The contents of Japanese Patent Application No. 2017-052608, and of International Patent Application No. PCT/JP2018/003956, on the basis of each of which priority benefits are claimed in an accompanying application data sheet, are in their entirety incorporated herein by reference.
Certain embodiment of the present invention relates to a forming device and a forming method.
In the related art, a forming device is known in which a gas is supplied into a heated metal pipe material so as to expand the metal pipe material and a metal pipe having a pipe portion and a flange portion is formed. For example, a forming device described in the related art includes an upper die and a lower die which are paired with each other, a gas supply unit which supplies a gas into a metal pipe material held between the upper die and the lower die, a first cavity portion (main cavity) which is formed by joining between the upper die and the lower die and forms a pipe portion, and a second cavity portion (sub cavity) which communicates with the first cavity portion and forms a flange portion. In the forming device, the dies are closed and the gas is supplied into the heated metal pipe material so as to expand the metal pipe material, and thus, the pipe portion and the flange portion can be simultaneously formed.
According to an embodiment of the present invention, there is provided a forming device of forming a metal pipe having a pipe portion, including: a first die and a second die which are paired with each other, and constitute a first cavity portion configured to form the pipe portion and a second cavity portion which communicates with the first cavity portion and is configured to form a flange portion of the metal pipe when the first and second dies are closed; a drive mechanism configured to move at least one of the first die and the second die in a direction in which the dies are joined to each other; and a gas supply unit configured to supply a gas into a metal pipe material which is held between the first die and the second die and is heated, in which each of the first die and the second die has flange forming surfaces which face each other and constitute the second cavity portion, and a protrusion portion, which protrudes from one flange forming surface to the other flange forming surface, is formed on at least one of the flange forming surfaces of the first die and the second die.
According to another embodiment of the present invention, there is provided a forming device of forming a metal pipe having a pipe portion, including: a first die and a second die which are paired with each other, and constitute a first cavity portion configured to form the pipe portion and a second cavity portion which communicates with the first cavity portion and is configured to form a flange portion of the metal pipe when the first and second dies are closed; a heating unit configured to heat the metal pipe; a drive mechanism configured to move at least one of the first die and the second die in a direction in which the dies are joined to each other; and a gas supply unit configured to supply a gas into a metal pipe material which is held between the first die and the second die and is heated, in each of the first die and the second die has flange forming surfaces which face each other and constitute the second cavity portion, a protrusion mechanism configured to be switchable between a protrusion and a non-protrusion from at least one of the flange forming surfaces of the first die and the second die is formed on the one flange forming surface, and the protrusion mechanism protrudes from the one flange forming surface to the other flange forming surface when the protrusion mechanism protrudes.
According to still another embodiment of the present invention, there is provided a forming method of forming a metal pipe having a pipe portion, including: preparing a heated metal pipe material between a first die and a second die; forming a first cavity portion configured to form the pipe portion and a second cavity portion which communicates with the first cavity portion and is configured to form a flange portion of the metal pipe between the first die and the second die by moving at least one of the first die and the second die in a direction in which the dies are joined to each other; forming the pipe portion and the flange portion extending from the pipe portion by supplying a gas into the metal pipe material; and forming a gap portion in which inner surfaces facing each other are separated from each other to form a gap and a proximity portion in which the inner surfaces are close to each other compared to the gap portion, inside the flange portion.
A coating liquid may be applied to a formed metal pipe material for the purpose of rust prevention or the like. In a forming device of the related art, when a flange portion is completely crushed, the coating liquid does not enter an inside of the flange portion. Meanwhile, if a space inside the flange portion is enlarged to cause the coating liquid easily to enter the inside of the flange portion, a large gap is generated in the flange portion, and thus, weldability decreases when the flange portion and other members are welded to each other.
It is desirable to provide a forming device and a forming method capable of facilitating entry of the coating liquid into the flange portion while securing the weldability of the flange portion of the metal pipe.
According to a forming device of the present invention, a first die and a second die constitute a second cavity portion communicating with a first cavity portion, and thus, a flange portion of a metal pipe can be formed by crushing a portion of a pipe portion with the second cavity portion. Here, each of the first die and the second die has flange forming surfaces which face each other and constitute the second cavity portion. In addition, a protrusion portion, which protrudes from one flange forming surface to the other flange forming surface, is formed on at least one of the flange forming surfaces of the second cavity portion of the first die and the second die. Accordingly, in the flange portion, a location corresponding to the protrusion portion can be more firmly crushed compared to the other portions. Therefore, weldability of the flange portion can be secured by performing welding at a portion corresponding to the protrusion portion in the flange portion. Meanwhile, a gap in which a coating liquid can enter can be secured in portions other than the protrusion portion in the flange portion. As described above, the coating liquid can easily enter the inside of the flange portion while the weldability of the flange portion of the metal pipe is secured.
In addition, the protrusion portion may be intermittently formed on the flange forming surface along an extension direction of the first cavity portion. In this case, a gap is formed in the extension direction of the second cavity portion at the location pressed by the protrusion portion. The coating liquid enters the gap, and thus, the coating liquid can easily enter throughout the entire flange portion.
Moreover, the protrusion portion may be formed inside an outer end portion of the flange forming surface. In this case, a welding location can also be set inside the outer end portion in the flange portion. Accordingly, it is possible to easily perform a welding operation.
According to the forming device of the present invention, the first die and the second die constitute the second cavity portion communicating with the first cavity portion, and thus, the flange portion of the metal pipe can be formed by crushing a portion of the pipe portion with the second cavity portion. Here, each of the first die and the second die has the flange forming surfaces which face each other and constitute the second cavity portion. In addition, the protrusion mechanism configured to be switchable between a protrusion and a non-protrusion from at least one of the flange forming surfaces of the second cavity portion of the first die and the second die is formed on the one flange forming surface. The protrusion mechanism protrudes from the one flange forming surface to the other flange forming surface when the protrusion mechanism protrudes. Accordingly, in the flange portion, a location corresponding to the protrusion mechanism can be more firmly crushed compared to the other portions. Therefore, weldability of the flange portion can be secured by performing welding at a portion corresponding to the protrusion mechanism in the flange portion. Meanwhile, a gap in which a coating liquid can enter can be secured in portions other than the protrusion portion in the flange portion. As described above, the coating liquid can easily enter the inside of the flange portion while the weldability of the flange portion of the metal pipe is secured.
In addition, the protrusion mechanism may be intermittently formed on the flange forming surface along an extension direction of the first cavity portion. In this case, a gap is formed in the extension direction of the second cavity portion at a location pressed by the protrusion mechanism. The coating liquid enters the gap, and thus, the coating liquid can easily enter throughout the entire flange portion.
Moreover, the protrusion mechanism may be formed inside an outer end portion of the flange forming surface. In this case, a welding location can also be set inside the outer end portion in the flange portion. Accordingly, it is possible to easily perform a welding operation.
According to a forming method of the present invention, it is possible to obtain operations and effects similar to those of the above-described forming device.
According to the present invention, a coating liquid can easily enter the inside of a flange portion while weldability of a flange portion of a metal pipe is secured.
Hereinafter, preferred embodiments of a forming device and a forming method according to the present invention will be described with reference to the drawings. In addition, in each drawing, the same reference numerals are assigned to the same portions or the corresponding portions, and repeated descriptions thereof are omitted.
<Configuration of Forming Device>
As shown in
The lower die (second die) 11 is fixed to a large base 15. The lower die 11 is configured of a large steel block and includes a cavity surface 16 on an upper surface of the lower die 11. In addition, electrode receiving spaces 11a are provided around right and left ends (right and left ends in
In addition, the first and second electrodes 17 and 18 located on the lower die 11 side constitute the pipe holding mechanism 30, and can support the metal pipe material 14 between the upper die 12 and the lower die 11 such that the metal pipe material 14 can be lifted and lowered. Moreover, the thermocouple 21 merely shows an example of temperature measuring means, and a non-contact type temperature sensor such as a radiant thermometer or a photo-thermometer may be used. If a correlation between an energization time and a temperature is obtained, it is sufficiently possible to eliminate the temperature measuring means.
The upper die (first die) 12 includes a cavity surface 24 on a lower surface and is a large steel block which houses a cooling water passage 25. An upper end portion of the upper die 12 is fixed to a slide 82. In addition, the slide 82 to which the upper die 12 is fixed is configured to be suspended by a pressurizing cylinder 26, and is guided by a guide cylinder 27 so as not to sway.
Similarly to the lower die 11, electrode receiving spaces 12a are provided around right and left ends (right and left ends in
The drive mechanism 80 includes the slide 82 which moves the upper die 12 such that the upper die 12 and the lower die 11 are joined to each other, a drive unit 81 which generates a driving force for moving the slide 82, and a servo motor 83 which controls a fluid volume with respect to the drive unit 81. The drive unit 81 is configured of a fluid supply unit which supplies a fluid (a working oil in a case where a hydraulic cylinder is adopted as the pressurizing cylinder 26) which drives the pressurizing cylinder 26 to the pressurizing cylinder 26.
The controller 70 controls the servo motor 83 of the drive unit 81 so as to control an amount of the fluid supplied to the pressurizing cylinder 26, and thus, can control the movement of the slide 82. In addition, it should be noted that the drive unit 81 is not limited to the drive unit that applies the driving force to the slide 82 via the pressurizing cylinder 26 as described above. For example, the drive unit 81 may be a drive unit which mechanically connects a drive mechanism to the slide 82 and directly or indirectly applies a driving force generated by the servo motor 83 to the slide 82. For example, a drive mechanism may be adopted, which includes an eccentric shaft, a drive source (for example, a servo motor, a speed reducer, or the like) which applies a rotation force by which the eccentric shaft is rotated, a conversion unit (for example, a connecting rod, an eccentric sleeve, or the like) which converts a rotation motion of the eccentric shaft into a linear motion and moves the slide. In addition, in the present embodiment, the drive unit 81 may not include the servo motor 83.
If the center cavity surface 16 of the lower die 11 is defined as a reference line LV2, the step is formed on the upper surface of the lower die 11 by a first protrusion 11b, a second protrusion 11c, a third protrusion 11d, and a fourth protrusion 11e. The first protrusion 11b and the second protrusion 11c are formed on a right side (a right side in
Meanwhile, if a surface of the center cavity surface 24 of the upper die 12 is defined as a reference line LV1, the step is formed on the lower surface of the upper die 12 by a first protrusion 12b, a second protrusion 12c, a third protrusion 12d, and a fourth protrusion 12e. The first protrusion 12b and the second protrusion 12c are formed on a right side (a right side in
In addition, the first protrusion 12b of the upper die 12 faces the first protrusion 11b of the lower die 11, the second protrusion 12c of the upper die 12 faces the second protrusion 11c of the lower die 11, the cavity surface 24 of the upper die 12 faces the cavity surface 16 of the lower die 11, the third protrusion 12d of the upper die 12 faces the third protrusion 11d of the lower die 11, and the fourth protrusion 12e of the upper die 12 faces the fourth protrusion 11e of the lower die 11. In addition, a protrusion amount (a protrusion amount of the fourth protrusion 12e with respect to the third protrusion 12d) of the first protrusion 12b with respect to the second protrusion 12c in the upper die 12 is larger than a protrusion amount (a protrusion amount of the third protrusion 11d with respect to the fourth protrusion 11e) of the second protrusion 11c with respect to the first protrusion 11b in the lower die 11. According, when the upper die 12 and the lower die 11 are fitted to each other, spaces are respectively formed between the second protrusion 12c of the upper die 12 and the second protrusion 11c of the lower die 11 and between the third protrusion 12d of the upper die 12 and the third protrusion 11d of the lower die 11 (refer to
More specifically, when blow forming is performed, at a time before the lower die 11 and the upper die 12 are joined and fitted to each other, as shown in
As shown in
Each of the pair of gas supply mechanisms 40 includes a cylinder unit 42, a cylinder rod 43 which moves forward and rearward in accordance with an operation of the cylinder unit 42, and a seal member 44 connected to a tip of the cylinder rod 43 on the pipe holding mechanism 30 side. The cylinder unit 42 is placed on and fixed to the base 15 via a block 41. At a tip of each seal member 44, a tapered surface 45 is formed to be tapered. One tapered surface 45 is configured to have a shape which can be exactly fitted to the tapered concave surface 17b of the first electrode 17 so as to abut against the tapered concave surface 17b, and the other tapered surface 45 is configured to have a shape which can be exactly fitted to the tapered concave surface 18b of the second electrode 18 so as to abut against the tapered concave surface 18b (refer to
Returning to
In addition, information is transmitted to the controller 70 from (A) shown in
<Forming Method of Metal Pipe Using Forming Device>
Next, a forming method of the metal pipe using the forming device 10 will be described.
Subsequently, as shown in
The metal pipe material 14 is heated to a high temperature (approximately 950□c) and softened, and thus, the gas supplied into the metal pipe material 14 thermally expands. Accordingly, for example, the supplied gas serves as compressed air or compressed nitrogen gas, the metal pipe material 14 having a temperature of 950□C is easily expanded by the compressed air which is thermally expanded, and the metal pipe 100 can be obtained.
Specifically, an outer peripheral surface of the blow-formed and expanded metal pipe material 14 comes into contact with the cavity surface 16 of the lower die 11 so as to be rapidly cooled and comes into contact with the cavity surface 24 of the upper die 12 so as to be rapidly cooled (the upper die 12 and the lower die 11 have a large heat capacity and are controlled to a low temperature, and thus, if the metal pipe material 14 comes into contact with the upper die 12 and the lower die 11, a heat of a pipe surface is taken to the die side at once), and thus, hardening is performed on the metal pipe material 14. The above-described cooling method is referred to as die contact cooling or die cooling. Immediately after being rapidly cooled, austenite transforms into martensite (hereinafter, transformation from austenite to martensite is referred to as martensitic transformation). The cooling rate decreased in a second half of the cooling, and thus, martensite transforms into another structure (such as troostite, sorbite, or the like) due to recuperation. Therefore, it is not necessary to separately perform tempering treatment. In addition, in the present embodiment, the cooling may be performed by supplying a cooling medium to the metal pipe 100, instead of or in addition to the cooling of the die. For example, in order to perform the cooling, the metal pipe material 14 comes into contact with the die (upper die 12 and lower die 11) until a temperature at which the martensitic transformation starts, and thereafter, the die is opened and a cooling medium (cooling gas) is blown onto the metal pipe material 14, and thus, the martensitic transformation is generated.
Next, a configuration for forming the flange portions will be described in detail with reference to
As shown in
Each of the upper surfaces of the protrusion portions 111A and 111B is constituted by a flat surface which is disposed at a position higher than those of the flange forming surfaces F1 and F2. However, a shape of each of the upper surfaces of the protrusion portions 111A and 111B is not particularly limited and may be a curved surface or the like. Each of the lower surfaces of the protrusion portions 110A and 110B is constituted by a flat surface which is disposed at a position lower than those of the flange forming surfaces F3 and F4. However, a shape of each of the lower surfaces of the protrusion portions 110A and 110B is not particularly limited and may be a curved surface or the like. In addition, a protrusion amount of each of the protrusion portions 110A, 110B, 111A, and 111B is not particularly limited. However, it is preferable that the protrusion amount is approximately 1 to 2 mm. In addition, the protrusion portions 110A and 110B are integrally formed with the upper die 12, and the protrusion portions 111A and 111B are integrally formed with the lower die 11. However, only the protrusion portions 110A, 110B, 111A, and 111B may be formed separately from the die. In addition, only at least one of the protrusion portions 111A and 111B may be formed. Only at least one of the protrusion portions 110A and 110B may be formed.
Next, a state when the protrusion portion 111A is viewed from above will be described with reference to
The protrusion portions 111A are intermittently formed on the flange forming surface F1 along an extension direction (that is, a direction in which the metal pipe extends) of the main cavity portion MC. Therefore, a gap GP is formed between one protrusion portion 111A and another protrusion portion 111A in the extension direction. There is no particular limitation on how much a size of gap GP is secured. In addition, the protrusion portion 111A may be continuously formed along the extension direction of the main cavity portion MC such that the gap GP is not formed. In the aspect shown in
According to the above-described configuration, the flange portion 100b is partially pressed by the protrusion portions 111A, 111B, 110A, and 110B, and thus, as shown in
Next, operations and effects of the forming device 10 according to the present embodiment and the forming method using the forming device 10 will be described.
According to the forming device 10 of the present embodiment, the upper die 12 and the lower die 11 constitute sub cavity portions SC1 and SC2 communicating with the main cavity portion MC, and thus, the flange portion 100b of the metal pipe 100 can be formed by crushing a portion of the pipe portion 100a with the sub cavity portions SC1 and SC2.
Here, as shown in
Meanwhile, in the forming device 10 of the present embodiment, the protrusion portions 110A, 110B, 111A, and 111B are formed on the flange forming surfaces F1, F2, F3, and F4 of the sub cavity portions SC1 and SC2 of the upper die 12 and the lower die 11. Accordingly, as shown in
In addition, the protrusion portions 110A, 110B, 111A, and 111B are intermittently formed along the extension direction of the main cavity portion MC in the flange forming surfaces F1, F2, F3, and F4. In this case, the gaps GP are formed in the extension direction of the sub cavity portions SC1 and SC2 at the locations pressed by the protrusion portions 110A, 110B, 111A, and 111B. For example, as shown in
In addition, the protrusion portions 110A, 110B, 111A, and 111B are formed inside the outer end portions E1 of the flange forming surfaces F1, F2, F3, and F4. In this case, the concave portion 140 which is the welding location can also be set inside the outer end portion E1 in the flange portion 100b. Accordingly, it is possible to easily perform a welding operation.
The forming method according to the present embodiment is a method of forming the metal pipe 100 having the pipe portion 100a, and the heated metal pipe material 14 is prepared between the upper die 12 and the lower die 11. By moving at least one of the upper die 12 and the lower die 11 in a direction in which the dies are joined to each other, the main cavity portion MC for forming the pipe portion 100a and sub cavity portions SC1 and SC2 which communicate with the main cavity portion MC and form the flange portion 100b of the metal pipe 100 are formed between the upper die 12 and the lower die 11, the pipe portion 100a and the flange portion 100b extending from the pipe portion are formed by supplying a gas into the metal pipe material 14, and the gap portion 154 in which the inner surfaces 151 and 152 facing each other are separated from each other to form the gap and the proximity portion 153 in which the inner surfaces 151 and 152 are close to each other compared to the gap portion 154 are formed inside the flange portion 100b.
According to this forming method, it is possible to obtain operations and effects similar to those of the above-described forming device 10.
The present invention is not limited to the above-described embodiment.
For example, in the above-described embodiment, the protrusion is fixed to the upper die and the lower die. However, a protrusion mechanism which moves with respect to the upper die and the lower die may be adopted. As shown in
According to the forming device 10, in forming device 10, the protrusion mechanism 129 is formed on the flange forming surfaces F1, F2, F3, and F4 of the sub cavity portions SC1 and SC2 of the upper die 12 and the lower die 11. Therefore, as shown in
In addition, the protrusion portion 129 is intermittently formed along the extension direction of the main cavity portion MC in the flange forming surfaces F1, F2, F3, and F4. In this case, the gap GP is formed in the extension direction of the sub cavity portions SC1 and SC2 at the location pressed by the protrusion mechanism 129. For example, as shown in
In addition, the protrusion mechanism 129 is formed inside the outer end portions E1 of the flange forming surfaces F1, F2, F3, and F4. In this case, the concave portion 140 which is the welding location can also be set inside the outer end portion E1 in the flange portion 100b. Accordingly, it is possible to easily perform a welding operation.
Shapes of the protrusion portion and the protrusion mechanism, and a shape of the concave portion of the flange portion 100b formed thereby are not particularly limited. For example, a metal pipe 100 may be formed as shown in
Moreover, a shape of the metal pipe 100 is not particularly limited, and as shown in
Moreover, in the drive mechanism 80 according to the above-described embodiment, only the upper die 12 is moved. However, the lower die 11 may be moved in addition to upper die 12 or instead of the upper die 12. In a case where the lower die 11 moves, the lower die 11 is not fixed to the base 15 but attached to the slide of the drive mechanism 80.
In addition, the metal pipe 100 according to the above-described embodiment may have the flange portion on one side of the metal pipe 100. In this case, one sub cavity portion is formed by the upper die 12 and the lower die 11.
It should be understood that the invention is not limited to the above-described embodiment, but may be modified into various forms on the basis of the spirit of the invention. Additionally, the modifications are included in the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
JP2017-052608 | Mar 2017 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5918494 | Kojima | Jul 1999 | A |
20100186473 | Mizumura | Jul 2010 | A1 |
20100186477 | Barthelemy et al. | Jul 2010 | A1 |
Number | Date | Country |
---|---|---|
195 35 870 | Feb 1997 | DE |
10 2006 041110 | Oct 2007 | DE |
2004-082136 | Mar 2004 | JP |
2006-061944 | Mar 2006 | JP |
2006061944 | Mar 2006 | JP |
2006061944 | Mar 2006 | JP |
2006-122979 | May 2006 | JP |
2012000654 | Jun 2010 | JP |
2012000654 | Jun 2010 | JP |
2012-000654 | Jan 2012 | JP |
2013-158785 | Aug 2013 | JP |
2016-129891 | Jul 2016 | JP |
Entry |
---|
Search Report issued in European Application No. 18766585.6, dated Feb. 13, 2020. |
International Search Report issued in Application No. PCT/JP2018/003956, dated Apr. 10, 2018. |
Number | Date | Country | |
---|---|---|---|
20190344321 A1 | Nov 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2018/003956 | Feb 2018 | US |
Child | 16522405 | US |