Forming a chemically cross-linked particle of a desired shape and diameter

Information

  • Patent Grant
  • 7053134
  • Patent Number
    7,053,134
  • Date Filed
    Friday, March 28, 2003
    21 years ago
  • Date Issued
    Tuesday, May 30, 2006
    18 years ago
Abstract
Chemically cross-linked polymeric particles are formed using mechanical rather than chemical processes, facilitating production of small-diameter particles in a manner largely independent of the viscosity or density of the polymer. For example, an uncross-linked resin may be provided in particulate form, agglomerated, and compressed into a mass of a desired shape with a desired diameter, and subsequently cross-linked.
Description
TECHNICAL FIELD

The invention relates generally to forming a chemically cross-linked particle and more particularly to forming a chemically cross-linked particle of a desired shape and diameter.


BACKGROUND INFORMATION

Polymeric microspheres (i.e., microspheres formed at least in part from a polymer) are used in medical and industrial areas. These microspheres may be used as drug delivery agents, tissue bulking agents, tissue engineering agents, and embolization agents, for example. Accordingly, there are a variety of methods directed towards preparing polymeric microspheres. Typical methods include dispersion polymerization of the monomer, potentiometric dispersion of dissolved polymer within an emulsifying solution followed by solvent evaporation, electrostatically controlled extrusion, and injection of dissolved polymer into an emulsifying solution through a porous membrane followed by solvent evaporation.


Additional methods of preparing polymeric microspheres include vibratory excitation of a laminar jet of monomeric material flowing in a continuous liquid medium containing a suitable suspending agent, irradiation of slowly thawing frozen monomer drops, emulsification and evaporation, emulsification and evaporation using a high shear air flow, and continuous injection of dissolved polymer into a flowing non-solvent through a needle oriented in parallel to the direction of flow of the non-solvent.


SUMMARY OF THE INVENTION

The present invention facilitates production of microspheres having small diameters in a manner that is generally independent of viscosity and density. This is accomplished through the use of an uncross-linked polymer precursor in solid form, and a mechanical technique of compacting the precursor into a desired shape.


Accordingly, in one aspect, the invention involves a method of forming a chemically cross-linked particle of a desired shape and diameter. The method includes providing an uncross-linked resin (e.g., polyvinyl alcohol) in particulate form, agglomerating the resin into a mass of a desired shape with a desired diameter, compressing the mass, and cross-linking the mass to thereby form the chemically cross-linked particle. An advantage of the present invention is the ability to avoid melting the resin in order to attain the desired shape. This is useful, for example, in connection with thermally unstable polymers.


In one embodiment, the method further includes adding a binding agent (such as a starch or a sugar) to the resin and later removing the binding agent by exposing the particle to a solvent formulated to selectively dissolve the binding agent. The binding agent serves to hold the mass of uncross-linked resin particles together in the desired shape until the mass is cross-linked. In other embodiments, the binding agent comprises a polymer having a melting temperature lower than the melting temperature of the resin. In this way, the polymer becomes part of the chemically cross-linked particle.


In another embodiment, the method further includes cross-linking the mass by exposing the mass to actinic energy such as an electron beam, ultraviolet radiation, or gamma radiation.


In still another embodiment, the method further includes cross-linking the mass by exposing the particle to a gaseous cross-linking agent.


In yet another embodiment, the method further includes agglomerating the resin into a mass in the shape of a sphere with a diameter of less than 600 microns.


In another aspect, the invention involves a method of forming a chemically cross-linked particle of a desired shape and diameter. The method includes providing an uncross-linked resin in particulate form, adding a binding agent to the resin, and agglomerating the resin into a mass. The method further includes heating the mass to a temperature that is both above the melting point of the binding agent and below the melting point of the resin, compressing the mass into a desired shape with a desired diameter, and cooling the mass to a temperature below the melting point of the binding agent. The mass is then cross-linked to form the chemically cross-linked particle.


In one embodiment, cross-linking the mass includes exposing the mass to actinic energy, such as an electron beam, ultraviolet radiation, or gamma radiation.


In another embodiment, cross-linking the mass includes exposing the mass to a gaseous cross-linking agent.


In still another embodiment, the method further includes removing the binding agent by heating the chemically cross-linked particle to a temperature above the melting point of the binding agent. The binding agent is thereby melted out of the chemically cross-linked particle.


In yet another embodiment, the method further includes removing the binding agent by exposing the particle to a solvent formulated to selectively dissolve the binding agent.


The foregoing and other objects, aspects, features, and advantages of the invention will become more apparent from the following description and from the claims.





BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings, like reference characters generally refer to the same parts throughout the different views. Also, the drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the invention.



FIG. 1 is an illustrative flow diagram depicting the steps of forming a chemically cross-linked particle of a desired shape and diameter according to one embodiment of the invention.



FIG. 2 is an illustrative flow diagram depicting the steps of forming a chemically cross-linked particle of a desired shape and diameter according to another embodiment of the invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring to FIG. 1, in one embodiment, the method of forming a chemically cross-linked particle of a desired shape and diameter is a mechanical process rather than a chemical process. First, an uncross-linked resin or polymer in particulate form is provided (Step 102). In one embodiment, the resin is a polyvinyl alcohol resin in particulate form having an average diameter of approximately 75 microns, such as a 99% hydrolyzed polyvinyl alcohol (e.g., product #341584 from Aldrich Chemical or Gohsenol NM-11 from Nippon Synthetic Chemical Industry Co.). In other embodiments, polymers such as polyvinyl acetate, vinyl polymers, polyamides, polyureas, polyurethranes, methacrylates, polyvinyl alcohols, or polymers having a pendant ester group that is easily cross-linked (or derivatives thereof) can be used. For many applications (e.g., embolics), the polymer is desirably hydrophilic.


A binding agent is then mixed with the resin particles (Step 104). The binding agent serves to hold the resin particles together before they are cross-linked. In some embodiments, the binding agent is a starch or a sugar (e.g., sucrose). In other embodiments, other materials such as alginates, polysaccharides, proteins, carrageenan, or vegetable gums, for example, can be used as binding agents. In still other embodiments, the binding agent can be a blend of one or more of the above synthetic or naturally occurring materials.


After the uncross-linked resin is mixed with the binding agent, the resin particles are agglomerated into a mass of a desired shape with a desired diameter (Step 106). In one embodiment, the resin particles are forced into a mold (using conventional plastic injection molding techniques) conforming to the desired shape and diameter. In another embodiment, the resin particles are pressed into the desired shape and diameter using conventional compression equipment. In still another embodiment, a punch is used to punch the desired shape out of a solid sheet of the resin. In yet another embodiment, a combination of static electricity and mechanical vibration or agitation is applied to the uncross-linked resin to cause the uncross-linked resin to agglomerate. In another embodiment, the uncross-linked resin particles are agglomerated by being put into a suspension and rotated. Rotation forces the resin particles to collide with each other and form a mass that can thereafter be cross-linked. The size of the mass is selected by controlling the rate of rotation. As the rotation speed increases, so does the number of resin particle collisions. However, the forces acting to pull the agglomerated mass apart also increase. The final size of the mass is a function of rotation speed and the force acting to pull the mass apart.


Preferably, the technique used to form the particle involves, or is followed by, some form of compression in order to ensure that the resin particles stay together in the desired shape, such as a sphere (Step 108). For example, molding can involve pneumatic, hydraulic, or other compression of the resin-filled mold form. Rotation generally provides adequate compression force.


After the mass is compressed, it is cross-linked to form the chemically cross-linked particle (Step 110). In some embodiments, cross-linking the mass is accomplished by exposing the mass to actinic energy, such as an electron beam, ultraviolet radiation, or gamma radiation. In other embodiments, cross-linking the mass is accomplished by exposing the mass to a gaseous cross-linking agent such as formaldehyde, glutaraldehyde, or an acid, for example. Polyvinyl alcohol and other polymers can be cross-linked using any of these techniques.


After the mass is chemically cross-linked and a chemically cross-linked particle is formed, the binding agent may be removed from the particle by exposing the particle to a solvent (Step 112) formulated to selectively dissolve the binding agent. For example, a polar solvent (e.g., water or alcohol) can be used to dissolve the binding agents discussed above.


Referring to FIG. 2, in another embodiment, the binding agent is a polymer with a melting temperature that is lower than the melting temperature of the resin. First, an uncross-linked resin or polymer in particulate form is provided (Step 202). Next, a binding agent is added to the resin (204). After the uncross-linked resin is mixed with the binding agent, the resin particles are agglomerated into a mass of a desired shape with a desired diameter (Step 206).


Exemplary binding agents useful in connection with this embodiment include Methocell methoylcellulose, hydroxypropyl methylcellulose, Ethocell Standard and Premium (organic solvent soluble) from Dow Chemical Co., Avicel PH-001 and Avicell PH-002 microcrystalline cellulose (water soluble) from Asahi Kasei Corp, potassium alginates, sodium alginates, or PEG 1400 (polyethylene glycol), for example. The agglomerated mass of binding agent and resin is heated to a temperature above the binding-agent melting point but below the resin melting point (Step 208). After the mass is heated, it is compressed (Step 210). Compression ensures that the resin particles stay together in the desired shape, such as a sphere, for example. After the mass is compressed, it is cooled (Step 212). Upon cooling, the binding agent resolidifies and the shape imparted to the mass remains “set.”


After the mass is cooled, it is then cross-linked to form the chemically cross-linked particle (Step 214). The binding agent may remain in the particle during and following cross-linking of the resin. In some embodiments, cross-linking the mass is accomplished by exposing the mass to actinic energy, such as an electron beam, ultraviolet radiation, or gamma radiation. In other embodiments, cross-linking the mass is accomplished by exposing the mass to a gaseous cross-linking agent such as formaldehyde or glutaraldehyde, for example. After the mass is cross-linked, the resulting particle can be again heated to a temperature above the binding-agent melting point so that the binding agent can be melted out of the particle (Step 216). The binding agent may also be removed from the particle by exposing the particle to a solvent formulated to selectively dissolve the binding agent. For example, a polar solvent (e.g. water or alcohol) can be used to dissolve some of binding agents discussed above.


Variations, modifications, and other implementations of what is described herein may occur to those of ordinary skill in the art without departing from the spirit and scope of the invention. Accordingly, the invention is not to be defined only by the preceding illustrative description.

Claims
  • 1. A method of forming a chemically cross-linked particle, the method comprising: providing an uncross-linked polyvinyl alcohol resin in particulate form;agglomerating the resin into a mass;compressing the mass into a sphere with a diameter of less than 600 microns; andcross-linking the mass to thereby form the chemically cross-linked particle.
  • 2. The method of claim 1 further comprising the step of adding a binding agent to the resin.
  • 3. The method of claim 2 wherein the step of adding a binding agent comprises adding a starch.
  • 4. The method of claim 2 wherein the step of adding a binding agent comprises adding a sugar.
  • 5. The method of claim 1 wherein the step of cross-linking the mass comprises exposing the mass to actinic energy.
  • 6. The method of claim 5 wherein the step of exposing the mass to actinic energy comprises exposing the mass to one of an electron beam, ultraviolet radiation, and gamma radiation.
  • 7. The method of claim 1 wherein the step of cross-linking the mass comprises exposing the mass to a gaseous cross-linking agent.
  • 8. The method of claim 2 further comprising the step of removing the binding agent by exposing the particle to a solvent formulated to selectively dissolve the binding agent.
  • 9. A method of forming a chemically cross-linked particle, the method comprising: providing an uncross-linked resin in particulate form;adding a binding agent to the resin, the binding agent having a melting point below a melting point of the resin;agglomerating the resin into a mass;heating the mass to a temperature above the melting point of the binding agent and below the melting point of the resin;compressing the mass into a sphere with a diameter of less than 600 microns;cooling the mass to a temperature below the melting point of the binding agent; andcross-linking the mass to thereby form the chemically cross-linked particle.
  • 10. The method of claim 9 wherein the binding agent is a polymer, the polymer becoming part of the chemically cross-linked particle.
  • 11. The method of claim 9 wherein the step of cross-linking the mass comprises exposing the mass to actinic energy.
  • 12. The method of claim 11 wherein the step of exposing the mass to actinic energy comprises exposing the mass to one of an electron beam, ultraviolet radiation, and gamma radiation.
  • 13. The method of claim 9 wherein the step of cross-linking the mass comprises exposing the mass to a gaseous cross-linking agent.
  • 14. The method of claim 9 further comprising the step of removing the binding agent by heating the chemically cross-linked particle to a temperature above the melting point of the binding agent thereby melting the binding agent out of the chemically cross-linked particle.
  • 15. The method of claim 9 further comprising the step of removing the binding agent by exposing the particle to a solvent formulated to selectively dissolve the binding agent.
  • 16. A method of forming a chemically cross-linked spherical particle, the method comprising: providing in particulate form an uncross-linked resin selected from the group consisting polyvinyl alcohol, polyvinyl acetate, vinyl polymers, polyamides, polyureas, and methacrylates;agglomerating the resin into a mass;compressing the mass into a sphere with a diameter of less than 600 microns; andcross-linking the mass by exposing the mass to radiation, to thereby form the chemically cross-linked spherical particle.
  • 17. The method of claim 16, further comprising the step of adding a binding agent to the resin, wherein the binding agent comprises sucrose.
  • 18. The method of claim 17, further comprising the step of removing the binding agent by exposing the particle to a solvent formulated to selectively dissolve the binding agent.
  • 19. The method of claim 16, further comprising the step of adding a binding agent to the resin, wherein the binding agent comprises a starch.
  • 20. The method of claim 19, further comprising the step of removing the binding agent by exposing the particle to a solvent formulated to selectively dissolve the binding agent.
  • 21. The method of claim 16, wherein the step of cross-linking the mass comprises exposing the mass to radiation selected from the group consisting of electron beam radiation, ultraviolet radiation, and gamma radiation.
  • 22. The method of claim 16, wherein the step of cross-linking the mass comprises exposing the mass to formaldehyde or gluturaldehyde.
  • 23. A method of forming a chemically cross-linked particle, the method comprising: providing an uncross-linked resin in particulate form;agglomerating the resin into a mass;compressing the mass into a sphere with a diameter of less than 600 microns; andexposing the mass to actinic energy to cross-link the mass to thereby form the chemically cross-linked particle.
  • 24. The method of claim 23 further comprising the step of adding a binding agent to the resin.
  • 25. The method of claim 24 wherein the step of adding a binding agent comprises adding a starch.
  • 26. The method of claim 24 wherein the step of adding a binding agent comprises adding a sugar.
  • 27. The method of claim 24 further comprising the step of removing the binding agent by exposing the particle to a solvent formulated to selectively dissolve the binding agent.
  • 28. The method of claim 23 wherein the step of exposing the mass to actinic energy comprises exposing the mass to one of an electron beam, ultraviolet radiation, and gamma radiation.
  • 29. The method of claim 23 wherein the resin comprises a polyvinyl alcohol resin.
  • 30. A method of forming a chemically cross-linked particle, the method comprising: providing an uncross-linked resin in particulate form;agglomerating the resin into a mass;compressing the mass into a sphere with a diameter of less than 600 microns; andexposing the mass to a gaseous cross-linking agent to cross-link the mass to thereby form the chemically cross-linked particle.
  • 31. The method of claim 30 further comprising the step of adding a binding agent to the resin.
  • 32. The method of claim 31 wherein the step of adding a binding agent comprises adding a starch.
  • 33. The method of claim 31 wherein the step of adding a binding agent comprises adding a sugar.
  • 34. The method of claim 31 further comprising the step of removing the binding agent by exposing the particle to a solvent formulated to selectively dissolve the binding agent.
  • 35. The method of claim 30 wherein the resin comprises a polyvinyl alcohol resin.
  • 36. A method of forming a chemically cross-linked particle, the method comprising: providing an uncross-linked resin in particulate form;agglomerating the resin into a mass;compressing the mass into a sphere with a diameter of less than 600 microns; andcross-linking the mass to thereby form the chemically cross-linked particle.
  • 37. The method of claim 36 further comprising the step of adding a binding agent to the resin.
  • 38. The method of claim 37 wherein the step of adding a binding agent comprises adding a starch.
  • 39. The method of claim 37 wherein the step of adding a binding agent comprises adding a sugar.
  • 40. The method of claim 37 further comprising the step of removing the binding agent by exposing the particle to a solvent formulated to selectively dissolve the binding agent.
  • 41. The method of claim 36 wherein the step of cross-linking the mass comprises exposing the mass to actinic energy.
  • 42. The method of claim 41 wherein the step of exposing the mass to actinic energy comprises exposing the mass to one of an electron beam, ultraviolet radiation, and gamma radiation.
  • 43. The method of claim 36 wherein the step of cross-linking the mass comprises exposing the mass to a gaseous cross-linking agent.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation application of and claims priority to U.S. application Ser. No. 10/116,330, filed on Apr. 4, 2002 now abandonded.

US Referenced Citations (331)
Number Name Date Kind
2275154 Merrill et al. Mar 1942 A
2609347 Wilson Sep 1952 A
3663470 Nishimura et al. May 1972 A
3737398 Yamaguchi Jun 1973 A
3957933 Egli et al. May 1976 A
4025686 Zion May 1977 A
4034759 Haerr Jul 1977 A
4055377 Erickson et al. Oct 1977 A
4076640 Forgensi et al. Feb 1978 A
4094848 Naito Jun 1978 A
4096230 Haerr Jun 1978 A
4098728 Rosenblatt Jul 1978 A
4110529 Stoy Aug 1978 A
4159719 Haerr Jul 1979 A
4191672 Salome et al. Mar 1980 A
4198318 Stowell et al. Apr 1980 A
4243794 White et al. Jan 1981 A
4246208 Dundas Jan 1981 A
4266030 Tschang et al. May 1981 A
4268495 Muxfeldt et al. May 1981 A
4271281 Kelley et al. Jun 1981 A
4402319 Handa et al. Sep 1983 A
4413070 Rembaum Nov 1983 A
4427794 Lange et al. Jan 1984 A
4428869 Munteanu et al. Jan 1984 A
4429062 Pasztor et al. Jan 1984 A
4442843 Rasor et al. Apr 1984 A
4444961 Timm Apr 1984 A
4452773 Molday Jun 1984 A
4456693 Welsh Jun 1984 A
4459145 Elsholz Jul 1984 A
4472552 Blouin Sep 1984 A
4477255 Pasztor et al. Oct 1984 A
4492720 Mosier Jan 1985 A
4522953 Barby et al. Jun 1985 A
4542178 Zimmermann et al. Sep 1985 A
4551132 Pasztor et al. Nov 1985 A
4551436 Johnson et al. Nov 1985 A
4573967 Hargrove et al. Mar 1986 A
4622362 Rembaum Nov 1986 A
4623706 Timm et al. Nov 1986 A
4640807 Afghan et al. Feb 1987 A
4657756 Rasor et al. Apr 1987 A
4661137 Garnier et al. Apr 1987 A
4663358 Hyon et al. May 1987 A
4671954 Goldberg et al. Jun 1987 A
4674480 Lemelson Jun 1987 A
4675113 Graves et al. Jun 1987 A
4678710 Sakimoto et al. Jul 1987 A
4678814 Rembaum Jul 1987 A
4680320 Uku et al. Jul 1987 A
4681119 Rasor et al. Jul 1987 A
4695466 Morishita et al. Sep 1987 A
4713076 Draenert Dec 1987 A
4742086 Masamizu et al. May 1988 A
4743507 Franses et al. May 1988 A
4772635 Mitschker et al. Sep 1988 A
4782097 Jain et al. Nov 1988 A
4789501 Day et al. Dec 1988 A
4793980 Torobin Dec 1988 A
4795741 Leshchiner et al. Jan 1989 A
4801458 Hidaka et al. Jan 1989 A
4804366 Zdeb et al. Feb 1989 A
4819637 Dormandy, Jr. et al. Apr 1989 A
4822535 Ekman et al. Apr 1989 A
4833237 Kawamura et al. May 1989 A
4850978 Dudar et al. Jul 1989 A
4859711 Jain et al. Aug 1989 A
4863972 Itagaki et al. Sep 1989 A
4897255 Fritzberg et al. Jan 1990 A
4929400 Rembaum et al. May 1990 A
4933372 Feibush et al. Jun 1990 A
4946899 Kennedy et al. Aug 1990 A
4954399 Tani et al. Sep 1990 A
4981625 Rhim et al. Jan 1991 A
4990340 Hidaka et al. Feb 1991 A
4999188 Solodovnik et al. Mar 1991 A
5007940 Berg Apr 1991 A
5011677 Day et al. Apr 1991 A
H915 Gibbs May 1991 H
5015423 Eguchi et al. May 1991 A
5032117 Motta Jul 1991 A
5034324 Shinozaki et al. Jul 1991 A
5047438 Feibush et al. Sep 1991 A
5079274 Schneider et al. Jan 1992 A
5091205 Fan Feb 1992 A
5106903 Vanderhoff et al. Apr 1992 A
5114421 Polak May 1992 A
5116387 Berg May 1992 A
5120349 Stewart et al. Jun 1992 A
5125892 Drudik Jun 1992 A
5147631 Glajch et al. Sep 1992 A
5147937 Frazza et al. Sep 1992 A
5149543 Cohen et al. Sep 1992 A
5158573 Berg Oct 1992 A
5171214 Kolber et al. Dec 1992 A
5171217 March et al. Dec 1992 A
5181921 Makita et al. Jan 1993 A
5190760 Baker Mar 1993 A
5190766 Ishihara Mar 1993 A
5192301 Kamiya et al. Mar 1993 A
5202352 Okada et al. Apr 1993 A
5216096 Hattori et al. Jun 1993 A
5253991 Yokota et al. Oct 1993 A
5260002 Wang Nov 1993 A
5262176 Palmacci et al. Nov 1993 A
5263992 Guire Nov 1993 A
5288763 Li et al. Feb 1994 A
5292814 Bayer et al. Mar 1994 A
5302369 Day et al. Apr 1994 A
5314974 Ito et al. May 1994 A
5316774 Eury et al. May 1994 A
RE34640 Kennedy et al. Jun 1994 E
5320639 Rudnick Jun 1994 A
5328936 Leifholtz et al. Jul 1994 A
5336263 Ersek et al. Aug 1994 A
5344452 Lemperle Sep 1994 A
5344867 Morgan et al. Sep 1994 A
5354290 Gross Oct 1994 A
5369133 Ihm et al. Nov 1994 A
5369163 Chiou et al. Nov 1994 A
5382260 Dormandy, Jr. et al. Jan 1995 A
5384124 Courteille et al. Jan 1995 A
5397303 Sancoff et al. Mar 1995 A
5398851 Sancoff et al. Mar 1995 A
5403870 Gross Apr 1995 A
5417982 Modi May 1995 A
5431174 Knute Jul 1995 A
5435645 Faccioli et al. Jul 1995 A
5443495 Buscemi et al. Aug 1995 A
5456693 Conston et al. Oct 1995 A
5468801 Antonelli et al. Nov 1995 A
5469854 Unger et al. Nov 1995 A
5476472 Dormandy, Jr. et al. Dec 1995 A
5484584 Wallace et al. Jan 1996 A
5490984 Freed Feb 1996 A
5494682 Cohen et al. Feb 1996 A
5494940 Unger et al. Feb 1996 A
5512604 Demopolis Apr 1996 A
5514090 Kriesel et al. May 1996 A
5525334 Ito et al. Jun 1996 A
5534589 Hager et al. Jul 1996 A
5541031 Yamashita et al. Jul 1996 A
5542935 Unger et al. Aug 1996 A
5553741 Sancoff et al. Sep 1996 A
5556391 Cercone et al. Sep 1996 A
5556610 Yan et al. Sep 1996 A
5558255 Sancoff et al. Sep 1996 A
5558822 Gitman et al. Sep 1996 A
5558856 Klaveness et al. Sep 1996 A
5559266 Klaveness et al. Sep 1996 A
5567415 Porter Oct 1996 A
5569193 Hofstetter et al. Oct 1996 A
5569449 Klaveness et al. Oct 1996 A
5569468 Modi Oct 1996 A
5571182 Ersek et al. Nov 1996 A
5580575 Unger et al. Dec 1996 A
5583162 Li et al. Dec 1996 A
5585112 Unger et al. Dec 1996 A
5595821 Hager et al. Jan 1997 A
5622657 Takada et al. Apr 1997 A
5624685 Takahashi et al. Apr 1997 A
5635215 Boschetti et al. Jun 1997 A
5637087 O'Neil et al. Jun 1997 A
5639710 Lo et al. Jun 1997 A
5648095 Illum et al. Jul 1997 A
5648100 Boschetti et al. Jul 1997 A
5650116 Thompson Jul 1997 A
5651990 Takada et al. Jul 1997 A
5653922 Li et al. Aug 1997 A
5657756 Vrba Aug 1997 A
5681576 Henry Oct 1997 A
5695480 Evans et al. Dec 1997 A
5695740 Porter Dec 1997 A
5698271 Liberti et al. Dec 1997 A
5701899 Porter Dec 1997 A
5715824 Unger et al. Feb 1998 A
5716981 Hunter et al. Feb 1998 A
5718884 Klaveness et al. Feb 1998 A
5723269 Akagi et al. Mar 1998 A
5725534 Rasmussen Mar 1998 A
5733925 Kunz et al. Mar 1998 A
5741331 Pinchuk Apr 1998 A
5746734 Dormandy, Jr. et al. May 1998 A
5752974 Rhee et al. May 1998 A
5756127 Grisoni et al. May 1998 A
5760097 Li et al. Jun 1998 A
5766147 Sancoff et al. Jun 1998 A
5770222 Unger et al. Jun 1998 A
5779668 Grabenkort Jul 1998 A
5785642 Wallace et al. Jul 1998 A
5785682 Grabenkort Jul 1998 A
5792478 Lawin et al. Aug 1998 A
5795562 Klaveness et al. Aug 1998 A
5797953 Tekulve Aug 1998 A
5807323 Kriesel et al. Sep 1998 A
5813411 Van Bladel et al. Sep 1998 A
5823198 Jones et al. Oct 1998 A
5827502 Klaveness et al. Oct 1998 A
5827531 Morrison et al. Oct 1998 A
5830178 Jones et al. Nov 1998 A
5833361 Funk Nov 1998 A
5840387 Berlowitz-Tarrant et al. Nov 1998 A
5846518 Yan et al. Dec 1998 A
5853752 Unger et al. Dec 1998 A
5855615 Bley et al. Jan 1999 A
5863957 Li et al. Jan 1999 A
5876372 Grabenkort et al. Mar 1999 A
5877224 Brocchini et al. Mar 1999 A
5885216 Evans, III et al. Mar 1999 A
5885547 Gray Mar 1999 A
5888546 Ji et al. Mar 1999 A
5888930 Smith et al. Mar 1999 A
5891155 Irie Apr 1999 A
5894022 Ji et al. Apr 1999 A
5895398 Wensel et al. Apr 1999 A
5895411 Irie Apr 1999 A
5899877 Leibitzki et al. May 1999 A
5902832 Van Bladel et al. May 1999 A
5902834 Porrvik May 1999 A
5922025 Hubbard Jul 1999 A
5922304 Unger Jul 1999 A
5928626 Klaveness et al. Jul 1999 A
5935553 Unger et al. Aug 1999 A
5951160 Ronk Sep 1999 A
5957848 Sutton et al. Sep 1999 A
5959073 Schlameus et al. Sep 1999 A
6003566 Thibault et al. Dec 1999 A
6015546 Sutton et al. Jan 2000 A
6027472 Kriesel et al. Feb 2000 A
6028066 Unger Feb 2000 A
6047861 Vidal et al. Apr 2000 A
6048908 Kitagawa Apr 2000 A
6051247 Hench et al. Apr 2000 A
6056721 Shulze May 2000 A
6059766 Greff May 2000 A
6063068 Fowles et al. May 2000 A
6071495 Unger et al. Jun 2000 A
6071497 Steiner et al. Jun 2000 A
6073759 Lamborne et al. Jun 2000 A
6090925 Woiszwillo et al. Jul 2000 A
6096344 Liu et al. Aug 2000 A
6099064 Lund Aug 2000 A
6099864 Morrison et al. Aug 2000 A
6100306 Li et al. Aug 2000 A
6139963 Fujii et al. Oct 2000 A
6149623 Reynolds Nov 2000 A
6160084 Langer et al. Dec 2000 A
6162377 Ghosh et al. Dec 2000 A
6165193 Greene, Jr. et al. Dec 2000 A
6179817 Zhong Jan 2001 B1
6191193 Lee et al. Feb 2001 B1
6214331 Vanderhoff et al. Apr 2001 B1
6214384 Pallado et al. Apr 2001 B1
6224630 Bao et al. May 2001 B1
6224794 Amsden et al. May 2001 B1
6235224 Mathiowitz et al. May 2001 B1
6238403 Greene, Jr. et al. May 2001 B1
6245090 Gilson et al. Jun 2001 B1
6251661 Urabe et al. Jun 2001 B1
6258338 Gray Jul 2001 B1
6261585 Sefton et al. Jul 2001 B1
6264861 Tavernier et al. Jul 2001 B1
6267154 Felicelli et al. Jul 2001 B1
6268053 Woiszwillo et al. Jul 2001 B1
6277392 Klein Aug 2001 B1
6280457 Wallace et al. Aug 2001 B1
6291605 Freeman et al. Sep 2001 B1
6296604 Garibaldi et al. Oct 2001 B1
6296622 Kurz et al. Oct 2001 B1
6296632 Luscher et al. Oct 2001 B1
6306418 Bley Oct 2001 B1
6306419 Vachon et al. Oct 2001 B1
6306425 Tice et al. Oct 2001 B1
6306427 Annonier et al. Oct 2001 B1
6312407 Zadno-Azizi et al. Nov 2001 B1
6312942 Plüss-Wenzinger et al. Nov 2001 B1
6315709 Garibaldi et al. Nov 2001 B1
6335384 Evans et al. Jan 2002 B1
6344182 Sutton et al. Feb 2002 B1
6355275 Klein Mar 2002 B1
6368658 Schwarz et al. Apr 2002 B1
6379373 Sawhney et al. Apr 2002 B1
6388043 Langer et al. May 2002 B1
6394965 Klein May 2002 B1
6423332 Huxel et al. Jul 2002 B1
6432437 Hubbard Aug 2002 B1
6436112 Wensel et al. Aug 2002 B1
6443941 Slepian et al. Sep 2002 B1
6458296 Heinzen et al. Oct 2002 B1
6476069 Krall et al. Nov 2002 B1
6495155 Tice et al. Dec 2002 B1
6544503 Vanderhoff et al. Apr 2003 B1
6544544 Hunter et al. Apr 2003 B1
6545097 Pinchuk et al. Apr 2003 B1
6575896 Silverman et al. Jun 2003 B1
6602261 Greene, Jr. et al. Aug 2003 B1
6602524 Batich et al. Aug 2003 B1
6605111 Bose et al. Aug 2003 B1
6629947 Sahatjian et al. Oct 2003 B1
6632531 Blankenship Oct 2003 B1
6652883 Goupil et al. Nov 2003 B1
6680046 Boschetti Jan 2004 B1
6699222 Jones et al. Mar 2004 B1
20010001835 Greene, Jr. et al. May 2001 A1
20010016210 Mathiowitz et al. Aug 2001 A1
20010036451 Goupil et al. Nov 2001 A1
20010051670 Goupil et al. Dec 2001 A1
20020054912 Kim et al. May 2002 A1
20020061954 Davis et al. May 2002 A1
20020160109 Yeo et al. Oct 2002 A1
20020182190 Naimark et al. Dec 2002 A1
20020197208 Ruys et al. Dec 2002 A1
20030007928 Gray Jan 2003 A1
20030032935 Damiano et al. Feb 2003 A1
20030108614 Volkonsky et al. Jun 2003 A1
20030183962 Buiser et al. Oct 2003 A1
20030185895 Lanphere et al. Oct 2003 A1
20030185896 Buiser et al. Oct 2003 A1
20030187320 Freyman Oct 2003 A1
20030194390 Krall et al. Oct 2003 A1
20030206864 Mangin Nov 2003 A1
20030233150 Bourne et al. Dec 2003 A1
20040076582 DiMatteo et al. Apr 2004 A1
20040091543 Bell et al. May 2004 A1
20040092883 Casey et al. May 2004 A1
20040096662 Lanphere et al. May 2004 A1
20040101564 Rioux et al. May 2004 A1
20040186377 Zhong et al. Sep 2004 A1
20050025800 Tan Feb 2005 A1
20050037047 Song Feb 2005 A1
Foreign Referenced Citations (85)
Number Date Country
A-7618698 Oct 1998 AU
3834705 Apr 1990 DE
9414868.6 Sep 1994 DE
94 14 868 Feb 1995 DE
94 14 868.6 Feb 1995 DE
100 26 620 May 2000 DE
297 24 255 Oct 2000 DE
100 26 620 A 1 Mar 2002 DE
0 067 459 Dec 1982 EP
0122624 Oct 1984 EP
0123235 Oct 1984 EP
0 243 165 Oct 1987 EP
0 294 206 Dec 1988 EP
0 402 031 May 1990 EP
0 422 258 Apr 1991 EP
0458745 May 1991 EP
0458079 Nov 1991 EP
0 470 569 Feb 1992 EP
0 547 530 Jun 1993 EP
0 600 529 Dec 1993 EP
0 623 012 Nov 1994 EP
0 706 376 Apr 1996 EP
0 730 847 Sep 1996 EP
0 744 940 Dec 1996 EP
0 797 988 Oct 1997 EP
0067459 Oct 1998 EP
0 764 047 Aug 2003 EP
0 993 337 Apr 2004 EP
2 096 521 Mar 1997 ES
59-196738 Nov 1884 JP
62-45637 Feb 1987 JP
4-74117 Mar 1992 JP
6-57012 Mar 1994 JP
9-110678 Apr 1997 JP
9-165328 Jun 1997 JP
9-316271 Dec 1997 JP
10-130329 May 1998 JP
2000189511 Jul 2000 JP
2001079011 Mar 2001 JP
2002 017848 Jan 2002 JP
255409 Feb 1997 NZ
517377 Aug 2003 NZ
421658 Feb 2001 TW
WO9112823 May 1991 WO
WO 9221327 Dec 1992 WO
WO 9300063 Jan 1993 WO
WO 9319702 Oct 1993 WO
WO 9410936 May 1994 WO
WO 9503036 Feb 1995 WO
WO 9522318 Aug 1995 WO
WO 9533553 Dec 1995 WO
WO 9637165 Nov 1996 WO
WO 9639464 Dec 1996 WO
WO 9804616 Feb 1998 WO
WO 9810798 Mar 1998 WO
WO 9826737 Jun 1998 WO
WO9847532 Oct 1998 WO
WO 9900187 Jan 1999 WO
WO 9943380 Feb 1999 WO
WO 9912577 Mar 1999 WO
WO 9943380 Sep 1999 WO
WO 9951278 Oct 1999 WO
WO 9957176 Nov 1999 WO
WO 0023054 Apr 2000 WO
WO00032112 Jun 2000 WO
WO 0040259 Jul 2000 WO
WO 0071196 Nov 2000 WO
WO 0074633 Dec 2000 WO
WO 0112359 Feb 2001 WO
WO 0166016 Sep 2001 WO
WO 0170291 Sep 2001 WO
WO0172281 Oct 2001 WO
WO0176845 Oct 2001 WO
WO 0193920 Dec 2001 WO
WO 0211696 Feb 2002 WO
WO 0234298 May 2002 WO
WO 0234299 May 2002 WO
WO 0234300 May 2002 WO
WO 0243580 Jun 2002 WO
WO 03016364 Feb 2003 WO
WO03051451 Jun 2003 WO
WO03082359 Sep 2003 WO
WO 2004019999 Mar 2004 WO
WO04073688 Sep 2004 WO
WO 2004075989 Sep 2004 WO
Related Publications (1)
Number Date Country
20030203985 A1 Oct 2003 US
Continuations (1)
Number Date Country
Parent 10116330 Apr 2002 US
Child 10402068 US