The present disclosure relates generally to forming a preform into a shaped body.
Shaped composite bodies are utilized in aerospace applications. Various systems and methods are known in the art for forming a preform into a shaped body.
According to various embodiments of the present disclosure, a manufacturing method is provided. The method includes arranging a preform over a surface of an inner mold line; folding the preform over sides of the inner mold line; pressing an end of the preform into a grip strip coupled to a side of the inner mold line; and applying pressure to the preform to force excess material of the preform into a forming bead of the inner mold line.
In various embodiments, the pressure is a negative pressure applied via a vacuum-bagging mechanism. In various embodiments, the pressure is a positive pressure applied via at least one of an autoclave mechanism, a flexible caul plates and pressurized bladders mechanism, or an actuated platen press mechanism. In various embodiments, the forming bead traverses the inner mold line in at least one of a longitudinal direction or a lateral direction. In various embodiments, at least one of a depth or a width of the forming bead at a location is proportionate to a linear length of the preform at the location. In various embodiments, the forming bead has consistent depth and width. In various embodiments, the forming bead has inconsistent depth or width. In various embodiments, the forming bead has a partial profile geometry selected from a group consisting of a partial concave geometry, a partial circular geometry, a partial tapered geometry, or a partial square geometry. In various embodiments, the forming bead is modifiable using an insert that modifies at least one of a length or a profile geometry of the forming bead. In various embodiments, the end of the preform is held onto the grip strip via a clamping mechanism and wherein the clamping mechanism is at least one of tape or a self-supporting clamp.
Also disclosed herein is a system for forming a preform into a shaped body. The system includes: an inner mold line; a grip strip coupled to a side of the inner mold line and configured to receive an end of the preform; and a pressure mechanism configured to apply pressure to the preform to force excess material of the preform into a forming bead of the inner mold line.
In various embodiments, the pressure is a negative pressure applied via a vacuum-bagging mechanism. In various embodiments, the pressure is a positive pressure applied via at least one of an autoclave mechanism, a flexible caul plates and pressurized bladders mechanism, or an actuated platen press mechanism. In various embodiments, the forming bead traverses the inner mold line in at least one of a longitudinal direction or a lateral direction. In various embodiments, at least one of a depth or a width of the forming bead at a location is proportionate to a linear length of the preform at the location. In various embodiments, the forming bead has consistent depth and width. In various embodiments, the forming bead has inconsistent depth or width. In various embodiments, the forming bead has a partial profile geometry selected from a group consisting of a partial concave geometry, a partial circular geometry, a partial tapered geometry, or a partial square geometry. In various embodiments, the forming bead is modifiable using an insert that modifies at least one of a length or a profile geometry of the forming bead. In various embodiments, the end of the preform is held onto the grip strip via a clamping mechanism and wherein the clamping mechanism is at least one of tape or a self-supporting clamp.
The present disclosure may include any one or more of the individual features disclosed above and/or below alone or in any combination thereof.
The foregoing features and elements may be combined in various combinations without exclusivity, unless expressly indicated herein otherwise. These features and elements as well as the operation of the disclosed embodiments will become more apparent in light of the following description and accompanying drawings.
The following detailed description of various embodiments herein makes reference to the accompanying drawings, which show various embodiments by way of illustration. While these various embodiments are described in sufficient detail to enable those skilled in the art to practice the disclosure, it should be understood that other embodiments may be realized and that changes may be made without departing from the scope of the disclosure. Thus, the detailed description herein is presented for purposes of illustration only and not of limitation. Furthermore, any reference to singular includes plural embodiments, and any reference to more than one component or step may include a singular embodiment or step. Also, any reference to attached, fixed, connected, or the like may include permanent, removable, temporary, partial, full or any other possible attachment option. Additionally, any reference to without contact (or similar phrases) may also include reduced contact or minimal contact. It should also be understood that unless specifically stated otherwise, references to “a,” “an,” or “the” may include one or more than one and that reference to an item in the singular may also include the item in the plural. Further, all ranges may include upper and lower values and all ranges and ratio limits disclosed herein may be combined.
Disclosed herein are systems and methods for forming a preform into a shaped body. The systems and methods relate to complex geometry carbon preforms for C-C composites with curvatures along multiple planes. To properly form a shaped body, appropriate tension must be applied to the preform, such that the preform may be stretched around various corners and radii with little to no wrinkling or fiber kinking—important to achieve target mechanical properties and reproducibility. In various embodiments, the systems and methods disclosed herein, in various embodiments, utilize a male inner mold line (IML) tool with tensioning/forming beads to stretch-form the preform. The male IML, tool is designed as a net shape or near net shape (NNS) representation of the final part geometry. The side walls of the preform may be formed around the tool surface until the side walls relatively follow the NNS IML. Ends of the preform are then interfaced with grip strips affixed to the side walls of the IML. In various embodiments, the preform may then be compressed by vacuum-bagging mechanism (i.e., negative pressure) or using vacuum-bagging mechanism and autoclave mechanism (i.e., positive pressure). In various embodiments, the positive pressure on the preforms may be alternatively applied using flexible caul plates and pressurized bladders mechanism or using an actuated platen press mechanism, among others, to apply uniform pressure and compaction. In various embodiments, applying negative pressure draws or forces excess material into the one or more forming beads. In that regard, a vacuum-bagging mechanism is placed around all or a portion of the IML and a negative pressure is applied, where the air pressure is lowered, which draws or forces the excess material into the one or more forming beads. In various embodiments, applying positive pressure presses or forces the excess material into the forming beads. In that regard, mechanisms, such as an autoclave mechanism, a flexible caul plates and pressurized bladders mechanism, or an actuated platen press mechanism, among others, are applied to an exterior of the preform formed over the IML, and the mechanism are actuated such that the preform is pressed or forced into the one or more forming beads. Utilizing the uniform pressure, excess material of the preform is drawn or pressed into the one or more forming bead on the IML, which proportionally tensions and forms the material.
The disclosed systems and methods for forming a preform into a shaped body is an improvement over the current matched-die tooling for shape-forming, in various embodiments, by reducing or eliminating undesired wrinkling and kinking during part forming. The disclosed improvements to tooling, in various embodiments, and forming addresses the wrinkling and uneven compression issues seen in the match-die tooling approach. The tensioning mechanisms provide for controlled tensioning and stretching to produce a fiber preform conforming to the complex shape and avoiding fiber wrinkling and kinking.
Referring now to
Turning now to
Turning now to
Turning to
Turning now to
Turing now to
Turning to
Referring now to
Benefits and other advantages have been described herein with regard to specific embodiments. Furthermore, the connecting lines shown in the various figures contained herein are intended to represent exemplary functional relationships and/or physical couplings between the various elements. It should be noted that many alternative or additional functional relationships or physical connections may be present in a practical system. However, the benefits, advantages, and any elements that may cause any benefit or advantage to occur or become more pronounced are not to be construed as critical, required, or essential features or elements of the disclosure. The scope of the disclosure is accordingly to be limited by nothing other than the appended claims, in which reference to an element in the singular is not intended to mean “one and only one” unless explicitly so stated, but rather “one or more.” Moreover, where a phrase similar to “at least one of A, B, or C” is used in the claims, it is intended that the phrase be interpreted to mean that A alone may be present in an embodiment, B alone may be present in an embodiment, C alone may be present in an embodiment, or that any combination of the elements A, B and C may be present in a single embodiment; for example, A and B, A and C, B and C, or A and B and C.
Systems, methods, and apparatus are provided herein. In the detailed description herein, references to “one embodiment,” “an embodiment,” “various embodiments,” etc., indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described. After reading the description, it will be apparent to one skilled in the relevant art(s) how to implement the disclosure in alternative embodiments.
Numbers, percentages, or other values stated herein are intended to include that value, and also other values that are about or approximately equal to the stated value, as would be appreciated by one of ordinary skill in the art encompassed by various embodiments of the present disclosure. A stated value should therefore be interpreted broadly enough to encompass values that are at least close enough to the stated value to perform a desired function or achieve a desired result. The stated values include at least the variation to be expected in a suitable industrial process, and may include values that are within 10%, within 5%, within 1%, within 0.1%, or within 0.01% of a stated value. Additionally, the terms “substantially,” “about,” or “approximately” as used herein represent an amount close to the stated amount that still performs a desired function or achieves a desired result. For example, the term “substantially,” “about,” or “approximately” may refer to an amount that is within 10% of, within 5% of, within 1% of, within 0.1% of, and within 0.01% of a stated amount or value.
Furthermore, no element, component, or method step in the present disclosure is intended to be dedicated to the public regardless of whether the element, component, or method step is explicitly recited in the claims. No claim element herein is to be construed under the provisions of 35 U.S.C. 112(f) unless the element is expressly recited using the phrase “means for.” As used herein, the terms “comprises,” “comprising,” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.
Finally, it should be understood that any of the above described concepts can be used alone or in combination with any or all of the other above described concepts. Although various embodiments have been disclosed and described, one of ordinary skill in this art would recognize that certain modifications would come within the scope of this disclosure. Accordingly, the description is not intended to be exhaustive or to limit the principles described or illustrated herein to any precise form. Many modifications and variations are possible in light of the above teaching.