Forming apparatus for duct members

Information

  • Patent Grant
  • 6363764
  • Patent Number
    6,363,764
  • Date Filed
    Tuesday, February 22, 2000
    24 years ago
  • Date Issued
    Tuesday, April 2, 2002
    22 years ago
Abstract
The invention provides an apparatus and method for automated manufacture of connective fittings on a duct member, and particularly a tapered adjustable take off. The connective fitting is generally placed near the inlet of the duct member and comprises a seating bead. The connective fitting can also comprise a seating ring groove for use in conjunction with a seating ring for applications involving connection of the duct member through a duct board. The apparatus for forming a connective fitting on the duct member may include a housing including a work station formed therein. A die associated with the work station is selectively positioned at a predetermined location relative to a work piece positioned in association with the work station. A forming assembly associated with the work station cooperates with the die to selectively form a connective fitting in the work piece at a predetermined angle. A positioning system positions the work piece at a predetermined position for forming the connective fitting, and a control system is provided for at least selective control of the forming assembly associated with the work station, or of other characteristics of the apparatus as desired. A method of manufacturing an adjustable duct member may include the steps of providing a duct member comprising a tube of material having predetermined dimensional characteristics, positioning of said duct member in a work station at a predetermined position relative to a forming assembly of said work station, and forming a seating bead in said duct members at a predetermined angle.
Description




BACKGROUND OF THE INVENTION




The invention is generally directed to an apparatus and method for producing ductwork, and particularly for the manufacture of a seating bead or seating ring groove on an adjustable top take off duct for use in an air handling system.




In general, ductwork is commonly used in forced air heating and air-conditioning systems for buildings and the like, with the ductwork providing a distribution system to various areas of the building from a furnace and/or air-conditioning system. Coupling a round duct to the furnace or main trunk line is commonly provided via a top take off duct member which is positioned in association with the air handling equipment. The top take off provides the outlet for forced air to exit the trunk line or extended plenum for distribution to the registers. Typically, such a top take off comprises a cylindrical fitting associated with a length of cylindrical tubing which is coupled to an outlet opening in a high pressure plenum of the air handling system. The fitting is installed into and fixed in position with respect to the outlet opening in the wall of a trunk line or plenum. To secure the top take off duct member to the outlet opening, the ducts are typically formed with interlocking tabs at least over a portion of the end mating with the trunk line or extended plenum. These tabs typically are formed as full tabs (tabs 360 degrees), or as half tabs (180 degrees). Additionally, in order to install the top take off duct member onto a main trunk line of the metal ductwork, the duct member must also have a seating bead to properly mate to the trunk line. Similarly, in order to install the top take off duct member onto a main trunk line of a fiberglass duct board, the duct member must have a seating ring groove which will allow the installation of a seating ring. The seating ring enables the top take off member to properly mate to the trunk line. The take off duct can then be coupled into cylindrical ductwork which extends to various portions of the building or the like.




Presently, no apparatus or methods exist for automated manufacture of a seating bead or a seating ring groove on a top take off fitting of an air handling system.




SUMMARY OF THE INVENTION




Based upon the foregoing, there is a need for an apparatus and method for automated manufacture of a connective fitting on a top take off duct fitting in the form of a seating bead or a seating ring groove. It is therefore a primary objective of this invention to provide an apparatus and method for manufacturing a seating bead on a top take off duct fitting wherein the seating bead can be used to properly mate the duct member to a main trunk line of a ductwork. Additionally, it is also a primary objective of this invention to provide an apparatus and method for manufacturing a seating ring groove on a top take off duct fitting wherein a seating ring mated to the seating ring groove can be used to properly mate the duct member to a main trunk line through a fiberglass duct board.




Accordingly, the invention provides an apparatus for forming a seating bead or seating ring groove on a top take off duct member for use in an air handling system. The apparatus may comprise a housing including a work station formed therein. A die associated with the work station is selectively positioned at a predetermined location relative to a work piece positioned in association with the work station. A forming assembly associated with the work station cooperates with the die to selectively form a coupling bead or seating ring groove at a predetermined angle in the work place.




Additionally the invention provides a method of automated manufacture of a seating bead on a duct member comprising the steps of: providing a duct member comprising a tube of material having predetermined dimensional characteristics. The duct member is positioned in a work station at a predetermined position relative to a forming assembly of said work station, and a seating bead is formed in the duct member at a predetermined angle.




Other objectives and advantages of the invention will become apparent from the following detailed description of a preferred embodiment taken in conjunction with the drawings.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a plan view of a full tab adjustable top take off fitting;





FIG. 2

is a plan view of a half tab adjustable top take off fitting;





FIG. 3

is a plan view of a full tab adjustable top take off fitting with a seating bead formed thereon which is manufactured according to the present invention;





FIG. 4

is a plan view of a half tab adjustable top take off fitting with a seating bead formed thereon which is manufactured according to the present invention;





FIG. 5

is a plan view of a full tab adjustable top take off fitting with a seating ring groove formed thereon which is manufactured in accordance with the present invention;





FIGS. 6 and 6A

are top view of the forming apparatus of the present invention which identifies the various working parts on the apparatus;





FIGS.7 and 7A

are a sectional view of the forming assembly of the apparatus of

FIG. 6

;





FIGS. 8

,


8


A and


8


B are a sectional view of the forming wheel assembly used to make the seating bead on a duct member;





FIG. 9

is a sectional view of the forming wheel assembly used to make a seating ring groove on a duct member for engagement with a duct board seating ring;





FIG. 10

is an enlarged isometric sectional view showing the work station die along with the forming assembly used for applying the seating bead to the full tab adjustable top take off fitting in accordance with the present invention;





FIG. 11

is an enlarged isometric sectional view showing the work station die along with the forming assembly used for applying the seating bead to the half tab adjustable top take off fitting in accordance with the present invention; and





FIG. 12

is an enlarged isometric sectional view showing the work station die along with the forming assembly used for applying the seating ring groove needed to accept the seating ring for fiberglass duct for the full tab adjustable top take off fitting in accordance with the present invention.











DETAILED DESCRIPTION OF THE INVENTION




A typical adjustable duct member


10


is shown in

FIG. 1

, wherein the duct member


10


may include three sections or gores


12


,


14


, and


16


. The duct member


10


further includes an inlet opening


18


and an outlet opening


20


, being adapted to be coupled between other members in a duct system, or preferably as a top takeoff connected into a plenum associated with the air handling system. To facilitate connection of the duct member


10


in association with a plenum, inlet opening


18


may be provided with a plurality of tabs


22


which may be selectively bent into engagement with an inner wall of the plenum through an opening formed therein. These type connections having tabs extending completely around the circumference of the opening


18


are generally referred to as “full tab” connections. The duct member


10


may also include a taper from the inlet opening


18


to the outlet opening


20


, such that each of the gores


12


,


14


and


16


become progressively smaller. The tapering of the gores


12


,


14


and


16


can provide a significant increase in velocity of air passing through duct


10


from the plenum of the air handling system. The duct member


10


may be produced from a flat blank of material which is rolled such that opposed seams of the blank slightly overlap and are coupled to one another to form the tubular configuration. Coupling at the overlapping seams may be provided in any suitable manner, such as by riveting or the like.




Another typical duct member


10


′ as shown in

FIG. 2

, varies from the duct member


10


of

FIG. 1

in that the inlet opening


18


′ comprises a plurality of tabs


22


which extend only about a portion of the inlet opening


18


′, typically representing half of the circumference. This arrangement is commonly referred to as a “half tab” connection. Opposite the tabs


22


, the solid edge portion


24


of the gore


12


′ extends into an opening formed in a plenum of the air handling system, with tabs


22


selectively bet into engagement with an inner wall to secure the duct member in position.




The tubular configurations


10


,


10


′ of the formed blank of material may provide a starting work piece as shown in

FIGS. 1 and 2

, which may then be operated on by the apparatus and method of the invention. The work piece


10


as shown in

FIG. 1

is designed to have a predetermined configuration and dimensional characteristics for use in the apparatus and method of the invention, but any suitable particular dimensional characteristics of the work piece can be accommodated. As an example, the tapered tube as shown in

FIG. 1

may have an inlet opening


18


having a diameter of seven inches, while the outlet opening


20


has a diameter of 5.7 inches. The method and apparatus of the present invention may also be used in conjunction with a cylindrical duct as an alternative.




The present invention is directed at producing a connective fitting in the form of a seating bead or a seating ring groove on a duct member work piece


10


,


10


′ to form the duct member to the final preferred form as shown in

FIGS. 3-5

. Referring now to

FIG. 3

, a seating bead


26


is shown formed on an adjustable duct member


30


having a full tab configuration. The seating bead


26


provides a register surface which allows the duct member


30


to be properly positioned and securely fastened to a trunk line or plenum of an air handling system.

FIG. 4

shows a seating bead


26


formed on a duct member


30


′ having a half tab configuration. However, the seating bead


26


is not appropriate for situations employing a fiberglass duct board in conjunction with the trunk line. In these applications a seating ring (not shown) is used to mate against the board while the opening of the duct member extends through a hole in the board where it is connected to the trunk line or plenum. The seating ring provides a register surface which allows the adjustable top take off


30


to be properly positioned and securely fastened to the trunk line or plenum.

FIG. 5

shows a seating ring groove


28


formed on an a duct member


30


″ having a full tab configuration. The inside diameter of the seating ring mates with the seating ring groove


28


in a manner securing the seating ring to the member


30


″. In the same manner, the present invention is also capable of forming a seating ring groove on a duct member having a half tab configuration.




The formation of a seating bead


26


or a seating ring groove


28


is accomplished by inserting the inlet


18


,


18


′ end of either a full tab adjustable top take off duct or other duct member


10


or a half tab adjustable top take off


10


′ into the forming apparatus


40


shown in FIG.


6


. The forming apparatus


40


comprises a housing


32


including a upper surface


34


positioned at a predetermined angle, said upper surface


34


having a work station


36


formed therein, wherein said work station


36


includes an upper die


42


, a lower die


44


, and a forming assembly


46


. The dies


42


,


44


and the forming assembly


46


each have a different configuration depending on whether a seating bead


26


or a seating ring groove


28


is desired and will be discussed in further detail hereafter. The lower die


44


is fixably attached to a stationary plate


48


. The upper die


42


is fixably attached to a sliding plate


50


which is connected to a hydraulic ram


52


. When in the open position, as shown in

FIG. 6

, there is sufficient clearance to insert the inlet end


18


,


18


′ of the adjustable top take off


10


,


10


′ into position over the forming assembly


46


at a predetermined height by contact with a base or height adjustment ring


38


as best shown in

FIGS. 10-12

. Continuing with

FIG. 6

, when the forming apparatus is activated, the hydraulic ram


52


moves the top sliding plate


50


along with the upper die


42


toward and into contact with the adjustable top take off


10


,


10


′ thereby clamping it into position between the upper die


42


and the lower die


44


. In the preferred embodiment, the hydraulic control system includes a directional valve controlling operation of the clamping action. The forming assembly


46


rotates to form the seating bead


24


or seating ring groove


26


on the adjustable top take off


10


,


10


′. Referring to

FIGS. 6 and 6A

, for safety, activation of the forming assembly


46


is initiated in the preferred embodiment by a start switch


45


and an electronic part sensor


47


mounted in association with the safety guard


49


in conjunction with a foot pedal switch


51


. In operation the user must have a part located within the guard


49


so as to be detected by sensor


47


while operating the foot pedal switch


51


. Upon activation, the machine automatically forms the desired connective fitting. Deactivation of the forming assembly is initiated by a kill switch


53


located on a control panel


55


. Alternatively, other safety mechanisms could be used, such as dual activation switches. The control system of the preferred embodiment further allows the mode of operation to be modified for the desired fitting and associated tooling as hereafter described. A mode switch


57


is set either to the set up or run modes, and a set up button


59


used to set the machine to make the desired fitting, being full tab or half tab seating beads or a seating ring groove in the preferred forms. The control system may also include a control


61


for clamping and unclamping the work piece in the machine, and control


63


for forward or reverse rotation of the work piece in the forming operation, or other controls as desired.




Referring now to

FIG. 7

, the forming assembly


46


comprises a head portion


52


including a support block


54


carrying a rotating working head


56


at a predetermined angle. The rotating head


56


is driven by a drive shaft (not shown) connected to a hydraulic motor (not shown) that is positioned through the center of the support block


54


and is coupled to the rotating working head


56


. In the preferred embodiment, the speed of operation of the hydraulic motor is controlled by a proportional valve, allowing the motor to ramp up or down in speed, resulting in less wear on the motor. The rotating working head


56


includes a moveable slide block


60


mounted within a slot


62


. The slide block


60


has beading wheels


70


or grooving wheels


72


on either end of the slide block


60


,


60


′ as shown in

FIGS. 8

,


8


A,


8


B and


9


. Each wheel


70


,


71


,


72


and


73


is moved back and forth within its associated slide block


60


to perform the beading or grooving operation on alternating cycles as the rotating working head


56


rotates. Referring now back to

FIG. 7

, the back and forth motion of the slide block


60


within the slot


62


is accomplished by the eccentric drive shaft


58


mounted in the center of the rotating working head


56


. The drive shaft (not shown) is driven through an appropriate gear assembly to couple the rotation of the drive shaft to the eccentric drive shaft


58


. An off-center pin


64


associated with the eccentric drive shaft


58


is engaged in a slot in the bottom of the slide block


60


which moves the slide block


60


within the slot


62


. This allows the beading wheels


70


,


71


, or


72


or the grooving wheel


73


to extend and engage the interior of the adjustable top take off


10


,


10


′. This engagement pushes the metal into the top die


42


and bottom die


44


to form the seating bead


26


, or seating ring groove


28


on the work piece


10


,


10


′ as will be shown and described in detail below. It is also desired in the preferred embodiment that the mounting of the slide block


60


within the working head


56


is adjustable as shown in

FIG. 7A

, by repositioning the eccentric pin


64


in a different mounting hole


75


within the eccentric


58


. Allowing adjustment of the eccentric


58


allows the user to fine tune the seating bead for the particular work pieces being used, differing material thicknesses or other variables in the work pieces or operation.




Referring now to

FIG. 10

, the formation of the seating bead


26


is shown in relation to a tabbed portion of a work piece


10


. The height at which the seating bead


26


is formed is determined by the base or height adjustment ring


38


which comprises a base channel ring


76


and a top channel cover ring


78


. The seating bead


26


is generally formed adjacent to the tabs


22


. The top channel cover ring


78


is seated into the base channel ring


76


to set the proper insertion depth of the work piece


10


. The sliding plate


50


engages the upper seating bead die


42


against the work piece


10


. The beading wheel


70


forms the seating bead


26


by forcing the wall of the work piece


10


into the seating bead cavity of the upper seating bead die


42


′.




Referring now to

FIG. 11

, the formation of the seating bead


26


is shown in relation to a solid edge extending portion


24


of a half-tabbed work piece


10


′. The height at which the seating bead


26


is formed is determined by the height adjustment ring


38


′ which comprises a base channel ring


76


′ and a top channel cover ring


78


′. Although not shown, on the tabbed side of the work piece


10


′, the height adjustment ring


38


′ is generally the same as the ring


38


shown in FIG.


10


. The difference of the height adjustment ring


38


′ on the non-tabbed portion side is that a ring


80


is extendable up through an aperture in the top channel cover ring


78


′ as shown in FIG.


11


. The ring


80


is actuated by at least one piston assembly


82


which is mounted through an aperture in the base channel ring


76


′. The ring


80


generally extends circumferentially along the non-tabbed portion of the work piece


10


′. As before, the work piece


10


′ is clamped in place when sliding plate


50


engages the upper seating bead die


42


′ against the work piece


10


′. The at least one and preferably three hydraulic lift pistons


82


push the ring


80


against the solid edge extending portion


24


. The ring


80


keeps the metal on the half tab adjustable top take off


10


′ from wrinkling, tearing or jamming the apparatus


40


. The beading wheel


70


forms the seating bead


26


by forcing the wall of the work piece


10


′ into the seating bead cavity of the upper seating bead die


42


′ due to rotation of the forming assembly


46


.




Referring now to

FIG. 12

, the formation of the seating ring groove


28


is shown in relation to a tabbed portion of a work piece


10


. The height at which the seating ring groove


28


is formed is determined by the height adjustment ring


38


″ which comprises a base channel ring


76


″. While the seating bead


26


is generally formed adjacent to the tabs


22


, the seating ring groove


28


is generally formed a distance away from the tabs


22


so that there is room for the inlet


18


to protrude through the duct board in this application. Accordingly, the inlet


18


is seated into the base channel ring


76


″ to set the proper insertion depth of the work piece


10


. The sliding plate


50


engages the upper seating ring groove die


42


″ against the work piece


10


. The seating ring groove die


42


″ comprises a seating ring groove extension


84


extending perpendicularly from the seating ring groove die


42


″. The grooving wheel


72


forms the seating ring groove


28


by forcing the wall of the work piece


10


against a seating ring groove extension


84


and the seating ring groove die


42


″.




While the above description has been presented with specific relation to a particular embodiment of the invention and method of producing a seating bead or a seating ring groove on a tapered and adjustable duct member, it is to be understood that the claimed invention is not to be limited thereby. It will thus be seen that the objects set forth above, among those made apparent from the preceding description, are obtained. Certain changes may be made without departing from the scope of the invention and the above description is intended to be interpreted as illustrative and not limiting.



Claims
  • 1. An apparatus for forming a connective fitting on a duct member for use in an air handling system comprising,a housing including an upper surface, said upper surface having a work station formed therein, wherein said work station includes a base for positioning an end of a work piece at a predetermined distance below said upper surface, a die positioned within said work station is supported in association with said upper surface and selectively positioned at a predetermined location relative to said work piece, a forming assembly positioned within said work station cooperates with said die to selectively form a connective fitting on said work piece, and a control system for at least selective control of said forming assembly associated with said working station.
  • 2. The apparatus of claim 1, wherein said connective fitting is a seating bead.
  • 3. The apparatus of claim 1, wherein said connective fitting is a seating ring groove.
  • 4. The apparatus of claim 1, wherein said forming assembly comprises a rotating working head comprising at least one forming wheel fixably attached to a slide block housed within said rotating working head, said at least one forming wheel configured complimentary to said forming die to produce a connective fitting in said workpiece.
  • 5. The apparatus of claim 4, wherein rotation of said drive shaft head causes said pin to engage said slide block and force said at least one forming wheel to engage said workpiece.
  • 6. The apparatus of claim 1, wherein said die comprises a first die member and a second die member opposing said first die member.
  • 7. The apparatus of claim 6, wherein said first and second die members are selectively moveable against said workpiece to clamp said workpiece into a predetermined position.
  • 8. The apparatus of claim 1, wherein said workpiece is a tapered top take-off duct member.
  • 9. The apparatus of claim 8, wherein said tapered top take-off duct member has a half-tab formed at an opening end of said tapered top take-off duct member.
  • 10. The apparatus of claim 8, wherein said tapered top take-off duct member has a full-tab formed at an opening end of said tapered top take-off duct member.
  • 11. The apparatus of claim 1 further comprising a workpiece sensor to detect when said work piece is properly positioned within said workstation.
  • 12. The apparatus of claim 11, wherein said workpiece sensor is housed in a safety guard protruding upward from said upper surface.
  • 13. The apparatus of claim 9 wherein said base member comprises a semi-circular ring which is selectively moveable to engage and support a solid edge extending portion of said half tabbed tapered top take-off duct member during forming operation.
  • 14. The apparatus of claim 1, wherein the forming assembly comprises at least one forming wheel wherein the radial movement of said at least one forming wheel is controlled at least in part by an eccentrically positioned pin placed in one of a plurality of apertures in a drive shaft head associated with said forming assembly.
  • 15. The apparatus of claim 14, wherein each aperture is positioned at different distances from the center of said drive shaft head.
  • 16. An apparatus for forming a connective fitting on a duct member for use in an air handling system comprising,a housing comprising an upper surface positioned at a predetermined angle, said upper surface having a work station formed therein, wherein said work station includes a base for positioning of said duct member at a predetermined depth with respect to said upper surface, a first semi-circular die member and a second semi-circular die member, at least one of said die members moveable against the other to form a circular die and to clamp said duct member in a manner preventing rotation of said duct member, a forming assembly associated with said work station which comprises at least two forming wheels housed in a rotating working head, said at least two forming wheels radially adjustable to cooperate with said die to selectively form a connective fitting in said duct member at a predetermined location, and a control system for at least selective control of said forming assembly associated with said work station, wherein said forming assembly comprises an eccentrically positioned pin which controls the radial movement of said at least two forming wheels.
  • 17. The apparatus of claim 16, wherein said eccentric pin is placed in one of a plurality of apertures in a drive shaft head positioned within said rotating working head, wherein each aperture is positioned at different distances from the center of said drive shaft head.
  • 18. An apparatus for forming a connective fitting on a duct member for use in an air handling system comprising:a housing including an upper surface, said upper surface having a work station formed therein, wherein said work station includes a base for positioning of a duct member at a predetermined position with respect to said upper surface, a die positioned within said work station is supported in association with said upper surface and selectively positioned at a predetermined location relative to said duct member, a forming assembly associated with said work station cooperates with said die to selectively form a connective fitting on said duct member, a control system for at least selective control of said forming assembly associated with said working station, and wherein said base member comprises a semi-circular ring which is selectively moveable to engage and support at least an interior portion of said duct member.
  • 19. The apparatus of claim 18, wherein said connective fitting is a seating ring groove.
US Referenced Citations (21)
Number Name Date Kind
3010506 Bellatorre Nov 1961 A
3290914 Vaill et al. Dec 1966 A
3728059 de Putter Apr 1973 A
3815394 Walker Jun 1974 A
3861184 Knudson Jan 1975 A
4198842 Pawlaczyk Apr 1980 A
4210090 Stubbings Jul 1980 A
4399679 King Aug 1983 A
4418943 Ionna Dec 1983 A
4466641 Heilman et al. Aug 1984 A
4881762 Arnoldt Nov 1989 A
5069484 McElroy Dec 1991 A
5090101 Welty Feb 1992 A
5102253 Conti Apr 1992 A
5105640 Moore Apr 1992 A
5189784 Welty Mar 1993 A
5243750 Welty Sep 1993 A
5436423 Welty Jul 1995 A
5450879 Toben Sep 1995 A
5685345 Gieseke et al. Nov 1997 A
6047584 Filippo Apr 2000 A
Non-Patent Literature Citations (1)
Entry
Iowa Precision AEM Gearhead Machines, General Operations Manual, 1st Ed. Jun. 9, 1994.