This application claims priority under 35 USC 119 of European Patent Application No. 17185483.9, filed on Aug. 9, 2017 the disclosure of which is herein incorporated by reference.
The invention relates to a forming die for pressure-forming workpieces,
The invention further relates to a method for producing a forming die for pressure-forming workpieces, in which a die core of the forming die is provided at the outer side with a core reinforcement in such a manner that the core reinforcement arranged on the die core surrounds the die core in a peripheral direction of the die core around a working movement axis of the die core, along which working movement axis a workpiece receiving member of the die core extends inside the die core, wherein the core reinforcement which is arranged on the die core is radially pretensioned transversely to the working movement axis against the die core.
When workpieces are pressure-formed by means of a forming die, the workpiece which is intended to be formed is arranged in the workpiece receiving member inside a die core. The wall of the workpiece receiving member of the die core is constructed for forming and is to this end provided, for example, with a forming profile. During the forming process, the die core and the workpiece which is arranged inside the workpiece receiving member of the die core are moved relative to each other along a working movement axis of the die core. As a result of the process, the workpiece applies a great radial force to the die core transversely to the working movement axis. In order to prevent undesirable deformation of the die core under the effect of the radial force applied by the workpiece, the die core is radially pretensioned, in the opposite direction to the radial force which is applied by the workpiece, in the direction towards the working movement axis. In order to increase the load-bearing capacity thereof, the die core is provided with a reinforcement which surrounds the die core at the outer side thereof in a peripheral direction around the working movement axis.
Prior art of the generic type is disclosed in WO99/39848 A1. In the case of the prior art, a die core is arranged inside a tension ring which is coaxial with respect to the die core. The tension ring is in turn surrounded in a peripheral direction by an annular band reinforcement which is coaxial with respect to the tension ring and the die core and which is made of steel. The band reinforcement is radially pretensioned transversely to the working movement axis of the die core against the tension ring and, via the tension ring, also against the die core.
In order to receive great radial forces, forming dies of the previously known type have to be provided with a reinforcement of great dimensions and mass. In a forming machine, such forming dies require a large installation space and the handling thereof is made more difficult by the great mass thereof.
An object of the present invention is to provide a forming die for pressure-forming workpieces which forming die is small and lightweight but, irrespective thereof, capable of bearing even great loads.
This object is achieved according to the invention by a forming die having a die core which has in the interior thereof a workpiece receiving member which extends along a working movement axis of the die core and having a core reinforcement which surrounds the die core at the outer side.
For the die core of the forming die according to the invention, there is provided a core reinforcement which has a reinforcement member which is radially pretensioned against the die core and which is made of fibre-reinforced plastics material. The reinforcement member comprises a plastics matrix and a reinforcing fibre structure which is embedded in the plastics matrix and which extends in the peripheral direction of the die core about the working movement axis thereof. In the context of the production method according to the invention, a reinforcement member of fibre-reinforced plastics material is applied to the outer side of the die core of the forming die as a core reinforcement so as to produce a radial pretensioning of the reinforcement member against the die core.
The reinforcing fibre structure of the reinforcement member according to the invention can have short, long or endless fibres. In particular, a polymer matrix comprising duromers or thermoplastics is considered as the plastics matrix of the reinforcement member according to the invention.
The reinforcement member made of fibre-reinforced plastics material is distinguished by a great load-bearing capacity with at the same time a small volume and small mass. As a result of the small construction size, the forming die according to the invention can be received in a space-saving manner in a forming machine. The reduced mass of the forming die according to the invention is, for example, significantly advantageous during the handling thereof in the context of changing a tool. Furthermore, forming dies according to the invention are cheaper than conventional forming dies for pressure-forming workpieces.
In a preferred embodiment of the production method according to the invention, the reinforcement member made of fibre-reinforced plastics material is applied directly to the die core. Consequently, a particularly compact unit comprising the die core and the reinforcement member is produced as the forming die.
In another embodiment, in order to produce a reinforcement member which is radially pretensioned against the die core, fibre-reinforced plastics material is applied to the outer side of the die core in the non-hardened state, wherein the die core has at the time of the application of the fibre-reinforced plastics material an assembly core cross-section which is smaller than a core cross-section for use present in a state for use of the die core. After the fibre-reinforced plastics material which has been applied in the wet state has hardened, the cross-section of the die core decreased for the assembly is increased to the cross-section which the die core has during workpiece forming operations. The production of a radial pretensioning of the hardened reinforcement member against the die core is connected with the increase of the die core cross-section which is brought about after the reinforcement member has hardened.
Alternatively, in the context of the production method according to the invention, the reinforcement member is present as a hardened hollow member before application to the die core. In the interior thereof, the hardened reinforcement member has a core receiving member for the die core of the forming die according to the invention. A core receiving member axis of the reinforcement member extends inside the reinforcement member along the working movement axis of the die core in the mounting position. The core receiving member of the reinforcement member has along the core receiving member axis a core receiving member opening at least at one side. In an initial assembly state of the reinforcement member, the core receiving member thereof has an initial core receiving member cross-section. In order to produce readiness for assembly of the reinforcement member and the die core, the core receiving member cross-section of the reinforcement member is increased with respect to the initial core receiving member cross-section and/or the core cross-section of the die core is decreased with respect to the core cross-section for use. It is thereby possible for the core receiving member cross-section of the ready-for-assembly reinforcement member to have such dimensions that the core cross-section of the ready-for-assembly die core is, in the perpendicular projection onto the core receiving member cross-section, within the core receiving member cross-section and consequently the die core for applying the reinforcement member can be introduced into the core receiving member of the reinforcement member. After the production of the readiness for assembly of the reinforcement member and the die core, the ready-for-assembly reinforcement member and the ready-for-assembly die core are accordingly joined. In this case, the reinforcement member and the die core are moved relative to each other along the core receiving member axis of the reinforcement member or along the working movement axis of the die core. If the reinforcement member is arranged at the outer side of the die core in the desired position after the joining operation, the core receiving member cross-section of the reinforcement member is decreased and/or the core cross-section of the die core is increased as a final step. A radial pretensioning of the reinforcement member against the die core is thereby produced.
Unlike the wet winding method described above, it is further possible, in order to produce the reinforcement member, to wind a reinforcing fibre structure comprising dry fibres, preferably comprising dry endless fibres, around the die core with pretensioning. In this case, a durable connection of the reinforcing fibre structure to the die core must be ensured in a separate method step, for example, by adhesive bonding.
In the context of the production methods according to the invention, there is required a decrease of the core cross-section of the die core with respect to the core cross-section for use. In an advantageous embodiment of the production method according to the invention, for this purpose the die core is extended along the working movement axis of the die core with respect to the state for use thereof, preferably resiliently extended and/or the temperature of the die core is changed with respect to the temperature in the state for use of the die core, wherein the temperature of the die core is reduced in case of a corresponding temperature behaviour of the material of the die core.
In order to increase the core receiving member cross-section of the reinforcement member with respect to the initial core receiving member cross-section in the context of the production method according to the invention according to the invention, in another advantageous embodiment, the temperature of the reinforcement member, which is in the form of a hardened hollow member, is changed with respect to the temperature in the initial assembly state of the reinforcement member, wherein the temperature of the reinforcement member is increased or decreased depending on the temperature behaviour of the reinforcement member.
In the context of the production method according to the invention, different types of fibre-reinforced plastics materials can be used for the reinforcement member of the forming die according to the invention. In one production method according to the invention, a reinforcement member which is made of carbon-fibre-reinforced (CFRP) plastics material is applied to the die core so as to produce a radial pretensioning of the reinforcement member against the die core. Carbon-fibre-reinforced plastics materials are distinguished by a particularly high tensile strength combined with a low density. The reinforcing fibre structure of a reinforcement member applied to the die core, which reinforcing fibre structure extends in the peripheral direction of the die core and is made of carbon-fibre-reinforced plastics material, allows, with a particularly lightweight construction, a particularly effective pretensioning of the reinforcement member against the die core of the forming die according to the invention.
If, in the context of the production method according to the invention, a reinforcement member made of carbon-fibre-reinforced plastics material (negative thermal expansion coefficient) and a die core made of a material having a positive thermal expansion coefficient, for example, steel, are joined and if the temperatures of the reinforcement member and the die core are changed in order to produce the readiness for assembly of the reinforcement member and the die core and/or to produce the radial pretensioning of the reinforcement member against the die core, a temperature change of the two components of the forming die according to the invention in the same direction can be carried out. As a result of the temperature behaviour of the materials of the reinforcement member and the die core, the temperatures of both must be decreased in order to produce the readiness for assembly and must be increased in order to produce the radial pretensioning of the reinforcement member against the die core.
The invention is explained in greater detail below with reference to exemplary schematic illustrations. In the drawings:
a,
1
b are cross-sections of a forming die for pressure-forming workpieces, having a die core and a core reinforcement,
According to
In order to pressure-form workpieces, for example tubes, by means of the forming die 1, the workpiece arranged inside the workpiece receiving member 4 and the forming die 1 are moved relative to each other, as usual, along the working movement axis 5. In this instance, the workpiece is strained beyond the yield point by the forming profile of the die core 2 and is thereby formed.
As a result of the process, the workpiece applies a great radial force to the die core 2 during the forming operation. The effective direction of the radial force applied by the workpiece to the die core 2 is illustrated in
So that the die core 2 is not deformed in an undesirable manner under the action of the radial force applied by the workpiece and to increase the load-bearing capacity of the die core 2, the reinforcement member 3 is provided. The reinforcement member 3 is constructed in the example illustrated in the manner of a CFRP pipe with a wound endless fibre structure.
The die core 2 is arranged in a core receiving member 7 of the reinforcement member 3. A core receiving member axis 8 of the reinforcement member 3 coincides with the working movement axis 5 of the die core 2 in the installation position in the core receiving member 7 of the reinforcement member 3. An axially parallel inner wall of the core receiving member 7 delimits a core receiving member cross-section QA of the reinforcement member 3.
In
Two possible methods for producing the forming die 1 are illustrated in
According to
Subsequently, fibre-reinforced plastics material in the wet state is applied to the outer side of the die core 2, which has a decreased cross-section, in such a manner that a reinforcing fibre structure 9 (which is illustrated in a highly schematic manner in
With the die core 2 still having a decreased cross-section, the initially wet fibre-reinforced plastics material is tempered and thereby hardened (method step (3) in
Unlike the variant illustrated in
After the reinforcement member 3 has been provided as a hardened hollow member, the temperature of the reinforcement member 3 is changed, in the embodiment illustrated the reinforcement member 3 is cooled. As a result of the corresponding temperature behaviour of the carbon-fibre-reinforced plastics material used in this case, the cooling results in a widening of the reinforcement member 3 and in connection therewith an increase of the core receiving member cross-section QA of the reinforcement member 3 with respect to the initial core receiving member cross-section (working step (3) in
In order to produce the readiness for assembly of the die core 2, the die core 2 is cooled starting from the state for use thereof. The core cross-section QM of the die core 2 is thereby decreased with respect to the core cross-section for use (working step (4) in
The core cross-section QM of the ready-for-assembly die core 2 is smaller than the core receiving member cross-section QA of the ready-for assembly reinforcement member 2, wherein the core cross-section QM of the ready-for-assembly die core 2, in the perpendicular projection onto the core receiving member cross-section QA of the ready-for-assembly reinforcement member 3, is within the core receiving member cross-section QA of the ready-for-assembly reinforcement member 3.
After the production of the readiness for assembly of the reinforcement member 3 and the die core 2, the reinforcement member 3 and the die core 2 are joined by the ready-for-assembly die core 2 being pushed along the core receiving member axis 8 into the core receiving member 7 of the reinforcement member 3 through one of the core receiving member openings 11 of the reinforcement member 3 (working step (5) in
After the die core 2 has taken up the desired position thereof inside the reinforcement member 3, the unit comprising the reinforcement member 3 and the die core 2 is heated (working step (6) in
Number | Date | Country | Kind |
---|---|---|---|
17185483.9 | Aug 2017 | EP | regional |