessen, Germany; Elsevier Science S.A. |
Heckele, Schomburg; Review on micro molding of thermoplastic polymers; Institute of Physics Publishing; Journal of Micromechanics and Microengineering (2004) vol. 14, No. 3, pp. R1-R14, 14 pages; IOP Publishing Ltd. |
Kimerling, Liu, Kim, Yao; Rapid hot embossing of polymer microfeatures; Microsystem Technologies (2006) vol. 12, No. 8, pp. 730-735, 6 pages; School of Polymer, Textile and Fiber Eng., Georgia Institute of Technology, Atlanta GA 30332. |
Nagarajan, Yao, Ellis, Azadegan; Through-Thickness Embossing Process for Fabrication of Three-Dimensional Thermoplastic Parts; School of Polymer, Textile & Fiber Eng., Georgia Institute of Technology, Atlanta GA 30332 and Delphi Research Labs, Shelby Township, Michigan 48315; Polymer Engineering and Science (2007) vol. 47, No. 12, pp. 2075-2084, 10 pages. |
Rowland, King; Polymer deformation and filling modes during microembossing; Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30329-0405; Institute of Physics Publishing; Journal of Micromechanics and Microengineering (2004) vol. 14, No. 12, pp. 1625-1632, 8 pages; IOP Publishing Ltd. |
Truckenmuller, Giselbrecht; Microthermoforming of flexible, not-buried hollow microstructures for chip-based life sciences applications; IEE Proceedings—Nanobiotechnology (Aug. 2004) vol. 151, No. 4, pp. 163-166; 4 pages. |
Yao, Nagarajan; Cold Forging Method for Polymer Microfabrication; Department of Mechanical Engineering, Oakland University, Rochester, MI 48309; Polymer Engineering and Science (Oct. 2004) vol. 44, No. 10, pp. 1998-2004, 7 pages. |
Yao, Nagarajan, Li, Yi; A Two-Station Embossing Process for Rapid Fabrication of Surface Microstructures on Thermoplastic Polymers; School of Polymer, Textile & Fiber Eng., Georgia Institute of Technology, Atlanta, GA 30332 and Department of Industrial, Welding and Systems Engineering, The Ohio State University, Columbus, OH 43210; Polymer Engineering and Science (2007) vol. 47, No. 4, pp. 530-539, 10 pages; Wiley InterScience; Society of Plastics Engineers. |
Yao, Kuduva-Raman-Thanumoorthy; An enlarged process window for hot embossing; School of Polymer, Textile & Fiber Eng., Georgia Institute of Technology, Atlanta, GA 30332; Journal of Micromechanics and Microengineering (2008) vol. 18, pp. 1-7; 7 pages; IOP Publishing Ltd. |
All Office Actions and Reponses for U.S. Appl. No. 12/722,020, filed Mar. 11, 2010. |
Number | Date | Country | |
---|---|---|---|
20120277701 A1 | Nov 2012 | US |