This application claims priority of Taiwanese Application No. 103117323, filed on May 16, 2014.
The invention relates to a forming device, more particularly to a forming device for a three-dimensional printing machine, and a three-dimensional printing machine having the forming device.
Stereolithography is a widely adopted technique in modern three-dimensional printing technologies. A printer utilizing stereolithography technique includes a container, a laser, a scanner, and a forming mechanism with a forming platform. A light-curable liquid is contained in the container. The laser is located at a position lower than the container and emits laser beams toward the scanner. The scanner is located underneath the container and reflects the laser beams toward a base wall of the container in order to cure the light-curable liquid. The forming platform is vertically movable relative to the base wall of the container for extending into the container and pulling the product of the cured light-curable liquid away from the container.
In order to form a product with precise shape and dimensions, it is necessary to precisely control the relative position between the forming platform and the container. Also, it is important to maintain stability of the forming platform during vertical movement relative to the container.
Therefore, one aspect of this invention is to provide a forming device adapted for use in a three-dimensional printing machine with a height adjusting mechanism.
According to one type of the present invention, the forming device is connected to the height adjusting mechanism and driven by the height adjusting mechanism to move vertically. The forming device includes an universal joint, a forming platform, a coupling shaft, and a clamping mechanism. The coupling shaft has opposite ends that are connected respectively to the universal joint and the forming platform. The clamping mechanism includes a clamping arm that is adapted to interconnect the height adjusting mechanism and the universal joint, and that has first and second arm portions. The first and second arm portions are movable relative to each other between a locking state to tightly clamp the universal joint therebetween, and a releasing state to release the universal joint. When the first and second arm portions are at the releasing state, the forming platform is movable relative to the clamping mechanism.
Another aspect of this invention is to provide a three-dimensional printing machine having the forming device of this invention.
According to another type of the present invention, the three-dimensional printing machine includes a base, a container, a height adjusting mechanism, a forming device, a laser, and a scanner. The container is mounted on the base for containing a light-curable liquid therein. The height adjusting mechanism is connected to a lateral end of the base. The forming device is connected to the height adjusting mechanism and is driven by the height adjusting mechanism to move vertically relative to the container. The forming device includes a forming mechanism and a clamping mechanism. The forming mechanism includes an universal joint, a forming platform disposed under the universal joint, and a coupling shaft having opposite ends that are connected respectively to the universal joint and the forming platform. The clamping mechanism includes a clamping arm that interconnects the height adjusting mechanism and the universal joint. The clamping arm is operable to tightly clamp or to release the universal joint. When the universal joint is released from the clamping arm, the forming platform is movable relative to the clamping mechanism. The laser is adapted for producing laser beams. The scanner reflects the laser beams produced by the laser to the light-curable liquid.
Other features and advantages of the present invention will become apparent in the following detailed description of the embodiments with reference to the accompanying drawings, of which:
Before the present invention is described in greater detail with reference to the accompanying embodiments, it should be noted herein that like elements are denoted by the same reference numerals throughout the disclosure.
The container 4 includes a light-transmissive base 41, and a surrounding wall 42 vertically extending from the base 41. The base 41 and the surrounding wall 42 cooperatively define a containing space 43 for containing the light-curable liquid therein.
Referring further to
The clamping mechanism 6 includes a clamping arm 61 interconnecting the height adjusting unit 32 of the height adjusting mechanism 3 and the universal joint 51 of the forming mechanism 5, an electromagnetic unit 62, and a resilient member 63. In this embodiment, the clamping arm 61 includes a first arm member 611 and a second arm member 612. The first arm member 611 has a first arm portion 613, a first magnetic portion 614 spaced apart from the first arm portion 613, and a first pivot portion 615 interconnecting the first arm portion 613 and the first magnetic portion 614. The second arm member 612 has a second arm portion 616, a second magnetic portion 617 spaced apart from the second arm portion 616, and a second pivot portion 618 interconnecting the second arm portion 616 and the second magnetic portion 617 and connected pivotally to the first pivot portion 615. The first magnetic portion 614 and the second magnetic portion 617 are connected to the height adjusting unit 32 of the height adjusting mechanism 3.
The electromagnetic unit 62 is disposed between the first magnetic portion 614 and the second magnetic portion 617. The resilient member 63 has opposite ends connected respectively to the first magnetic portion 614 and the second magnetic portion 617. As shown in
In this embodiment, the electromagnetic unit 62 is an electromagnet, and the resilient member 63 is a spring. However, the electromagnetic unit 62 may be other electromagnetic components, and the resilient member 63 may be other resilient components.
During operation of the three-dimensional printing machine, an electric current is applied to the electromagnetic unit 62. Therefore, the first and second magnetic portions 614, 617 are attracted by the electromagnetic unit 62 and are drawn toward each other to compress the resilient member 63, while the first and second arm portions 613, 616 are moved to the releasing state to release the universal joint 51. The height adjusting unit 32 descends along the height adjusting arm 31, thereby driving the forming platform 53 to evenly abut against the base wall 41 of the container 4. Then, the electric current is cutoff, so that the first and second magnetic portions 614, 617 are pushed away from each other by a restoring force of the resilient member 63 to move the first and second arm portions 613, 616 to the locking state to tightly clamp the universal joint 51 therebetween. Therefore, the forming platform 53 is maintained at a position parallel to the base wall 41 of the container 4. Afterward, the laser 7 produces laser beams toward the scanner 8. The scanner 8 reflects the laser beams toward the base wall 41 for curing a portion of the light-curable liquid contained in the container 4. The height adjusting unit 32 then moves upwardly, and the forming device 9 moves along with the height adjusting unit 32 to pull up the cured light-curable liquid while the forming platform 53 is kept parallel to the base wall 41.
As shown in
With the multi-degree-of-freedom motion of the combination of the coupling shaft 52 and the universal joint 51, the forming platform 53 may seamlessly abut against the base wall 41 of the container 4. When the first and second arm portions 613, 616 are at the locking state, the forming platform 53 may be maintained to be precisely parallel to the base wall 41 of the container 4. Therefore, during curing process of the light-curable liquid, a product with precise shape and dimensions may be produced with the steady forming platform 53.
While the present invention has been described in connection with what are considered the most practical embodiments, it is understood that this invention is not limited to the disclosed embodiments but is intended to cover various arrangements included within the spirit and scope of the broadest interpretation so as to encompass all such modifications and equivalent arrangements.
Number | Date | Country | Kind |
---|---|---|---|
103117323 A | May 2014 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
3662567 | Condon | May 1972 | A |
5248456 | Evans, Jr. | Sep 1993 | A |
9346217 | Huang | May 2016 | B2 |
9561624 | Wu | Feb 2017 | B1 |
20040004303 | Iskra | Jan 2004 | A1 |
20070075461 | Hunter | Apr 2007 | A1 |
20100247703 | Shi | Sep 2010 | A1 |
20120043312 | Lee | Feb 2012 | A1 |
20130052292 | Busato | Feb 2013 | A1 |
20140114359 | Hawkes | Apr 2014 | A1 |
20140265034 | Dudley | Sep 2014 | A1 |
20150044318 | Ohkusa | Feb 2015 | A1 |
20150064298 | Syao | Mar 2015 | A1 |
20150151489 | Elsey | Jun 2015 | A1 |
20150240865 | Walter | Aug 2015 | A1 |
Number | Date | Country |
---|---|---|
202507221 | Oct 2012 | CN |
103144306 | Jun 2013 | CN |
1105725 | Mar 1968 | GB |
Entry |
---|
Chinese Search Report dated Dec. 26, 2016 for Appln. No. 201410279801.6. |
Number | Date | Country | |
---|---|---|---|
20150328841 A1 | Nov 2015 | US |