Former of water laid asset that utilizes a structured fabric as the outer wire

Information

  • Patent Grant
  • 10422078
  • Patent Number
    10,422,078
  • Date Filed
    Tuesday, September 12, 2017
    7 years ago
  • Date Issued
    Tuesday, September 24, 2019
    5 years ago
Abstract
A method of forming a fibrous web including the steps of providing a fiber slurry, depositing the fiber slurry between an inner forming wire and an outer forming wire, wherein the outer forming wire comprises a structured fabric and the inner forming wire contacts a segment of a forming roll, and rotating the forming roll so that the fiber slurry moves into contact with the structured fabric.
Description
FIELD OF THE INVENTION

The present invention relates to systems and methods for making an absorbent structure utilizing a water laid asset with a structured fabric


BACKGROUND

Across the globe there is great demand for disposable products including towel, sanitary tissue, and facial tissue. Important quality attributes of disposable sanitary tissue and facial tissue include softness and strength, while those of disposable towel include absorbency and strength. The various methods used to produce these products vary in their ability to generate these quality attributes.


Use of a structured fabric can deliver superior levels of bulk that improve absorbency and bulk softness of absorbent structures in disposable products. The higher the bulk and absorbency desired, the higher coarseness structured fabric that needs be utilized. A coarse fabric uses thick monofilament polymeric fibers to create deep valleys in the fabric for cellulosic or synthetic fibers (which compromise the absorbent structure) to penetrate and generate bulk. In structured fabrics made using topically applied and cured resin, an increased resin thickness is needed in order to obtain higher bulk. The downside of using these highly coarse or thick structured fabrics is that the surface smoothness will be negatively impacted. Further, when using TAD, UCTAD, ETAD, or the ATMOS (Twin Wire Configuration) methods (employing a structured fabric) to produce an absorbent structure, the fibers of the absorbent structure penetrate into the structured fabric through the application of vacuum pressure or as an effect of the speed differential between the absorbent structure and the structured fabric. These methods limit the maximum penetration depth and correspondingly, bulk that can be achieved. In an ATMOS process that utilizes a crescent former, the absorbent structure is formed directly between a wire and structured fabric, however, the structured fabric is placed in the inner position (with the structured fabric located between the absorbent structure and the forming roll) rather than the outer position (with the structured fabric located between the absorbent structure and the saveall pan). This means that the drainage of the absorbent structure occurs through the outer wire rather than the structured fabric. The centrifugal force around the forming roll forces water and fiber towards the outer wire limiting the fiber penetration into the structured fabric. Use of vacuum at the wet shaping box helps pull fibers deeper into the fabric, but the total penetration is much less than the void volume available in the fabric. A limitation of the NTT process is that the absorbent structure has to be pressed into the structured fabric which creates compaction that limits absorbency and softness potential.


There is a need in the art for a paper making machine whereby a web is pressed deeply into a structuring fabric in an efficient manner.


SUMMARY OF THE INVENTION

An object of the present invention is to provide a superior method for producing absorbent structures by directly forming and draining a nascent web through a structured fabric. Advantageously, in accordance with exemplary embodiments of the present invention, no fabric crepe, vacuum, or pressing is required to force the web that forms the absorbent structure into the structured fabric. Further, the nascent web is nearly 99.5% water during initial drainage through the structured fabric. This highly viscous nascent web can, therefore, penetrate deeply into the structured fabric using the centrifugal force from the forming roll to allow for high levels of total bulk generation with low coarseness structured fabrics. This preserves the smooth surface of the nascent web while still allowing for high levels of bulk, softness and absorbency.


A method of forming a fibrous web according to an exemplary embodiment of the present invention comprises: providing a fiber slurry; depositing the fiber slurry between an inner forming wire and an outer forming wire, wherein the outer forming wire comprises a structured fabric and the inner forming wire contacts a segment of a forming roll; and rotating the forming roll so that the fiber slurry moves into contact with the structured fabric.


In an exemplary embodiment, the step of depositing is performed by a single layer headbox, a double layer headbox or a triple layer headbox.


In an exemplary embodiment, fiber within the fiber slurry comprise natural fibers, synthetic fibers or a combination of natural and synthetic fibers.


In an exemplary embodiment, the fiber slurry comprises up to 99.95% water.


In an exemplary embodiment, the method further comprises the step of draining the fiber slurry through the structured fabric.


In an exemplary embodiment, the method further comprises: separating the inner forming wire from the outer forming wire; and applying negative pressure from a vacuum box located on an underside of the outer forming wire to adhere a web formed from the fiber slurry to the outer forming wire.


In an exemplary embodiment, the method further comprises the step of dewatering the web by passing the web across one or more vacuum boxes.


In an exemplary embodiment, the method further comprises the step of drying the web, the drying step performed using a belt press having a hot air impingement hood, through air drying cylinders with associated air recirculation systems, or pressure rolls and steam heated cylinders with or without hot air impingement hoods.


In an exemplary embodiment, the method further comprises the step of creping the web from a steam heated cylinder.


In an exemplary embodiment, the method further comprises the steps of calendering and reeling the web.


In an exemplary embodiment, the structured fabric comprises woven monofilaments, the woven monofilaments comprising synthetic polymers.


In an exemplary embodiment, the synthetic polymers comprise polyethylene, polypropylene or nylon.


In an exemplary embodiment, the structured fabric further comprises an overlaid resin.


In an exemplary embodiment, the structured fabric is formed by laying down successive layers of material under computer control.


In an exemplary embodiment, the process of laying down successive layers of material comprises: Fused Deposition Modeling (FDM), PolyJet Technolgy, Selective Laser Melting (SLM), Direct Metal Laser Sintering (DMLS), Selective Laser Sintering (SLS), Stereolithography (SLA), or Laminated Object Manufacturing (LOM)


A wet section of a paper forming machine according to an exemplary embodiment of the present invention comprises: a headbox; a forming roll disposed adjacent to the headbox; an inner forming wire in contact with the forming roll, the inner forming wire configured to run around the forming roll; and an outer forming wire comprising a structured fabric, wherein the headbox is configured to deliver a fiber slurry to an area between the inner forming wire and the outer forming wire.





BRIEF DESCRIPTION OF THE DRAWINGS

The features and advantages of exemplary embodiments of the present invention will be more fully understood with reference to the following, detailed description when taken in conjunction with the accompanying figures, wherein:



FIG. 1 is a schematic diagram of a paper making machine according to exemplary embodiments of the present invention; and



FIG. 2 is a schematic diagram of a paper making machine according to another exemplary embodiment of the present invention.





DETAILED DESCRIPTION


FIG. 1 is a schematic diagram of a paper making machine for manufacturing absorbent structures according to an exemplary embodiment of the present invention. The machine includes one or more pumps, which move dilute slurry to a headbox. For example, FIG. 1 shows a first exterior layer fan pump 225, a core layer fan pump 226, and a second exterior layer fan pump 227. The fan pumps 225, 226, 227 move the dilute slurry of fiber and chemicals to a triple layer headbox 201. It will be understood that headboxes with a different number of layers may be used in embodiments of the invention.


Headbox 201 deposits the slurry into a forming surface comprising a outer structured fabric and an inner forming wire. As shown, in embodiments of the invention, the forming surface is a nip formed by an inner forming wire 205 which runs around forming roll 202, and an outer forming wire 203. In embodiments of the invention, outer forming wire 203 is a woven or polymer overlaid structured fabric (“outer forming wire” and “structured fabric” may be used interchangeably herein below). The slurry is drained through the structured fabric to form a web.


In embodiments of the invention, the slurry contains up to 99.95% water, fibers (either natural, synthetic or a combination of both), chemical polymers, and additives.


In embodiments of the invention, because the outer forming wire 203 is a structured fabric, the centrifugal force created by the rotating forming roll 202 forcefully presses the highly viscous nascent web into the structured fabric of the outer forming wire 203. As a result, the web penetrates deeply into the structured fabric allowing for high levels of total bulk generation with low coarseness structured fabrics.


In embodiments of the invention, the structured fabric is a woven structure that is formed of monofilaments (e.g. yarns, threads) composed of synthetic polymers (preferably polyethylene, polypropylene, or nylon). In embodiments of the invention, the structured fabric is provided with a hardened, cured overlaid resin.


It will be understood that the structured fabric may be manufactured using any of various processes for forming a three-dimensional object, but most preferably through an additive processes in which successive layers of material are laid down under computer control. These processes are generally classified as 3-D printing technologies. For example, these processes include but are not limited to any of the following: Fused Deposition Modeling (FDM), PolyJet Technolgy, Selective Laser Melting (SLM), Direct Metal Laser Sintering (DMLS), Selective Laser Sintering (SLS), Stereolithography (SLA), or Laminated Object Manufacturing (LOM).


In embodiments of the invention, after passing through the forming surface, the inner forming wire 205 separates from the web, and the web is then carried on the structured fabric 203. In embodiments of the invention, a vacuum box 204 is used to assist in web adherence to structured fabric 203. The web is preferably conveyed across one or more dewatering boxes 206 to facilitate dewatering and imprinting the structure of the structured fabric into the web.


After passing the one or more dewatering boxes 206, the web is conveyed on the structured fabric 203 to a belt press. In embodiments of the invention, the belt press is comprised of a permeable belt 207 which contacts the inner (non-web supporting) side of the structured fabric 203 and a permeable dewatering fabric 212, which contacts the web. Preferably, a hot air impingement hood 209 is provided within the belt press that contains a steam shower 208, and a vacuum roll 210. In embodiments of the invention, vacuum roll 210 has through and blind drilled holes in its cover (rubber or polyurethane in different embodiments of the invention). The web is heated by the steam and hot air of the hot air impingement hood 209 to lower the viscosity of the water within the web which is being pressed by the belt press to move the water into the dewatering fabric 212 and into the vacuum roll 210. The vacuum roll 210 holds a significant portion of the water within the through and blind drilled holes in the roll cover until vacuum is broken at the exit of the vacuum box, upon which time the water is deposited into a save-all pan 211. The air flow through the web, provided by the hot air hood 209 and vacuum of the vacuum roll 210, also facilitates water removal as moisture is trapped in the air stream. At this stage, the web properties are influenced by factors such as the structured fabric design and low intensity pressing. The bulk softness of the web is preserved due to the low intensity nip of the belt press which will not compress the web portions within the valleys of the structured fabric 203. The smoothness of the web is influenced by the unique surface topography imprinted by the structured fabric 203 which is dependent on the parameters of weave pattern, mesh, count, weft and warp monofilament diameter, caliper and percentage of the fabric that is knuckle verses valley.


In embodiments of the invention, after exiting the belt press, the web then travels through a second press comprised of a hard roll and soft roll. Press roll 213 located on the inside surface of the dewatering fabric 212 contains a vacuum box to facilitate water removal as the web passes through the nip of the hard and soft rolls. Thereafter, the web is transported by the structured fabric 203 to a wire turning roll 214 (having an optional vacuum box) to a nip between a blind and through drilled polyurethane or rubber covered press roll 215 and steam heated pressure cylinder 216. In embodiments of the invention press roll 215 is a solid polyurethane or rubber roll without vacuum. The web solids are up to 50% solids as the web is transferred to the steam heated cylinder 216. Heated cylinder 216 is preferably coated with chemicals that improve web adhesion to the dryer, improve heat transfer through the web, and assist in web removal at the creping doctor 220. The chemicals are constantly being applied using a sprayboom 218, while excess chemical is removed using a cleaning doctor blade 219. The web is dried by the steam heated cylinder 216 along with an installed hot air impingement hood 217 to a solids content of around 97.5%. The web is removed from the steam heated cylinder 216 using a ceramic doctor blade 220 with a pocket angle of 90 degrees at the creping doctor. At this stage, the web properties are influenced by the creping action occurring at the creping doctor. A larger creping pocket angle will increase the frequency and fineness of the crepe bars imparted to the web's first exterior surface, which improves surface smoothness. In one preferred embodiment of the invention, a ceramic doctor blade is used which allows for a fine crepe bar pattern to be imparted to the web for a long duration of time as compared to a steel or bimetal blade. The creping action imparted at the blade also improves web flexibility, which is improved as the web adherence to the dryer is increased. The creping force is influenced by the chemistry applied to the steam heated cylinder, the percentage of web contact with the cylinder surface which is a result of the knuckle pattern of the structured fabric, and the percent web solids upon creping.


Subsequent to the creping step, the web optionally travels through a set of calenders 221 running, for example, 15% slower than the steam heated cylinder. The action of calendering improves sheet smoothness but results in lower bulk softness by reducing overall web thickness. The amount of calendering can be influenced by the attributes needed in the finished product. For example, a low sheet count, 2-ply, rolled sanitary tissue product will need less calendering than the same roll of 2-ply sanitary product at a higher sheet count and the same roll diameter and firmness. Thus, the thickness of the web may need to be reduced using calendering to allow for more sheets to fit on a roll of sanitary tissue given limitations to roll diameter and firmness. After calendering, the web is reeled using a reel drum 222 into a parent roll 223.


The parent roll 223 can be converted into 1 or 2-ply rolled sanitary or towel products or 1, 2, or 3 ply folded facial tissue products.



FIG. 2 shows an alternate drying section of a system for manufacturing absorbent structures according to an exemplary embodiment of the present invention. As shown, rather than traveling through a belt press, the web travels with the structured fabric 203 through two Through Air Dryers (“TADs”) before being transferred to the steam heated cylinder 216 for final drying and creping. The airflow from each TAD dryer flows out of the TAD drums 224 into a hood and duct system 225 where the air is reheated using a burner, preferably fired using natural gas, and recirculated back through the TAD drums 224. The airflow and pressure from the TAD drum 224, along with the design of the TAD drum 224, is sufficient to prevent the web from coming into direct contact with the drum surface thereby preventing any defects being incorporated into the web.


In other embodiments of the invention, rather than adhering the web to a steam heated cylinder, the web can be removed from the structured fabric to directly proceed to the calendering section. Any variety of methods can be used to remove the web from the structured fabric. For example, rather than vacuum being supplied to the pressure roll, positive air pressure is used to transfer the sheet from the structured fabric onto a vacuum roll. The vacuum roll contains a vacuum zone and a zone with positive air pressure used to release the sheet from the roll and allow it to proceed through the calenders. A tube threader system may be used to thread the sheet from this vacuum roll through the calenders and reel drum after a web break. A similar system is used to thread after a break from the creping doctor when a steam heated cylinder is utilized.


Having described this invention with regard to specific embodiments, it is to be understood that the description is not meant as a limitation since further modifications and variations may be apparent or may suggest themselves to those skilled in the art. It is intended that the present application cover all such modifications and variations.

Claims
  • 1. A method of forming a fibrous web, comprising the steps of: providing a fiber slurry;depositing the fiber slurry between an inner forming wire and an outer forming wire, wherein the outer forming wire comprises a structured fabric and the inner forming wire contacts a forming roll; androtating the forming roll so that the fiber slurry moves into contact with the structured fabric.
  • 2. The method of claim 1, wherein the step of depositing is performed by a single layer headbox, a double layer headbox or a triple layer headbox.
  • 3. The method of claim 1, wherein fibers within the fiber slurry comprise natural fibers, synthetic fibers or a combination of natural and synthetic fibers.
  • 4. The method of claim 1, wherein the fiber slurry comprises up to 99.95% water.
  • 5. The method of claim 1, further comprising the step of draining the fiber slurry through the structured fabric.
  • 6. The method of claim 5, further comprising: separating the inner forming wire from the outer forming wire; andapplying negative pressure from a vacuum box located on an underside of the outer forming wire to adhere a web formed from the fiber slurry to the outer forming wire.
  • 7. The method of claim 6, further comprising the step of dewatering the web by passing the web across one or more vacuum boxes.
  • 8. The method of claim 6, further comprising the step of drying the web, the drying step performed using a belt press having a hot air impingement hood, through air drying cylinders with associated air recirculation systems, or pressure rolls and steam heated cylinders with or without hot air impingement hoods.
  • 9. The method of claim 8, further comprising the step of creping the web from a steam heated cylinder.
  • 10. The method of claim 8, further comprising the steps of calendering and reeling the web.
  • 11. The method of claim 1, wherein the structured fabric comprises woven monofilaments, the woven monofilaments comprising synthetic polymers.
  • 12. The method of claim 11, wherein the synthetic polymers comprise polyethylene, polypropylene or nylon.
  • 13. The method of claim 11, wherein the structured fabric further comprises an overlaid resin.
  • 14. The method of claim 1, wherein the structured fabric is formed by laying down successive layers of material under computer control.
  • 15. The method of claim 14, wherein the process of laying down successive layers of material comprises: Fused Deposition Modeling (FDM), PolyJet Technolgy, Selective Laser Melting (SLM), Direct Metal Laser Sintering (DMLS), Selective Laser Sintering (SLS), Stereolithography (SLA), or Laminated Object Manufacturing (LOM).
  • 16. A wet section of a paper forming machine, comprising: a headbox;a forming roll disposed adjacent to the headbox;an inner forming wire in contact with the forming roll; andan outer forming wire comprising a structured fabric;wherein the headbox is configured to deliver a fiber slurry to a nip formed between the inner forming wire and the outer forming wire as the forming roll rotates.
  • 17. The wet section of claim 16, wherein the headbox is a single layer headbox, a double layer headbox or a triple layer headbox.
US Referenced Citations (428)
Number Name Date Kind
2919467 Mercer Jan 1960 A
2926154 Keim Feb 1960 A
3026231 Chavannes Mar 1962 A
3049469 Davison Aug 1962 A
3058873 Keim et al. Oct 1962 A
3066066 Keim et al. Nov 1962 A
3097994 Dickens et al. Jul 1963 A
3125552 Loshaek et al. Mar 1964 A
3143150 Buchanan Aug 1964 A
3186900 De Young Jun 1965 A
3197427 Schmalz Jul 1965 A
3224986 Butler et al. Dec 1965 A
3224990 Babcock Dec 1965 A
3227615 Korden Jan 1966 A
3227671 Keim Jan 1966 A
3239491 Tsou et al. Mar 1966 A
3240664 Earle, Jr. Mar 1966 A
3240761 Keim et al. Mar 1966 A
3248280 Hyland, Jr. Apr 1966 A
3250664 Conte et al. May 1966 A
3252181 Hureau May 1966 A
3301746 Sanford et al. Jan 1967 A
3311594 Earle, Jr. Mar 1967 A
3329657 Strazdins et al. Jul 1967 A
3332834 Reynolds, Jr. Jul 1967 A
3332901 Keim Jul 1967 A
3352833 Earle, Jr. Nov 1967 A
3384692 Galt et al. May 1968 A
3414459 Wells Dec 1968 A
3442754 Espy May 1969 A
3459697 Goldberg et al. Aug 1969 A
3473576 Amneus Oct 1969 A
3483077 Aldrich Dec 1969 A
3545165 Greenwell Dec 1970 A
3556932 Coscia et al. Jan 1971 A
3573164 Friedberg et al. Mar 1971 A
3609126 Asao et al. Sep 1971 A
3666609 Kalwaites et al. May 1972 A
3672949 Brown Jun 1972 A
3672950 Murphy et al. Jun 1972 A
3773290 Mowery Nov 1973 A
3778339 Williams et al. Dec 1973 A
3813362 Coscia et al. May 1974 A
3855158 Petrovich et al. Dec 1974 A
3877510 Tegtmeier et al. Apr 1975 A
3905863 Ayers Sep 1975 A
3911173 Sprague, Jr. Oct 1975 A
3974025 Ayers Aug 1976 A
3994771 Morgan, Jr. et al. Nov 1976 A
3998690 Lyness et al. Dec 1976 A
4038008 Larsen Jul 1977 A
4075382 Chapman et al. Feb 1978 A
4088528 Berger et al. May 1978 A
4098632 Sprague, Jr. Jul 1978 A
4102737 Morton Jul 1978 A
4129528 Petrovich et al. Dec 1978 A
4147586 Petrovich et al. Apr 1979 A
4184519 McDonald et al. Jan 1980 A
4190692 Larsen Feb 1980 A
4191609 Trokhan Mar 1980 A
4252761 Schoggen et al. Feb 1981 A
4320162 Schulz Mar 1982 A
4331510 Wells May 1982 A
4382987 Smart May 1983 A
4440597 Wells et al. Apr 1984 A
4501862 Keim Feb 1985 A
4507351 Johnson et al. Mar 1985 A
4514345 Johnson et al. Apr 1985 A
4515657 Maslanka May 1985 A
4528239 Trokhan Jul 1985 A
4529480 Trokhan Jul 1985 A
4537657 Keim Aug 1985 A
4545857 Wells Oct 1985 A
4637859 Trokhan Jan 1987 A
4678590 Nakamura et al. Jul 1987 A
4714736 Juhl et al. Dec 1987 A
4770920 Larsonneur Sep 1988 A
4780357 Akao Oct 1988 A
4808467 Suskind et al. Feb 1989 A
4836894 Chance et al. Jun 1989 A
4849054 Klowak Jul 1989 A
4885202 Lloyd et al. Dec 1989 A
4891249 McIntyre Jan 1990 A
4909284 Kositake Mar 1990 A
4949668 Heindel et al. Aug 1990 A
4949688 Bayless Aug 1990 A
4983256 Combette et al. Jan 1991 A
4996091 McIntyre Feb 1991 A
5059282 Ampulski et al. Oct 1991 A
5143776 Givens Sep 1992 A
5149401 Langevin et al. Sep 1992 A
5152874 Keller Oct 1992 A
5211813 Sawley et al. May 1993 A
5239047 Devore et al. Aug 1993 A
5279098 Fukuda Jan 1994 A
5281306 Kakiuchi et al. Jan 1994 A
5334289 Trokhan et al. Aug 1994 A
5347795 Fukuda Sep 1994 A
5397435 Ostendorf et al. Mar 1995 A
5399412 Sudall et al. Mar 1995 A
5405501 Phan et al. Apr 1995 A
5409572 Kershaw et al. Apr 1995 A
5429686 Chiu et al. Jul 1995 A
5439559 Crouse Aug 1995 A
5447012 Kovacs et al. Sep 1995 A
5470436 Wagle et al. Nov 1995 A
5487313 Johnson Jan 1996 A
5509913 Yeo Apr 1996 A
5510002 Hermans et al. Apr 1996 A
5529665 Kaun Jun 1996 A
5581906 Ensign et al. Dec 1996 A
5591147 Couture-Dorschner et al. Jan 1997 A
5607551 Farrington, Jr. et al. Mar 1997 A
5611890 Vinson et al. Mar 1997 A
5628876 Ayers et al. May 1997 A
5635028 Vinson et al. Jun 1997 A
5649916 Dipalma et al. Jul 1997 A
5671897 Ogg et al. Sep 1997 A
5672248 Wendt et al. Sep 1997 A
5679222 Rasch et al. Oct 1997 A
5685428 Herbers et al. Nov 1997 A
5728268 Weisman et al. Mar 1998 A
5746887 Wendt et al. May 1998 A
5753067 Fukuda et al. May 1998 A
5772845 Farrington, Jr. et al. Jun 1998 A
5806569 Gulya et al. Sep 1998 A
5827384 Canfield et al. Oct 1998 A
5832962 Kaufman et al. Nov 1998 A
5846380 Van Phan et al. Dec 1998 A
5855738 Weisman et al. Jan 1999 A
5858554 Neal et al. Jan 1999 A
5865396 Ogg et al. Feb 1999 A
5865950 Vinson et al. Feb 1999 A
5893965 Trokhan et al. Apr 1999 A
5913765 Burgess et al. Jun 1999 A
5942085 Neal et al. Aug 1999 A
5944954 Vinson et al. Aug 1999 A
5948210 Huston Sep 1999 A
5980691 Weisman et al. Nov 1999 A
6036139 Ogg Mar 2000 A
6039838 Kaufman et al. Mar 2000 A
6048938 Neal et al. Apr 2000 A
6060149 Nissing et al. May 2000 A
6106670 Weisman et al. Aug 2000 A
6149769 Mohammadi et al. Nov 2000 A
6162327 Batra et al. Dec 2000 A
6162329 Vinson et al. Dec 2000 A
6187138 Neal et al. Feb 2001 B1
6200419 Phan Mar 2001 B1
6203667 Huhtelin Mar 2001 B1
6207734 Vinson et al. Mar 2001 B1
6231723 Kanitz et al. May 2001 B1
6287426 Edwards et al. Sep 2001 B1
6303233 Amon et al. Oct 2001 B1
6319362 Huhtelin et al. Nov 2001 B1
6344111 Wilhelm Feb 2002 B1
6420013 Vinson et al. Jul 2002 B1
6420100 Trokhan et al. Jul 2002 B1
6423184 Vahatalo et al. Jul 2002 B2
6458246 Kanitz et al. Oct 2002 B1
6464831 Trokhan et al. Oct 2002 B1
6473670 Huhtelin Oct 2002 B1
6521089 Griech et al. Feb 2003 B1
6537407 Law et al. Mar 2003 B1
6547928 Bamholtz et al. Apr 2003 B2
6551453 Weisman et al. Apr 2003 B2
6551691 Hoeft et al. Apr 2003 B1
6572722 Pratt Jun 2003 B1
6579416 Vinson et al. Jun 2003 B1
6602454 McGuire et al. Aug 2003 B2
6607637 Vinson et al. Aug 2003 B1
6610173 Lindsay et al. Aug 2003 B1
6613194 Kanitz et al. Sep 2003 B2
6660362 Lindsay et al. Dec 2003 B1
6673202 Burazin Jan 2004 B2
6701637 Lindsay et al. Mar 2004 B2
6755939 Vinson et al. Jun 2004 B2
6773647 McGuire et al. Aug 2004 B2
6797117 McKay et al. Sep 2004 B1
6808599 Burazin Oct 2004 B2
6821386 Weisman et al. Nov 2004 B2
6821391 Scherb et al. Nov 2004 B2
6827818 Farrington, Jr. et al. Dec 2004 B2
6863777 Kanitz et al. Mar 2005 B2
6896767 Wilhelm May 2005 B2
6939443 Ryan et al. Sep 2005 B2
6998017 Lindsay et al. Feb 2006 B2
6998024 Burazin Feb 2006 B2
7005043 Toney et al. Feb 2006 B2
7014735 Kramer et al. Mar 2006 B2
7105465 Patel et al. Sep 2006 B2
7155876 VanderTuin et al. Jan 2007 B2
7157389 Branham et al. Jan 2007 B2
7182837 Chen et al. Feb 2007 B2
7194788 Clark et al. Mar 2007 B2
7235156 Baggot Jun 2007 B2
7269929 VanderTuin et al. Sep 2007 B2
7294230 Flugge-Berendes et al. Nov 2007 B2
7311853 Vinson et al. Dec 2007 B2
7328550 Floding et al. Feb 2008 B2
7339378 Han et al. Mar 2008 B2
7351307 Scherb et al. Apr 2008 B2
7387706 Herman et al. Jun 2008 B2
7399378 Edwards et al. Jul 2008 B2
7419569 Hermans Sep 2008 B2
7427434 Busam Sep 2008 B2
7431801 Conn et al. Oct 2008 B2
7432309 Vinson Oct 2008 B2
7442278 Murray et al. Oct 2008 B2
7452447 Duan et al. Nov 2008 B2
7476293 Herman et al. Jan 2009 B2
7494563 Edwards et al. Feb 2009 B2
7510631 Scherb et al. Mar 2009 B2
7513975 Burma Apr 2009 B2
7563344 Beuther Jul 2009 B2
7582187 Scherb et al. Sep 2009 B2
7611607 Mullally et al. Nov 2009 B2
7622020 Awofeso Nov 2009 B2
7662462 Noda Feb 2010 B2
7670678 Phan Mar 2010 B2
7683126 Neal et al. Mar 2010 B2
7686923 Scherb et al. Mar 2010 B2
7687140 Manifold et al. Mar 2010 B2
7691230 Scherb et al. Apr 2010 B2
7744722 Tucker et al. Jun 2010 B1
7744726 Scherb et al. Jun 2010 B2
7785443 Hermans Aug 2010 B2
7799382 Payne et al. Sep 2010 B2
7811418 Klerelid et al. Oct 2010 B2
7815978 Davenport et al. Oct 2010 B2
7823366 Schoeneck Nov 2010 B2
7842163 Nickel et al. Nov 2010 B2
7867361 Salaam et al. Jan 2011 B2
7871692 Morin et al. Jan 2011 B2
7887673 Andersson et al. Feb 2011 B2
7905989 Scherb et al. Mar 2011 B2
7914866 Shannon et al. Mar 2011 B2
7931781 Scherb et al. Apr 2011 B2
7951269 Herman et al. May 2011 B2
7955549 Noda Jun 2011 B2
7959764 Ringer et al. Jun 2011 B2
7972475 Chan et al. Jul 2011 B2
7989058 Manifold et al. Aug 2011 B2
8034463 Leimbach et al. Oct 2011 B2
3051629 Pazdemik et al. Nov 2011 A1
8075739 Scherb et al. Dec 2011 B2
8092652 Scherb et al. Jan 2012 B2
8118979 Herman et al. Feb 2012 B2
8147649 Tucker et al. Apr 2012 B1
8152959 Elony et al. Apr 2012 B2
8196314 Munch Jun 2012 B2
8216427 Klerelid et al. Jul 2012 B2
8236135 Prodoehl et al. Aug 2012 B2
8303773 Scherb et al. Nov 2012 B2
8382956 Boechat et al. Feb 2013 B2
8402673 Da Silva et al. Mar 2013 B2
8409404 Harper et al. Apr 2013 B2
8435384 Da Silva et al. May 2013 B2
8440055 Scherb et al. May 2013 B2
8445032 Topolkaraev et al. May 2013 B2
8454800 Mourad et al. Jun 2013 B2
8470133 Cunnane et al. Jun 2013 B2
8506756 Denis et al. Aug 2013 B2
8544184 Da Silva et al. Oct 2013 B2
8574211 Morita Nov 2013 B2
8580083 Boechat et al. Nov 2013 B2
8728277 Boechat et al. May 2014 B2
8758569 Aberg et al. Jun 2014 B2
8771466 Denis et al. Jul 2014 B2
8801903 Mourad et al. Aug 2014 B2
8815057 Eberhardt et al. Aug 2014 B2
8822009 Riviere et al. Sep 2014 B2
8968517 Ramaratnam et al. Mar 2015 B2
8980062 Karlsson et al. Mar 2015 B2
9005710 Jones et al. Apr 2015 B2
D734617 Seitzinger et al. Jul 2015 S
9095477 Yamaguchi Aug 2015 B2
D738633 Seitzinger et al. Sep 2015 S
9382666 Ramaratnam et al. Jul 2016 B2
9506203 Ramaratnam et al. Nov 2016 B2
9580872 Ramaratnam et al. Feb 2017 B2
9702089 Ramaratnam et al. Jul 2017 B2
9702090 Ramaratnam et al. Jul 2017 B2
9719213 Miller, IV et al. Aug 2017 B2
9725853 Ramaratnam et al. Aug 2017 B2
20010018068 Lorenzi et al. Aug 2001 A1
20020028230 Eichhorn et al. Mar 2002 A1
20020060049 Kanitz et al. May 2002 A1
20020061386 Carson et al. May 2002 A1
20020098317 Jaschinski et al. Jul 2002 A1
20020110655 Seth Aug 2002 A1
20020115194 Lange et al. Aug 2002 A1
20020117283 Soderholm et al. Aug 2002 A1
20020125606 McGuire et al. Sep 2002 A1
20030024674 Kanitz et al. Feb 2003 A1
20030056911 Hermans et al. Mar 2003 A1
20030056917 Jimenez Mar 2003 A1
20030070781 Hermans et al. Apr 2003 A1
20030114071 Everhart et al. Jun 2003 A1
20030159401 Sorensson et al. Aug 2003 A1
20030188843 Kanitz et al. Oct 2003 A1
20030218274 Boutilier et al. Nov 2003 A1
20040118531 Shannon et al. Jun 2004 A1
20040123963 Chen et al. Jul 2004 A1
20040126601 Kramer et al. Jul 2004 A1
20040126710 Hill et al. Jul 2004 A1
20040168784 Duan et al. Sep 2004 A1
20040173333 Hermans et al. Sep 2004 A1
20040234804 Liu et al. Nov 2004 A1
20050016704 Huhtelin Jan 2005 A1
20050069679 Stelljes et al. Mar 2005 A1
20050069680 Stelljes et al. Mar 2005 A1
20050098281 Schulz et al. May 2005 A1
20050112115 Khan May 2005 A1
20050123726 Broering et al. Jun 2005 A1
20050130536 Siebers et al. Jun 2005 A1
20050136222 Hada et al. Jun 2005 A1
20050148257 Hermans et al. Jul 2005 A1
20050150626 Kanitz et al. Jul 2005 A1
20050166551 Keane et al. Aug 2005 A1
20050241786 Edwards et al. Nov 2005 A1
20050241788 Baggot et al. Nov 2005 A1
20050252626 Chen et al. Nov 2005 A1
20050280184 Sayers et al. Dec 2005 A1
20050287340 Morelli et al. Dec 2005 A1
20060005916 Stelljes et al. Jan 2006 A1
20060013998 Stelljes et al. Jan 2006 A1
20060019567 Sayers Jan 2006 A1
20060083899 Burazin et al. Apr 2006 A1
20060093788 Behm et al. May 2006 A1
20060113049 Knobloch et al. Jun 2006 A1
20060130986 Flugge-Berendes et al. Jun 2006 A1
20060194022 Boutilier et al. Aug 2006 A1
20060269706 Shannon et al. Nov 2006 A1
20070020315 Shannon et al. Jan 2007 A1
20070107863 Edwards et al. May 2007 A1
20070131366 Underhill et al. Jun 2007 A1
20070137813 Nickel et al. Jun 2007 A1
20070137814 Gao Jun 2007 A1
20070170610 Payne et al. Jul 2007 A1
20070240842 Scherb et al. Oct 2007 A1
20070251659 Fernandes et al. Nov 2007 A1
20070251660 Walkenhaus et al. Nov 2007 A1
20070267157 Kanitz et al. Nov 2007 A1
20070272381 Elony et al. Nov 2007 A1
20070275866 Dykstra Nov 2007 A1
20070298221 Vinson Dec 2007 A1
20080035289 Edwards et al. Feb 2008 A1
20080076695 Uitenbroek et al. Mar 2008 A1
20080156450 Klerelid et al. Jul 2008 A1
20080199655 Monnerie et al. Aug 2008 A1
20080245498 Ostendorf et al. Oct 2008 A1
20080302493 Boatman et al. Dec 2008 A1
20080308247 Ringer et al. Dec 2008 A1
20090020248 Sumnicht et al. Jan 2009 A1
20090056892 Rekoske Mar 2009 A1
20090061709 Nakai et al. Mar 2009 A1
20090205797 Fernandes et al. Aug 2009 A1
20090218056 Manifold et al. Sep 2009 A1
20100065234 Klerelid et al. Mar 2010 A1
20100119779 Ostendorf et al. May 2010 A1
20100224338 Harper et al. Sep 2010 A1
20100230064 Eagles et al. Sep 2010 A1
20100236034 Eagles et al. Sep 2010 A1
20100239825 Sheehan et al. Sep 2010 A1
20100272965 Schinkoreit et al. Oct 2010 A1
20110027545 Harlacher et al. Feb 2011 A1
20110180223 Klerelid et al. Jul 2011 A1
20110189435 Manifold et al. Aug 2011 A1
20110189442 Manifold et al. Aug 2011 A1
20110206913 Manifold et al. Aug 2011 A1
20110223381 Sauter et al. Sep 2011 A1
20110253329 Manifold et al. Oct 2011 A1
20110265967 Van Phan Nov 2011 A1
20110303379 Boechat et al. Dec 2011 A1
20120144611 Baker et al. Jun 2012 A1
20120152475 Edwards et al. Jun 2012 A1
20120177888 Escafere et al. Jul 2012 A1
20120244241 McNeil Sep 2012 A1
20120267063 Klerelid et al. Oct 2012 A1
20120297560 Zwick et al. Nov 2012 A1
20130008135 Moore et al. Jan 2013 A1
20130029105 Miller et al. Jan 2013 A1
20130029106 Lee et al. Jan 2013 A1
20130133851 Boechat et al. May 2013 A1
20130150817 Kainth et al. Jun 2013 A1
20130160960 Hermans et al. Jun 2013 A1
20130209749 Myangiro et al. Aug 2013 A1
20130248129 Manifold et al. Sep 2013 A1
20130327487 Espinosa et al. Dec 2013 A1
20140004307 Sheehan Jan 2014 A1
20140041820 Ramaratnam et al. Feb 2014 A1
20140041822 Boechat et al. Feb 2014 A1
20140050890 Zwick et al. Feb 2014 A1
20140053994 Manifold et al. Feb 2014 A1
20140096924 Rekokske et al. Apr 2014 A1
20140182798 Polat et al. Jul 2014 A1
20140242320 McNeil et al. Aug 2014 A1
20140272269 Hansen Sep 2014 A1
20140272747 Ciurkot Sep 2014 A1
20140284237 Gosset Sep 2014 A1
20140360519 George et al. Dec 2014 A1
20150059995 Ramaratnam et al. Mar 2015 A1
20150102526 Ward et al. Apr 2015 A1
20150129145 Chou et al. May 2015 A1
20150211179 Alias et al. Jul 2015 A1
20150241788 Yamaguchi Aug 2015 A1
20150330029 Ramaratnam et al. Nov 2015 A1
20160060811 Riding et al. Mar 2016 A1
20160090692 Eagles et al. Mar 2016 A1
20160090693 Eagles et al. Mar 2016 A1
20160130762 Ramaratnam et al. May 2016 A1
20160145810 Miller, IV et al. May 2016 A1
20160159007 Miller, IV et al. Jun 2016 A1
20160160448 Miller, IV et al. Jun 2016 A1
20160185041 Topolkaraev et al. Jun 2016 A1
20160185050 Topolkaraev et al. Jun 2016 A1
20160273168 Ramaratnam et al. Sep 2016 A1
20160273169 Ramaratnam et al. Sep 2016 A1
20160289897 Ramaratnam et al. Oct 2016 A1
20160289898 Ramaratnam et al. Oct 2016 A1
20170044717 Quigley Feb 2017 A1
20170101741 Sealey et al. Apr 2017 A1
20170167082 Ramaratnam et al. Jun 2017 A1
20170226698 LeBrun et al. Aug 2017 A1
20170233946 Sealey et al. Aug 2017 A1
20170253422 Anklam et al. Sep 2017 A1
20170268178 Ramaratnam et al. Sep 2017 A1
Foreign Referenced Citations (40)
Number Date Country
2168894 Aug 1997 CA
2795139 Oct 2011 CA
1138356 Dec 1996 CN
1207149 Feb 1999 CN
1244899 Feb 2000 CN
1268559 Oct 2000 CN
1377405 Oct 2002 CN
2728254 Sep 2005 CN
4242539 Aug 1993 DE
0097036 Dec 1983 EP
0979895 Feb 2000 EP
1911574 Jan 2007 EP
1339915 Jul 2007 EP
2123826 May 2009 EP
946093 Jan 1964 GB
2013208298 Oct 2013 JP
2014213138 Nov 2014 JP
9606223 Feb 1996 WO
200382550 Oct 2003 WO
200445834 Jun 2004 WO
2007070145 Jun 2007 WO
2008019702 Feb 2008 WO
2009006709 Jan 2009 WO
2009061079 May 2009 WO
2009067079 May 2009 WO
2011028823 Mar 2011 WO
2012003360 Jan 2012 WO
2013024297 Feb 2013 WO
2013136471 Sep 2013 WO
2014022848 Feb 2014 WO
201500755 Jan 2015 WO
2015176063 Nov 2015 WO
2016077594 May 2016 WO
2016086019 Jun 2016 WO
2016090242 Jun 2016 WO
2016090364 Jun 2016 WO
2016085704 Jun 2016 WO
2017066465 Apr 2017 WO
2017066656 Apr 2017 WO
2017139786 Aug 2017 WO
Non-Patent Literature Citations (25)
Entry
International Preliminary Report on Patentability of PCT/US2013/053593 dated Feb. 3, 2015.
Supplementary European Search Report of EP 13 82 6461 dated Apr. 1, 2016.
Written Opinion of International Searching Authority for PCT/US15/62483 dated May 6, 2016.
International Search Report for PCT/US15/63986 dated Mar. 29, 2016.
Written Opinion of International Searching Authority for PCT/US15/63986 dated Mar. 29, 2016.
International Search Report for PCT/US15/64284 dated Feb. 11, 2016.
Written Opinion of International Searching Authority for PCT/US15/64284 dated Feb. 11, 2016.
International Search Report for PCT/US13/53593 dated Dec. 30, 2013.
Written Opinion of International Searching Authority for PCT/US13/53593 dated Dec. 30, 2013.
International Search Report for PCT/US15/31411 dated Aug. 13, 2015.
Written Opinion of International Searching Authority for PCT/US15/31411 dated Aug. 13, 2015.
International Search Report for PCT/US15/60398 dated Jan. 29, 2016.
Written Opinion of International Searching Authority for PCT/US15/60398 dated Jan. 29, 2016.
International Search Report for PCT/US15/62483 dated May 6, 2016.
International Search Report for PCT/US16/56871 dated Jan. 12, 2017.
Written Opinion of International Searching Authority for PCT/US16/56871 dated Jan. 12, 2017.
International Search Report for PCT/US2016/057163 dated Dec. 23, 2016.
Written Opinion of International Searching Authority for PCT/US2016/057163 dated Dec. 23, 2016.
International Search Report for PCT/US2017/029890 dated Jul. 14, 2017.
Written Opinion of International Searching Authority for PCT/US2017/029890 dated Jul. 14, 2017.
International Search Report for PCT/US2017/032746 dated Aug. 7, 2017.
Written Opinion of International Searching Authority for PCT/US2017/032746 dated Aug. 7, 2017.
International Search Report for PCT/US17/17705 dated Jun. 9, 2017.
Written Opinion of International Searching Authority for PCT/US17/17705 dated Jun. 9, 2017.
International Search Report of PCT/US17/51158 dated Nov. 28, 2017.
Related Publications (1)
Number Date Country
20180073195 A1 Mar 2018 US
Provisional Applications (1)
Number Date Country
62393468 Sep 2016 US