Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange

Information

  • Patent Grant
  • 8474255
  • Patent Number
    8,474,255
  • Date Filed
    Thursday, May 12, 2011
    13 years ago
  • Date Issued
    Tuesday, July 2, 2013
    10 years ago
Abstract
In various embodiments, efficiency of energy storage and recovery systems compressing and expanding gas is improved via heat exchange between the gas and a heat-transfer fluid.
Description
FIELD OF THE INVENTION

In various embodiments, the present invention relates to pneumatics, power generation, and energy storage, and more particularly, to compressed-gas energy-storage systems and methods using pneumatic or pneumatic/hydraulic cylinders.


BACKGROUND

Storing energy in the form of compressed gas has a long history and components tend to be well tested and reliable, and have long lifetimes. The general principle of compressed-gas or compressed-air energy storage (CAES) is that generated energy (e.g., electric energy) is used to compress gas (e.g., air), thus converting the original energy to pressure potential energy; this potential energy is later recovered in a useful form (e.g., converted back to electricity) via gas expansion coupled to an appropriate mechanism. Advantages of compressed-gas energy storage include low specific-energy costs, long lifetime, low maintenance, reasonable energy density, and good reliability.


If a body of gas is at the same temperature as its environment, and expands slowly relative to the rate of heat exchange between the gas and its environment, then the gas will remain at approximately constant temperature as it expands. This process is termed “isothermal” expansion. Isothermal expansion of a quantity of high-pressure gas stored at a given temperature recovers approximately three times more work than would “adiabatic” expansion, that is, expansion where no heat is exchanged between the gas and its environment—e.g., because the expansion happens rapidly or in an insulated chamber. Gas may also be compressed isothermally or adiabatically.


An ideally isothermal energy-storage cycle of compression, storage, and expansion would have 100% thermodynamic efficiency. An ideally adiabatic energy-storage cycle would also have 100% thermodynamic efficiency, but there are many practical disadvantages to the adiabatic approach. These include the production of more extreme temperatures and pressures within the system, heat loss during the storage period, and inability to exploit environmental (e.g., cogenerative) heat sources and sinks during expansion and compression, respectively. In an isothermal system, the cost of adding a heat-exchange system is traded against resolving the difficulties of the adiabatic approach. In either case, mechanical energy from expanding gas must usually be converted to electrical energy before use.


An efficient and novel design for storing energy in the form of compressed gas utilizing near isothermal gas compression and expansion has been shown and described in U.S. Pat. No. 7,832,207 (the '207 patent) and U.S. patent application Ser. No. 12/639,703 (the '703 application), the disclosures of which are hereby incorporated herein by reference in their entireties. The '207 patent and the '703 application disclose systems and methods for expanding gas isothermally in staged cylinders and intensifiers over a large pressure range in order to generate electrical energy when required. Mechanical energy from the expanding gas may be used to drive a hydraulic pump/motor subsystem that produces electricity. Systems and methods for hydraulic-pneumatic pressure intensification that may be employed in systems and methods such as those disclosed in the '207 patent and the '703 application are shown and described in U.S. patent application Ser. No. 12/879,595 (the '595 application), the disclosure of which is hereby incorporated herein by reference in its entirety.


In the systems disclosed in the '207 patent and the '703 application, reciprocal mechanical motion is produced during recovery of energy from storage by expansion of gas in the cylinders. This reciprocal motion may be converted to electricity by a variety of means, for example as disclosed in the '595 application as well as in U.S. patent application Ser. No. 12/938,853 (the '853 application), the disclosure of which is hereby incorporated herein by reference in its entirety. The ability of such systems to either store energy (i.e., use energy to compress gas into a storage reservoir) or produce energy (i.e., expand gas from a storage reservoir to release energy) will be apparent to any person reasonably familiar with the principles of electrical and pneumatic machines.


Gas undergoing expansion tends to cool, while gas undergoing compression tends to heat. To maximize efficiency (i.e., the fraction of elastic potential energy in the compressed gas that is converted to work, or vice versa), gas expansion and compression should be as near isothermal (i.e., constant-temperature) as possible. Various techniques of approximating isothermal expansion and compression may be employed.


For example, as described in U.S. Pat. No. 7,802,426 (the '426 patent), the disclosure of which is hereby incorporated by reference herein in its entirety, gas undergoing either compression or expansion may be directed, continuously or in installments, through a heat-exchange subsystem external to the cylinder. The heat-exchange subsystem either rejects heat to the environment (to cool gas undergoing compression) or absorbs heat from the environment (to warm gas undergoing expansion). An isothermal process may be approximated via judicious selection of this heat-exchange rate.


However, compressed-gas-based systems may be simplified via thermal conditioning of the gas within the cylinder during compression and expansion, rather than via the above-described conditioning external to the cylinder. There is a need for such internal-conditioning systems that enable heat exchange with the gas in an efficient manner.


SUMMARY

In accordance with various embodiments of the present invention, droplets of a liquid (e.g., water) are sprayed into a chamber of the cylinder in which gas is presently undergoing compression (or expansion) in order to transfer heat to or from the gas. As the liquid droplets exchange heat with the gas around them, the temperature of the gas is raised or lowered; the temperature of the droplets is also raised or lowered. The liquid is evacuated from the cylinder through a suitable mechanism. The heat-exchange spray droplets may be introduced through a spray head (in, e.g., a vertical cylinder), through a spray rod arranged coaxially with the cylinder piston (in, e.g., a horizontal cylinder), or by any other mechanism that permits formation of a liquid spay within the cylinder, as further detailed below. Droplets may be used to either warm gas undergoing expansion or to cool gas undergoing compression. An isothermal process may be approximated via judicious selection of this heat-exchange rate.


Specifically, embodiments of the invention relate to devices that form liquid sprays in a chamber containing either (i) low- to mid-pressure (e.g., up to 300 pounds per square inch gauge [psig]) gas, (ii) high-pressure (e.g., between 300 and 3,000 psig) gas, or (iii) both, to achieve significant heat transfer between the liquid and the gas. The heat transfer between the liquid and the air preferably enables substantially isothermal compression or expansion of the gas within the chamber. An exemplary device may include a plate or surface perforated at a number of points with orifices or nozzles to allow the passage of liquid from one side of the plate (herein termed the first side) to the other (herein termed the second side). A volume of liquid impinges on the first side of the plate: this liquid passes through the orifices or nozzles in the plate into a volume of gas that impinges on the second side of the plate and is at lower pressure than the liquid on the first side. The liquid exiting each nozzle into the gas may break up into droplets as determined by various factors, including but not limited to liquid viscosity, surface tension, pressure, density, and exit velocity; pressure and density of the gas; and nozzle geometry (e.g., nozzle shape and/or size). Herein, the term “nozzle” denotes any channel, orifice, or other device through which a liquid may be made to flow so as to produce a jet or spray at its output by encouraging the breakup of liquid flow into a spray of droplets.


Spray formation may occur via several mechanisms. Liquid (e.g., water) injected into gas at sufficient velocities will typically break up due to the density of the gas into which it is injected. However, it is generally desirable to minimize the injection velocity to minimize the energy needed to create the spray. Therefore, this type of breakup is especially pertinent at mid- to high-pressures where gas density is high, allowing for spray creation even with relatively low water-injection velocities. Thus even simple nozzles (e.g., channels with substantially parallel sides) which form a water jet at the nozzle exit will generally form a spray as gas density causes the water jet to break up into fine droplets.


In the low- to mid-pressure range, however, the air density is typically not great enough to cause the viscous drag needed to break a water jet up into a spray of small droplets. In this regime, water that exits a nozzle as a jet may remain in a solid jet and not form droplets. Thus, nozzles in accordance with embodiments of the invention may be more complex and incorporate mechanisms to break up water exiting the nozzle into droplets. For example, internal vanes may impart a rotational velocity component to the water as it exits the nozzle. This angular velocity causes the exiting water to diverge from the axis of the water spray, creating a cone of water droplets. Other nozzles may incorporate mechanisms such as corkscrews (i.e., spiral-shaped profiled surfaces) attached to and/or incorporated within the nozzles to break up the exiting water jet and form a cone of water droplets. These mechanisms enable atomized-spray formation for water injected even into low- to mid-pressure gas.


The spray device may include other features that enable it to function within a larger system. For example, a device may be installed within a vertically oriented pneumatic cylinder containing a mobile piston that divides the interior of the cylinder into two discrete chambers, this piston being connected to one or more shafts that transmit force between the piston and mechanical loads outside the cylinder. An above-described spray device, with all the features and components that it may include, is herein termed the “spray head.”


A spray head may be affixed to the upper interior surface of a pneumatic cylinder or within a pneumatic chamber of another type of cylinder, e.g., a pneumatic/hydraulic cylinder. The spray head is generally perforated by one or more orifices having identical or various sizes, spacings, internal geometries, and cross-sectional forms, which produce droplet sprays within the gas-filled volume below the spray head. At the point of spray formation, droplets appear with velocity vectors scattered randomly over a certain solid angle (≦2π steradians) centered on the vertical and pointing generally downward, forming a spray cone. At any pressure greater than zero and given a sufficiently large gas volume, the horizontal component of any particular droplet's momentum will eventually be dissipated by frictional interaction with the gas, after which the droplet will, in the ideal case, begin to fall vertically at a fixed terminal velocity. (The droplet may be perturbed from vertical fall by motions of the gas, such as those produced by convection or other turbulence.) For each droplet, both the limit of horizontal travel and the terminal velocity during vertical fall are determined largely by gas density and droplet size.


As a consequence of limited horizontal travel and vertical terminal velocity, the spray cone produced by each spray-producing nozzle will typically, at some distance beneath the nozzle, become a column of droplets falling at constant speed. Because the density of a gas at high pressure gas is higher than that of the same gas at low pressure (at a given temperature), the horizontal distance traveled by a droplet of a given size and initial velocity is smaller in high-pressure gas than in low-pressure gas. Likewise, the droplet's terminal velocity is lower in high-pressure gas. Therefore, in high-pressure gas, a column of droplets forming beneath a spray orifice tends to be narrower and slower-falling than a column that forms under the same orifice in low-pressure gas.


In order to maximize heat transfer between the droplets and the gas, embodiments of the invention preferably bring as much gas as possible into contact with as much droplet surface area as possible as the droplets fall through the gas. That is, the gas volume is generally filled or nearly filled with falling droplets. The spray cone or column of droplets produced by a single nozzle will not, in general, be wide enough to fill the gas volume. For mid- or high-pressure gas, the droplet column will generally be narrower, tending to require a larger number of orifices: in particular, the number of orifices required to fill or cover with spray a given volume of gas will be approximately proportional to the inverse of the square of the radius of the column. Thus, for example, halving spray-column radius while keeping the spray-head area constant will typically increase the number of orifices required by a factor of about four.


Alternatively, the initial velocity of spray droplets at each spray-head orifice, and consequently the width of the resulting spray column, may be increased by injecting liquid through the spray head at higher velocity. Injection of liquid at increased velocity requires increased difference between the pressure of the liquid on first side of the spray head and the pressure on the second side (this difference being termed ΔP). Raising the liquid by larger ΔP would consume more energy. Higher-pressure injection will typically increase the distance at which a spray cone transitions into a column of falling droplets, therefore widening the column of spray droplets produced by each nozzle, but will typically also consume more energy and therefore will tend not to increase the energy efficiency of spray generation.


Moreover, if the gas volume has the form of a straight-sided torus due to the presence of a piston shaft within the cylinder, a single nozzle cannot in principle cover the whole interior volume with falling droplets due to the obstructive effect of the shaft.


Maximization of heat transfer with simultaneous minimization of energy consumed in generating the heat-transfer spray, therefore, generally requires multiple spray nozzles. Consequently, embodiments of the invention contain multiple spray nozzles and substantially cover the upper surface of the gas-filled chamber into which it injects spray. The spray-head surface may have an annular shape in embodiments where it surrounds a piston shaft, may be disc-shaped in embodiments where it is mounted on the end of a mobile piston, and may be otherwise shaped depending on a particular application.


Embodiments of the invention feature multiple simple or complex nozzles on the upper surface of a pneumatic chamber such that the spray cones or columns produced by these nozzles overlap and/or interact with each other, and thus leave minimal gas volume, if any, unfilled by spray. All or almost all of the gas volume is thus exposed to liquid spray as gravity pulls the columns of droplets downward from the spray head. In high-gas-pressure embodiments, where horizontal travel of spray droplets is small (e.g., due to high gas density), many close-spaced orifices may be utilized to fill all or nearly all of the gas volume with falling spray.


Generally, embodiments of the invention generate a considerably uniform spray within a pneumatic chamber and/or cylinder via at least one spray head with multiple nozzles, where the pressure drop across the spray-head orifices does not exceed 50 psi and the spray volumetric flow is sufficient to achieve heat exchange necessary to achieve substantially isothermal expansion or compression. In one embodiment, the heat exchange power per unit flow in kW per GPM (gallons per minute) per degree C. exceeds 0.10. The geometry of each nozzle may be selected to produce droplets having a diameter of about 0.2 mm to about 1.0 mm. Additionally, the plurality of orifices may be configured to maintain a pressure drop of the heat-transfer fluid at less than approximately 50 psi during introduction thereof and/or at least a portion of the plurality of orifices may have divergent cross-sectional profiles. In high-pressure-gas embodiments, the orifices may be configured and arranged in a manner to maintain a Weber value of the high-pressure gas sufficient to maintain the spray in a form comprising or consisting essentially of substantially individual droplets. In one embodiment, the orifices are configured to maintain the Weber value of the high-pressure gas at a value of at least 40.


Embodiments of the invention include features that enable efficient installation within a pneumatic chamber and/or cylinder, and may also include features that enable efficient provision of liquid from an exterior source to the interior of the device for transmission through the orifices in the plate.


Embodiments of the invention also increase the efficiency with which varying amounts of a heat-exchange liquid are sprayed into a pneumatic compressor-expander cylinder, thus minimizing the energy required to maintain substantially isothermal compression or expansion of a gas within the cylinder. Various embodiments of the invention enable the injection of heat-exchange liquid at two or more distinct rates of flow into one or both chambers of a pneumatic compressor-expander cylinder by equipping the spray mechanism within each chamber with two or more groups of spray-generating nozzles, where the flow of heat-exchange liquid through each nozzle group may be actuated independently. Recruitment of additional nozzle groups allows total flow rate to be increased by a given amount without increasing the power used to pump the liquid as much as would be required if the number of nozzles were fixed.


During expansion of gas from storage in certain systems such as those disclosed in the '207 patent and the '703 application, the pressure of a quantity of gas within one chamber of a pneumatic or pneumatic-hydraulic cylinder exerts a force upon a piston and attached rod slidably disposed within the cylinder. The force exerted by the gas upon the piston and rod causes the piston and rod to move. As described by the Ideal Gas Law, the temperature of the gas undergoing expansion tends to decrease. To control the temperature of the quantity of gas being expanded within the cylinder (e.g., to hold it constant, that is, to produce isothermal expansion), a heat-exchange liquid may be sprayed into the chamber containing the expanding gas. The spray may be generated by pumping the heat-exchange liquid through one or more nozzles, as detailed above. If the liquid is at a higher temperature than that of the gas in the chamber, then heat will flow from the droplets the gas in the chamber, warming the gas.


Similarly, when gas is compressed in the cylinder, as described by the Ideal Gas Law, the temperature of the gas undergoing compression tends to increase. Heat-exchange liquid may be sprayed into the chamber containing the gas undergoing compression. If the liquid is at a lower temperature than that of the gas in the chamber, then heat will flow from the gas in the chamber to the droplets, cooling the gas.


The maximum amount of heat Q to be added to or removed from the gas in a chamber of the cylinder by a given mass m of heat-exchange liquid spray is Q=mcΔT, where c is the specific heat of the liquid and ΔT is the difference between the initial temperature of the liquid and the final temperature of the liquid (i.e., temperature of the liquid when it has reached thermal equilibrium with the gas). Assuming that c and ΔT are fixed, the only way to alter Q is to alter m. In particular, to exchange more heat between the heat-exchange liquid and the gas in the cylinder chamber, m is increased.


The mass m of heat-exchange liquid entering the cylinder chamber in a given time interval is given by flow rate q and fluid density p. Here, m has units of kg, q has units of m3/s, and p has units of kg/m3. Thus, to add or remove more heat from the gas in the cylinder chamber for a heat-exchange liquid with near-constant density p, the flow rate q of the heat-exchange liquid is increased.


When liquid flows through a nozzle or orifice, it encounters resistance. This resistance is associated with a pressure drop Δp from the input side of the nozzle to the output side. The pressure drop across (i.e., through) the nozzle depends on the characteristics of a particular nozzle, including its shape, and on the flow rate q. In particular, to increase flow rate q, the pressure drop Δp is increased. The relationship between flow rate q and pressure drop Δp has the general form q∝pn; n is typically less than 0.50. (This may also be expressed as p∝q1/n) Moreover, the spraying power P consumed by forcing liquid at rate q through a nozzle with a constant pressure drop Δp is P=Δp q. Substituting Δp∝q1/n for Δp in P=Δp q gives P∝q q1/n=q1/n+1. If, for example, n=0.5, then P∝q1/n+1=q1/0.5+1=q3. Thus, the power required to achieve a given amount of flow through a single nozzle—and therefore through any fixed number of nozzles—increases geometrically with flow rate. As a consequence, doubling the flow rate more than doubles the required spraying power.


The rate of heat transfer between the gas in the pneumatic cylinder chamber and the heat-exchange liquid spray is proportional to the flow rate and bears a similar relation to spraying power as does the flow rate. Specifically, from Q=m c ΔT we have dQ/dt=p q c ΔT, where t is time, p is liquid density, q is liquid flow rate, ΔT is the difference between the initial temperature of the liquid and the final temperature of the liquid, and dQ/dt is rate of heat transfer. If p, c and ΔT are constant, dQ/dt∝q. In the example where n=0.5, one has P∝q3, which combined with dQ/dt∝q gives P∝(dQ/dt)3. The spraying power P is thus, for an exemplary n of 0.5, proportional to the third power of the required rate of heat transfer. This result holds for any fixed number of nozzles.


For a required rate of spray heat transfer in a pneumatic cylinder, it is desirable to minimize the spraying power. Preferably, the spray power is minimized to just above the operating point (spray pressure) where a spray of sufficient quality continues to be generated at the output of each nozzle, since, as described above, the rate of heat transfer between the gas in the chamber and the heat-exchange liquid is greatly increased by mixing the heat-exchange liquid with the gas in the form of a spray, which maximizes the area of liquid-gas contact.


The flow rate (and thus rate of heat transfer if spray quality is maintained) may be increased with a less-than-geometric accompanying increase in spraying power by raising the number of active nozzles (i.e., nozzles through which heat-exchange liquid is made to flow) as the flow rate is increased. For example, the flow rate may be doubled by doubling the number of active identical nozzles without changing the flow rate through any individual nozzle. In this case, the spraying power P per nozzle remains unchanged while the number of nozzles doubles, so total spraying power doubles. In contrast, for a fixed number of identical nozzles, if an exemplary n of 0.5 is assumed, doubling the rate of heat transfer requires an eightfold increase in the spraying power P.


Thus, embodiments of the invention decrease the spraying power required while maintaining sufficient pressure drop in each nozzle (i.e., sufficient to create a spray at the output) by making the number of active nozzles proportional to the rate of flow. This proportionality may be exact or approximate.


Embodiments of the invention allow an increased flow rate of heat-exchange liquid through an arrangement of nozzles into a chamber of a pneumatic cylinder without geometric increase in spraying power. Various embodiments of the invention include methods for the introduction of heat-exchange liquid into a chamber of a pneumatic cylinder through a number of nozzles. One or more spray heads, rods, or other contrivances for situating nozzles within the chamber are equipped with two or more sets of nozzles. Each set of nozzles contains one or more nozzles. The sets of nozzles may be interspersed across the surface of the spray head, spray rod, or other contrivance, or they may be segregated from each other. The nozzles within the various sets may be of uniform type, or of various types. When a relatively low flow rate of heat-exchange liquid is desired, e.g. when the pressure of the gas within the chamber is relatively low, one or more nozzle sets may be employed to spray heat-exchange liquid into the chamber. At higher flow rates, e.g., when the pressure of the gas within the chamber is relatively high, two or more nozzle sets may be employed to spray heat-exchange liquid into the chamber. The identity and number of the nozzle sets employed to spray heat-exchange liquid at any given time may be determined by a control system, an operator, and/or an automatic arrangement of valves. When increased flow rate of heat-exchange liquid is desired in order to increase the rate of heat transfer, additional nozzle sets are activated.


In various embodiments of the invention, the heat-transfer fluid utilized to thermally condition gas within one or more cylinders incorporates one or more additives and/or solutes, as described in U.S. patent application Ser. No. 13/082,808, filed Apr. 8, 2011 (the '808 application), the entire disclosure of which is incorporated herein by reference. As described in the '808 application, the additives and/or solutes may reduce the surface tension of the heat-transfer fluid, reduce the solubility of gas into the heat-transfer fluid, and/or slow dissolution of gas into the heat-transfer fluid. They may also (i) retard or prevent corrosion, (ii) enhance lubricity, (iii) prevent formation of or kill microorganisms (such as bacteria), and/or (iv) include a defoaming agent, as desired for a particular system design or application.


Embodiments of the present invention are typically utilized in energy storage and generation systems utilizing compressed gas. In a compressed-gas energy storage system, gas is stored at high pressure (e.g., approximately 3,000 psi). This gas may be expanded into a cylinder having a first compartment (or “chamber”) and a second compartment separated by a piston slidably disposed within the cylinder (or by another boundary mechanism). A shaft may be coupled to the piston and extend through the first compartment and/or the second compartment of the cylinder and beyond an end cap of the cylinder, and a transmission mechanism may be coupled to the shaft for converting a reciprocal motion of the shaft into a rotary motion, as described in the '595 and '853 applications. Moreover, a motor/generator may be coupled to the transmission mechanism. Alternatively or additionally, the shaft of the cylinders may be coupled to one or more linear generators, as described in the '853 application.


As also described in the '853 application, the range of forces produced by expanding a given quantity of gas in a given time may be reduced through the addition of multiple, series-connected cylinder stages. That is, as gas from a high-pressure reservoir is expanded in one chamber of a first, high-pressure cylinder, gas from the other chamber of the first cylinder is directed to the expansion chamber of a second, lower-pressure cylinder. Gas from the lower-pressure chamber of this second cylinder may either be vented to the environment or directed to the expansion chamber of a third cylinder operating at still lower pressure; the third cylinder may be connected to either the environment or to a fourth cylinder; and so on.


The principle may be extended to more than two cylinders to suit particular applications. For example, a narrower output force range for a given range of reservoir pressures is achieved by having a first, high-pressure cylinder operating between, for example, approximately 3,000 psig and approximately 300 psig and a second, larger-volume, lower-pressure cylinder operating between, for example, approximately 300 psig and approximately 30 psig. When two expansion cylinders are used, the range of pressure within either cylinder (and thus the range of force produced by either cylinder) is reduced as the square root relative to the range of pressure (or force) experienced with a single expansion cylinder, e.g., from approximately 100:1 to approximately 10:1 (as set forth in the '853 application). Furthermore, as set forth in the '595 application, N appropriately sized cylinders can reduce an original operating pressure range R to R1/N Any group of N cylinders staged in this manner, where N≧2, is herein termed a cylinder group.


All of the approaches described above for converting potential energy in compressed gas into mechanical and electrical energy may, if appropriately designed, be operated in reverse to store electrical energy as potential energy in a compressed gas. Since the accuracy of this statement will be apparent to any person reasonably familiar with the principles of electrical machines, power electronics, pneumatics, and the principles of thermodynamics, the operation of these mechanisms to both store energy and recover it from storage will not be described for each embodiment. Such operation is, however, contemplated and within the scope of the invention and may be straightforwardly realized without undue experimentation.


Embodiments of the invention may be implemented using any of the integrated heat-transfer systems and methods described in the '703 application and/or with the external heat-transfer systems and methods described in the '426 patent. In addition, the systems described herein, and/or other embodiments employing liquid-spray heat exchange or external gas heat exchange, may draw or deliver thermal energy via their heat-exchange mechanisms to external systems (not shown) for purposes of cogeneration, as described in U.S. patent application Ser. No. 12/690,513, filed Jan. 20, 2010 (the '513 application), the entire disclosure of which is incorporated by reference herein.


The compressed-air energy storage and recovery systems described herein are preferably “open-air” systems, i.e., systems that take in air from the ambient atmosphere for compression and vent air back to the ambient atmosphere after expansion, rather than systems that compress and expand a captured volume of gas in a sealed container (i.e., “closed-air” systems). Thus, the systems described herein generally feature one or more cylinder assemblies for the storage and recovery of energy via compression and expansion of gas. Selectively fluidly connected to the cylinder assembly are (i) a reservoir for storage of compressed gas after compression and supply of compressed gas for expansion thereof, and (ii) a vent for exhausting expanded gas to atmosphere after expansion and supply of gas for compression. The reservoir for storage of compressed gas may include or consist essentially of, e.g., one or more one or more pressure vessels (i.e., containers for compressed gas that may have rigid exteriors or may be inflatable, and that may be formed of various suitable materials such as metal or plastic) or caverns (i.e., naturally occurring or artificially created cavities that are typically located underground). Open-air systems typically provide superior energy density relative to closed-air systems.


Furthermore, the systems described herein may be advantageously utilized to harness and recover sources of renewable energy, e.g., wind and solar energy. For example, energy stored during compression of the gas may originate from an intermittent renewable energy source of, e.g., wind or solar energy, and energy may be recovered via expansion of the gas when the intermittent renewable energy source is nonfunctional (i.e., either not producing harnessable energy or producing energy at lower-than-nominal levels). As such, the systems described herein may be connected to, e.g., solar panels or wind turbines, in order to store the renewable energy generated by such systems.


In one aspect, embodiments of the invention feature a compressed-gas energy storage and recovery system including or consisting essentially of a cylinder assembly for compressing gas to store energy and/or expanding gas to recover energy, and a spray mechanism for introducing heat-transfer fluid within a chamber of the cylinder assembly to exchange heat with gas in the chamber, thereby increasing efficiency of the energy storage and recovery. The spray mechanism includes or consists essentially of a plurality of nozzles for collectively producing an aggregate spray filling substantially an entire volume of the chamber. The aggregate spray includes or consists essentially of a plurality of overlapping individual sprays each produced by one of the plurality of nozzles.


Embodiments of the invention may include one or more of the following, in any of a variety of combinations. Each individual spray may be an atomized spray of individual droplets. The individual droplets may have an average diameter ranging from approximately 0.2 mm to approximately 1 mm. The plurality of nozzles may maintain a Weber value of gas within the chamber of at least 40. Each nozzle may maintain a pressure drop across the nozzle of less than approximately 50 psi. At least one nozzle may have a divergent cross-sectional profile. At least one nozzle may include or consist essentially of a mechanism (e.g., a plurality of vanes and/or a corkscrew) for breaking of the flow of heat-transfer fluid through the nozzle. The system may include a control system for controlling the introduction of heat-transfer fluid into the chamber such that the compression and/or expansion of gas is substantially isothermal. The spray mechanism may occupy approximately the entire top surface of the chamber. The plurality of nozzles may be arranged in a triangular grid such that each nozzle having six nearest-neighbor nozzles is approximately equidistant from each of the six nearest-neighbor nozzles. The plurality of nozzles may be arranged in a plurality of concentric rings.


The system may include a movable boundary mechanism separating the cylinder assembly into two chambers and a rod coupled to the boundary mechanism and extending through at least one of the chambers. The spray mechanism may define a hole therethrough to snugly accommodate the rod. A crankshaft for converting reciprocal motion of the boundary mechanism into rotary motion may be mechanically coupled to the rod. A motor/generator may be coupled to the crankshaft. The spray mechanism may include a threaded connector for engaging a complementary threaded connector disposed within the cylinder assembly. The spray mechanism may include an interior channel (which may be toroidal) for transmitting heat-transfer fluid from a source external to the cylinder assembly to the plurality of nozzles. The system may include at least one o-ring groove configured to accommodate an o-ring for forming a liquid-impermeable seal between the spray mechanism and the interior surface of the chamber.


A compressed-gas reservoir for storage of gas after compression and supply of compressed gas for expansion thereof may be selectively fluidly connected to the cylinder assembly. A vent for exhausting expanded gas to atmosphere and supply of gas for compression thereof may be selectively fluidly connected to the cylinder assembly. An intermittent renewable energy source (e.g., of wind or solar energy) may be connected to the cylinder assembly. Energy stored during compression of gas may originate from the intermittent renewable energy source, and energy may be recovered via expansion of gas when the intermittent renewable energy source is nonfunctional.


The spray mechanism may include or consist essentially of a spray head or a spray rod. The system may include a circulation apparatus for circulating heat-transfer fluid to the spray mechanism and/or a heat exchanger for maintaining the heat-transfer fluid at a substantially constant temperature. The circulation apparatus may circulate heat-transfer fluid from the cylinder assembly through the heat exchanger and back to the cylinder assembly. The cylinder assembly may include or consist essentially of two separated chambers (e.g., a pneumatic chamber and a hydraulic chamber, or two pneumatic chambers). The system may include a heat-transfer fluid for introduction within the chamber. The heat-transfer fluid may include or consist essentially of water. The plurality of nozzles may be organized into at least two nozzle groups, at least one nozzle group not being active during a portion of a single cycle or compression or expansion.


In another aspect, embodiments of the invention feature a method for improving efficiency of compressed-gas energy storage and recovery. Gas is compressed to store energy and/or expanded to recover energy within a chamber of a cylinder assembly. During the compression and/or expansion, an entire volume of the chamber is substantially filled with an atomized spray of heat-transfer fluid to exchange heat between the gas and the atomized spray, thereby increasing efficiency of the energy storage and recovery. The atomized spray includes or consists essentially of a plurality of overlapping individual sprays each produced within the chamber.


Embodiments of the invention may include one or more of the following, in any of a variety of combinations. The heat exchange between the gas and the atomized spray may render the compression and/or expansion substantially isothermal. Expanded gas may be vented to atmosphere and/or compressed gas may be stored in a compressed-gas reservoir. Energy stored during compression of gas may originate from an intermittent renewable energy source (e.g., of wind or solar energy). Energy may be recovered via expansion of gas when the intermittent renewable energy source is nonfunctional. The individual sprays may be each produced by one of a plurality of nozzles organized into at least two nozzle groups. At least one nozzle group may not be active during a portion of a single cycle of compression or expansion.


In yet another aspect, embodiments of the invention feature a compressed-gas energy storage and recovery system including or consisting essentially of a cylinder assembly for compressing gas to store energy and/or expanding gas to recover energy, an actuating mechanism, and a heat-transfer mechanism for introducing heat-transfer fluid within a chamber of the cylinder assembly to exchange heat with gas in the chamber, thereby increasing efficiency of the energy storage and recovery. The heat-transfer mechanism includes or consists essentially of a plurality of nozzles. The actuating mechanism controls the number of active nozzles introducing heat-transfer fluid within the chamber during a single cycle of compression or expansion of gas.


Embodiments of the invention may include one or more of the following, in any of a variety of combinations. The actuating mechanism may include or consist essentially of at least one cracking-pressure valve. The actuating mechanism may include or consist essentially of a plurality of valves (e.g., each valve being associated with a nozzle) and a control system for controlling the valves based at least on a pressure within the cylinder assembly. The system may include a sensor for measuring the pressure within the cylinder assembly, and the control system may be responsive to the sensor. The control system may control the cylinder assembly and/or the heat-transfer mechanism to render the compression and/or expansion substantially isothermal. The plurality of nozzles may be substantially identical to each other. At least two nozzles may differ in at least one characteristic, e.g., type, size, and/or throughput. The heat-transfer mechanism may include or consist essentially of a spray head and/or a spray rod. The system may include a heat exchanger and a circulation apparatus for circulating heat-transfer fluid between the heat exchanger and the cylinder assembly. The plurality of nozzles may be organized into at least two nozzle groups, and at least one nozzle group may not be active during a portion of the single cycle of compression or expansion.


A compressed-gas reservoir for storage of gas after compression and supply of compressed gas for expansion thereof may be selectively fluidly connected to the cylinder assembly. A vent for exhausting expanded gas to atmosphere and supply of gas for compression thereof may be selectively fluidly connected to the cylinder assembly. An intermittent renewable energy source (e.g., of wind or solar energy) may be connected to the cylinder assembly. Energy stored during compression of gas may originate from the intermittent renewable energy source, and energy may be recovered via expansion of gas when the intermittent renewable energy source is nonfunctional.


The cylinder assembly may include or consist essentially of two separated chambers (e.g., a pneumatic chamber and a hydraulic chamber, or two pneumatic chambers). The system may include a movable boundary mechanism separating the cylinder assembly into two chambers. A crankshaft for converting reciprocal motion of the boundary mechanism into rotary motion may be mechanically coupled to the boundary mechanism. A motor/generator may be coupled to the crankshaft. The heat-transfer fluid may be introduced within the chamber in the form of an atomized spray filling substantially an entire volume of the chamber.


In another aspect, embodiments of the invention feature a method for improving efficiency of compressed-gas energy storage and recovery. Gas is compressed to store energy and/or expanded to recover energy within a chamber of a cylinder assembly. During the compression and/or expansion, heat-transfer fluid is introduced into the chamber through at least one of a plurality of nozzles to exchange heat with the gas, thereby increasing efficiency of the energy storage and recovery. The number of active nozzles introducing the heat-transfer fluid is based at least in part on a pressure of the gas in the chamber.


Embodiments of the invention may include one or more of the following, in any of a variety of combinations. The heat exchange between the heat-transfer fluid and the gas may render the compression and/or expansion substantially isothermal. Expanded gas may be vented to atmosphere, and/or compressed gas may be stored in a compressed-gas reservoir. Energy stored during compression of gas may originate from an intermittent renewable energy source (e.g., of wind or solar energy). Energy may be recovered via expansion of gas when the intermittent renewable energy source is nonfunctional. The heat-transfer fluid may be recirculated between the chamber and an external heat exchanger to maintain the heat-transfer fluid at a substantially constant temperature. During a first portion of a single cycle of expansion or compression at least one nozzle may not be active. During a second portion of the single cycle of expansion or compression different from the first portion, each of the nozzles may be active. The heat-transfer fluid may be introduced within the chamber in the form of an atomized spray filling substantially the entire volume of the chamber.


In yet another aspect, embodiments of the invention feature a method for energy storage and recovery. Gas is compressed within a chamber of a cylinder assembly to store energy. During the compression, heat-transfer fluid is introduced into the chamber at a rate that increases as the pressure of the gas increases. The heat-transfer fluid exchanges heat with the gas, thereby increasing efficiency of the energy storage.


Embodiments of the invention may include one or more of the following, in any of a variety of combinations. Introducing the heat-transfer fluid may include or consist essentially of increasing the spraying power of heat-transfer fluid at a less-than-geometric rate relative to the rate of introduction. The rate of introduction may be increased by increasing the number of active nozzles introducing the heat-transfer fluid into the chamber. The heat-transfer fluid may be recirculated between the chamber and a heat exchanger to maintain the heat-transfer fluid at a substantially constant temperature. The heat-exchange between the gas and the hear-transfer fluid renders the compression substantially isothermal.


These and other objects, along with advantages and features of the invention, will become more apparent through reference to the following description, the accompanying drawings, and the claims. Furthermore, it is to be understood that the features of the various embodiments described herein are not mutually exclusive and can exist in various combinations and permutations. Note that as used herein, the terms “pipe,” “piping” and the like shall refer to one or more conduits that are rated to carry gas or liquid between two points. Thus, the singular term should be taken to include a plurality of parallel conduits where appropriate. Herein, the terms “liquid” and “water” interchangeably connote any mostly or substantially incompressible liquid, the terms “gas” and “air” are used interchangeably, and the term “fluid” may refer to a liquid or a gas unless otherwise indicated. As used herein unless otherwise indicated, the term “substantially” means ±10%, and, in some embodiments, ±5%. A “valve” is any mechanism or component for controlling fluid communication between fluid paths or reservoirs, or for selectively permitting control or venting. The term “cylinder” refers to a chamber, of uniform but not necessarily circular cross-section, which may contain a slidably disposed piston or other mechanism that separates the fluid on one side of the chamber from that on the other, preventing fluid movement from one side of the chamber to the other while allowing the transfer of force/pressure from one side of the chamber to the next or to a mechanism outside the chamber. In the absence of a mechanical separation mechanism, a “chamber” or “compartment” of a cylinder may correspond to substantially the entire volume of the cylinder. A “cylinder assembly” may be a simple cylinder or include multiple cylinders, and may or may not have additional associated components (such as mechanical linkages among the cylinders). The shaft of a cylinder may be coupled hydraulically or mechanically to a mechanical load (e.g., a hydraulic motor/pump or a crankshaft) that is in turn coupled to an electrical load (e.g., rotary or linear electric motor/generator attached to power electronics and/or directly to the grid or other loads), as described in the '595 and '853 applications.





BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings, like reference characters generally refer to the same parts throughout the different views. Cylinders, rods, and other components are depicted in cross section in a manner that will be intelligible to all persons familiar with the art of pneumatic and hydraulic cylinders. Also, the drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the invention. In the following description, various embodiments of the present invention are described with reference to the following drawings, in which:



FIG. 1 is a schematic diagram of portions of a compressed-air energy storage and recovery system that may be utilized in conjunction with various embodiments of the invention;



FIG. 2 is an illustration of three types of liquid-flow breakup;



FIG. 3 is a chart showing the relationship of liquid-flow breakup to two dimensionless constants;



FIG. 4 is a chart showing the relationship of liquid-flow breakup to two dimensionless constants, with the effect of high air pressure indicated;



FIG. 5 is a table showing variables associated with spray production for various orifice diameters and constant Weber number for air;



FIG. 6 is a plot of water-spray heat-transfer limits estimated mathematically;



FIG. 7 is a plot of droplet trajectory lengths;



FIG. 8 shows three types of orifice cross-section in accordance with various embodiments of the invention;



FIG. 9 is an isometric view of a spray head in accordance with various embodiments of the invention;



FIG. 10 is a plan view of the spray head of FIG. 9;



FIG. 11 is a schematic view of spray coverage from a spray head in accordance with various embodiments of the invention;



FIG. 12 is a side view of the spray head of FIG. 9;



FIG. 13 is an axial cross-section of the spray head of FIG. 9;



FIG. 14 is top-down view of the spray head of FIG. 9;



FIG. 15 is an axial cross section of a double-acting pneumatic cylinder incorporating two of the spray heads shown in FIG. 9;



FIG. 16 is an isometric view of a spray head in accordance with various other embodiments of the invention;



FIG. 17 is a plan view of the spray head of FIG. 16;



FIG. 18 is an assembly view of the spray head of FIG. 16;



FIG. 19 is an axial cross section of the spray head of FIG. 16;



FIG. 20 is bottom view of the spray head of FIG. 16;



FIG. 21 is an axial cross section of a double-acting pneumatic cylinder incorporating two of the spray heads shown in FIG. 16;



FIG. 22A is a schematic drawing of a pneumatic expander-compressor cylinder into which a heat-exchange liquid is injected in accordance with various embodiments of the invention;



FIG. 22B is the system of FIG. 22A in a different state of operation; and



FIG. 23 is a schematic diagram of portions of a compressed-air energy storage and recovery system in accordance with various embodiments of the invention.





DETAILED DESCRIPTION


FIG. 1 illustrates portions of a compressed air energy storage and recovery system 100 that may be utilized with embodiments of the present invention. The system 100 includes a cylinder assembly 102, a heat-transfer subsystem 104, and a control system 105 for controlling operation of the various components of system 100. During system operation, compressed air is either directed into vessel 106 (e.g., one or more pressure vessels or caverns) during storage of energy or released from vessel 106 during recovery of stored energy. Air is admitted to the system 100 through vent 108 during storage of energy, or exhausted from the system 100 through vent 108 during release of energy.


The control system 105 may be any acceptable control device with a human-machine interface. For example, the control system 105 may include a computer (for example a PC-type) that executes a stored control application in the form of a computer-readable software medium. More generally, control system 105 may be realized as software, hardware, or some combination thereof. For example, control system 105 may be implemented on one or more computers, such as a PC having a CPU board containing one or more processors such as the Pentium, Core, Atom, or Celeron family of processors manufactured by Intel Corporation of Santa Clara, Calif., the 680x0 and POWER PC family of processors manufactured by Motorola Corporation of Schaumburg, Ill., and/or the ATHLON line of processors manufactured by Advanced Micro Devices, Inc., of Sunnyvale, Calif. The processor may also include a main memory unit for storing programs and/or data relating to the methods described above. The memory may include random access memory (RAM), read only memory (ROM), and/or FLASH memory residing on commonly available hardware such as one or more application specific integrated circuits (ASIC), field programmable gate arrays (FPGA), electrically erasable programmable read-only memories (EEPROM), programmable read-only memories (PROM), programmable logic devices (PLD), or read-only memory devices (ROM). In some embodiments, the programs may be provided using external RAM and/or ROM such as optical disks, magnetic disks, or other storage devices.


For embodiments in which the functions of controller 105 are provided by software, the program may be written in any one of a number of high-level languages such as FORTRAN, PASCAL, JAVA, C, C++, C#, LISP, PERL, BASIC or any suitable programming language. Additionally, the software can be implemented in an assembly language and/or machine language directed to the microprocessor resident on a target device.


The control system 105 may receive telemetry from sensors monitoring various aspects of the operation of system 100 (as described below), and may provide signals to control valve actuators, valves, motors, and other electromechanical/electronic devices. Control system 105 may communicate with such sensors and/or other components of system 100 via wired or wireless communication. An appropriate interface may be used to convert data from sensors into a form readable by the control system 105 (such as RS-232 or network-based interconnects). Likewise, the interface converts the computer's control signals into a form usable by valves and other actuators to perform an operation. The provision of such interfaces, as well as suitable control programming, is clear to those of ordinary skill in the art and may be provided without undue experimentation.


The cylinder assembly 102 includes a piston 110 (or other suitable boundary mechanism) slidably disposed therein with a center-drilled rod 112 extending from piston 110 and preferably defining a fluid passageway. The piston 110 divides the cylinder assembly 102 into a first chamber (or “compartment”) 114 and a second chamber 116. The rod 112 may be attached to a mechanical load, for example, a crankshaft or hydraulic system. Alternatively or in addition, the second chamber 116 may contain hydraulic fluid that is coupled through other pipes 118 and valves to a hydraulic system 120 (which may include, e.g., a hydraulic motor/pump and an electrical motor/generator). The heat-transfer subsystem 104 includes or consists essentially of a heat exchanger 122 and a booster-pump assembly 124.


At any time during an expansion or compression phase of gas within the first or upper chamber 114 of the cylinder assembly 102, the chamber 114 will typically contain a gas 126 (e.g., previously admitted from storage vessel 106 during the expansion phase or from vent 108 during the compression phase) and (e.g., an accumulation of) heat-transfer fluid 128 at substantially equal pressure Ps, (e.g., up to approximately 3,000 psig). The heat-transfer fluid 128 may be drawn through the center-drilled rod 112 and through a pipe 130 by the pump 124. The pump 124 raises the pressure of the heat-transfer fluid 128 to a pressure Pi′ (e.g., up to approximately 3,015 psig) somewhat higher than Ps, as described in U.S. patent application Ser. No. 13/009,409, filed on Jan. 19, 2011 (the '409 application), the entire disclosure of which is incorporated by reference herein. The heat-transfer fluid 128 is then sent through the heat exchanger 122, where its temperature is altered, and then through a pipe 132 to a spray mechanism 134 disposed within the cylinder assembly 102. In various embodiments, when the cylinder assembly 102 is operated as an expander, a spray 136 of the heat-transfer fluid 128 is introduced into the cylinder assembly 102 at a higher temperature than the gas 126 and, therefore, transfers thermal energy to the gas 126 and increases the amount of work done by the gas 126 on the piston 110 as the gas 126 expands. In an alternative mode of operation, when the cylinder assembly 102 is operated as a compressor, the heat-transfer fluid 128 is introduced at a lower temperature than the gas 126. Control system 105 may enforce substantially isothermal operation, i.e., expansion and/or compression of gas in cylinder assembly 102, via control over, e.g., the introduction of gas into and the exhausting of gas out of cylinder assembly 102, the rates of compression and/or expansion, and/or the operation of heat-transfer subsystem 104 in response to sensed conditions. For example, control system 105 may be responsive to one or more sensors disposed in or on cylinder assembly 102 for measuring the temperature of the gas and/or the heat-transfer fluid within cylinder assembly 102, responding to deviations in temperature by issuing control signals that operate one or more of the system components noted above to compensate, in real time, for the sensed temperature deviations. For example, in response to a temperature increase within cylinder assembly 102, control system 105 may issue commands to increase the flow rate of spray 136 of heat-transfer fluid 128.


The circulating system 124 described above will typically have higher efficiency than a system which pumps liquid from a low intake pressure (e.g., approximately 0 psig) to Pi′, as detailed in the '409 application.


Furthermore, embodiments of the invention may be applied to systems in which chamber 114 is in fluid communication with a pneumatic chamber of a second cylinder (rather than with vessel 106). That second cylinder, in turn, may communicate similarly with a third cylinder, and so forth. Any number of cylinders may be linked in this way. These cylinders may be connected in parallel or in a series configuration, where the compression and expansion is done in multiple stages.


The fluid circuit of heat exchanger 122 may be filled with water, a coolant mixture, and/or any acceptable heat-transfer medium. In alternative embodiments, a gas, such as air or refrigerant, is used as the heat-transfer medium. In general, the fluid is routed by conduits to a large reservoir of such fluid in a closed or open loop. One example of an open loop is a well or body of water from which ambient water is drawn and the exhaust water is delivered to a different location, for example, downstream in a river. In a closed-loop embodiment, a cooling tower may cycle the water through the air for return to the heat exchanger. Likewise, water may pass through a submerged or buried coil of continuous piping where a counter heat-exchange occurs to return the fluid flow to ambient temperature before it returns to the heat exchanger for another cycle.


In various embodiments, the heat-exchange fluid is conditioned (i.e., pre-heated and/or pre-chilled) or used for heating or cooling needs by connecting the fluid inlet 138 and fluid outlet 140 of the external heat exchange side of the heat exchanger 122 to an installation (not shown) such as a heat-engine power plant, an industrial process with waste heat, a heat pump, and/or a building needing space heating or cooling, as described in the '513 application. The installation may be a large water reservoir that acts as a constant-temperature thermal fluid source for use with the system. Alternatively, the water reservoir may be thermally linked to waste heat from an industrial process or the like, as described above, via another heat exchanger contained within the installation. This allows the heat-transfer fluid to acquire or expel heat from/to the linked process, depending on configuration, for later use as a heating/cooling medium in the compressed air energy storage/conversion system.


For the system 100 in FIG. 1, isothermal efficiency during gas expansion may be defined as the ratio of the actual work done on the piston to the theoretical work that could have been done on the piston if the gas expansion occurred perfectly isothermally. Total expansion efficiency may be defined as the ratio of the actual work done on the piston (less the expenditure of energy to produce the liquid spray) to the theoretical work that could have been done on the piston if the gas expansion occurred perfectly isothermally.


The efficiency of spray mechanisms such as spray mechanism 134 is increased in accordance with various embodiments of the present invention. Total expansion efficiency depends partly on (a) the behavior of the liquid injected into the gas and (b) the energy required to inject the liquid into the gas. Regarding the behavior of the liquid injected into the gas, the rate at which heat may be transferred to or from a given quantity of liquid to a given quantity of gas is generally proportional to the area of contact between the two (i.e., liquid surface area). When a given volume of liquid is reduced to N spherical droplets, the total surface area of the droplets is proportional to N2/3. Atomization of the liquid during injection (i.e., large N, creation of a fine spray) is therefore generally conducive to more rapid heat transfer. For a given droplet residence time in the gas, more-rapid heat transfer also typically entails larger total heat transfer.


The energy required to inject the liquid into the gas is the energy required to force water through the spray mechanism 134. In general, for a given liquid flow rate (e.g., gallons per minute) through each orifice, larger orifices in the spray mechanism 134 will entail a smaller liquid pressure drop (ΔP) from the interior of the spray mechanism 134 to the interior of chamber 114 and therefore less expenditure of energy (Ei) to inject a given volume (VT) of heat-transfer liquid: Ei=VT×ΔP.


However, in attempting to increase efficiency, the above considerations may be at odds. Higher injection velocity through an orifice of given size tends to result in a finer spray and more surface area (which pertains to consideration (a)) but also requires a larger ΔP and therefore a greater expenditure of energy (which pertains to consideration (b)). On the other hand, for a given rate of liquid flow per orifice, a larger orifice will entail a lower pressure drop ΔP and therefore lower injection energy Ei per unit of heat-transfer liquid, but above a certain diameter a larger orifice will tend to produce a narrow jet rather than a fine spray. Ei will thus be lower for a larger orifice (for a fixed flow rate), but so will droplet count N per unit of liquid volume, with a correspondingly lower rate of heat transfer. Therefore, to inject heat-exchange liquid in a manner that increases or maximizes total efficiency, it is necessary to consider in detail the behavior of a liquid injected into a gas, that is, liquid-phase dispersion (liquid breakup) in a liquid-gas system.



FIG. 2 is an illustration of three types or regimes of liquid phase breakup. After exiting an orifice, a stream of liquid entering a volume of gas will eventually break up, forming drops. The location, form, number, and motions of the drops depend complexly on the character of the liquid flow through the orifice (e.g., velocity) and the physical properties (e.g., viscosity, density, surface tension) of both the liquid and the gas. For brevity, this discussion ignores the dripping regime, in which large droplets of approximately uniform size form at the orifice outlet.


Under conditions where a jet is produced at the orifice outlet, three basic types or regimes of liquid phase breakup and their relationship to liquid properties have been defined in W. Ohnesorge, “Formation of drops by nozzles and the breakup of liquid jets,” Zeitschrift für Angewandte Mathematik and Mechanik [Applied Mathematics and Mechanics], vol. 16, pp. 355-358 (1936) (the “Ohnesorge reference”), the entire disclosure of which is incorporated by reference herein. In a first regime 200 shown in FIG. 2, a liquid jet eventually breaks up into large droplets. In a second regime 210, a jet breaks up into droplets and rapidly changing vermiform bodies termed ligaments. In a third regime 220, the liquid atomizes quickly after exiting the orifice, i.e., forms a spray consisting of a large number of small droplets.



FIG. 3 is a chart adapted from the Ohnesorge reference. In this chart, the three breakup regimes (labeled Droplet, Wave & Droplet, and Spray) are shown as functions of two dimensionless numbers, namely the Reynolds number (horizontal axis) and the Ohnesorge number (vertical axis). The Reynolds numbers (Re) is a function of the liquid velocity at exit from the hole (v), hole diameter (D), liquid density (ρ), and liquid dynamic viscosity (μ): Re=ρvD/μ. The Ohnesorge number (Oh) is a function of hole diameter (D), liquid density (ρ), liquid dynamic viscosity (μ), and liquid surface tension (σ): Oh=μ/(σρD)1/2. For a particular case of liquid flow from an orifice, the ratio of Re to Oh generally determines the type of breakup that will occur. For a liquid (e.g., water) having a fixed dynamic viscosity, density, and surface tension, a flow's Ohnesorge number (vertical coordinate on the chart) is determined by orifice diameter and its Reynolds number (horizontal coordinate) is determined by jet velocity. In FIG. 3, a line 300 denotes the transition from the Spray regime to the Wave & Droplet regime; another line 302 denotes the transition from the Wave & Droplet regime to the Droplet regime.


An operating point further to the right of line 300 in FIG. 3 will create a finer spray and therefore a greater total droplet surface area, which increases heat transfer, and tends to increase total expansion efficiency. However, because an operating point further to the right of line 300 requires a greater liquid velocity, it also requires a greater spray energy (energy required to generate the spray), which tends to decrease total system efficiency.


The chart shown in FIG. 3 is generally valid for liquid injection into gas at atmospheric pressure. At higher gas pressures, the aerodynamic forces acting on a jet of a given size are greater and atomization therefore occurs at lower velocities (lower Reynolds number, Re). FIG. 4 is a variation of the chart shown in FIG. 3 modified to reflect higher gas pressure. Five atomization operating points are denoted by dots 400 placed on the line 300 that in FIG. 3 corresponds to the boundary between spray (atomization) breakup and wave-and-droplet breakup at atmospheric pressure. For an air pressure of approximately 3,000 psig, atomization tends to occur at lower jet velocities than at atmospheric pressure. Since Reynolds number Re is proportional to velocity, the boundary line between wave-and-droplet breakup and spray breakup is effectively shifted to the left (i.e., to lower Reynolds numbers) by increased air pressure. This shifted boundary is indicated by a dashed line 404. In this illustrative example, raising the air pressure to approximately 3,000 psig has the effect of shifting the five operating points 400 leftward to new locations 402 on the dashed boundary line 404. That is, all other parameters being held equal, a jet will typically atomize at lower velocity in approximately-3,000-psig air. Lower jet velocity corresponds to lower pressure drop ΔP through each spray-head orifice and, therefore, to lower injection energy Ei. Dashed boundary line 404 corresponds to Weber number for air (herein denoted Weair)≧40. The Weber number of air Weair is a function of hole diameter (D), air density (ρair), liquid injection velocity (v), and liquid surface tension (σ): Weairairv2D/σ.



FIG. 5 is a table of projections of the energy required to produce an atomized spray by forcing fluid through a spray head assuming five different orifice diameters (100 μm, 300 μm, 500 μm, 700 μm, and 900 μm) calculated from the chart of FIG. 3 and taking into account the higher density of air at approximately 20 bar (an exemplary pressure into which an atomized spray may be injected in accordance with various embodiments of the invention). Given hole diameters of various sizes and the Weber number for air Weair≧40 selected for atomized spray formation, the required liquid orifice-exit velocity may be calculated and is provided in the third column of FIG. 5. Knowing the liquid orifice-exit velocity, the pressure drop across the orifice (i.e., from the first side of the spray head to the second side of the spray head) may be calculated and is provided in the fourth column of FIG. 5.


Furthermore, having specified the hole diameter and flow velocity in the first and third columns, and having knowledge of the specific heat of water, one may use the total flow per kW of per degree Celsius (heat-transfer coefficient) and an assumed temperature change of the injected fluid (here 5° C.) to calculate the number of orifices needed: this number is provided here in the fifth column of FIG. 5.


Finally, the energy consumed in forcing the heat-exchange liquid through the orifices may then be calculated from the pressure drop and flow rate (flow rate coming from the number of holes, velocity and area of the holes), and is provided in the sixth column. This figure is typically a minimum, as forcing the liquid through the orifices at still higher velocities will also produce atomized flows, albeit at higher energy cost.



FIG. 6 is a graph of calculated water spray heat-transfer rate limits for a range of water droplet sizes (25 μm-900 μm) for two extremes of water breakup behavior, namely solid jet and atomized spray, in air at 3,000 psig and at 300 psig. The horizontal axis is jet or droplet size. The vertical axis is kilowatts per GPM per degree C. change in the temperature of the injected water (kW/GPM/° C.). The upper curves 600, 610 denote kW/GPM/° C. for fully atomized injection (i.e., all injected water forms droplets falling at their terminal velocity) at 300 psig and 3,000 psig respectively, and correspond to highly efficient heat transfer. The lower curves 620, 630 denote kW/GPM/° C. for jet-only injection (i.e., no droplet breakup, and the jets propagating at 9.1 m/s injection velocity) at 300 psig and 3,000 psig respectively, and correspond to minimally efficient heat transfer. Due to non-idealities, real-world heat transfer will typically occur along some curve between these two sets of extremes.


From the values in the sixth column of FIG. 5, increasing orifice size tends to require less injection energy; however, from the drop-off of the upper curves 600, 610 in FIG. 6, maximal heat transfer (kW/GPM/° C.) tends to decline with increasing orifice size. Total efficiency therefore generally may not be increased simply by using very large orifice sizes. On the other hand, small orifices are more likely to be clogged by particles entrained in the liquid flow.



FIG. 7 is a plot of droplet trajectories for a horizontal injection velocity of 35.2 m/s and droplet diameter of 100 μm for injection into a range of gas pressures. Curves 700, 710, 720, 730, and 740 respectively correspond to pressures of 294 psig, 735 psig, 1470 psig, 2205 psig, and 2940 psig. FIG. 7 relates to another aspect of efficient heat-transfer using injected liquid sprays, namely volume coverage by individual sprays. At the point of spray formation outside an orifice, droplets of various sizes appear with velocity vectors scattered randomly over a certain solid angle (≦2π steradians) centered on the vertical. As a droplet travels through the gas its horizontal momentum is dissipated by interaction with the gas and it is accelerated vertically by gravity. After the horizontal component of a droplet's momentum has been dissipated, the droplet tends to fall vertically at a constant terminal velocity determined primarily by droplet size and gas density. FIG. 7 shows trajectories of droplets that receive a purely horizontal initial velocity of 35.2 m/s from an orifice. The horizontal momentum of a droplet is more quickly dissipated in a higher-pressure gas, which is relatively denser. This loss of horizontal droplet momentum in denser gas manifests in FIG. 7 as shorter horizontal distance traveled. Smaller droplets are generally superior for rapid heat transfer, both because a more finely atomized volume of heat-transfer liquid presents a larger liquid-gas surface area and because while falling they attain lower terminal velocities and thus dwell longer in the gas column. However, FIG. 7 illustrates the fact that smaller droplets (e.g., 100 μm) travel shorter horizontal distances in high-pressure gas. This constrains the width of the falling-droplet column that tends to form under each spray orifice and therefore increases the number of orifices required to fill a gas column of given horizontal cross-section with falling droplets.


In accordance with various embodiments of the invention, the geometry of each nozzle is selected to produce droplets having a diameter of about 0.2 mm to about 1.0 mm. Additionally, the nozzles may be configured to maintain a pressure drop of the heat-transfer fluid at less than approximately 50 psi during introduction thereof.


Droplets with smaller diameters will generally have lower terminal velocities than larger droplets. In higher-pressure air, droplet terminal velocities further decrease, so that drops having small diameters (e.g., less than 0.2 mm) may not reach all areas of a cylinder volume during a compression or expansion process. Additionally, nozzles configured to achieve even smaller average drop sizes than 0.2 mm (e.g., 0.05 mm) tend to require either substantially higher pressure drops or much smaller orifice sizes. Higher pressure drops require more pumping power, and larger quantities of smaller orifices may be more expensive and more prone to failure and clogging. Therefore, practicalities of droplet generation and distribution tend not to favor the generation of very small droplets, and optimal droplet size for a given cylinder assembly will be determined by a combination of factors. Among these factors, air pressures and piston speeds will tend to be more significant than cylinder diameter. For a liquid spray for isothermal-type compressed air systems as described herein, droplets having diameters of about 0.2 mm to about 1.0 mm both (a) effectively cover the volume of the cylinder chamber and (b) require relatively low pumping powers. For an exemplary system with two compression stages (e.g., the first stage compressing from 0 psig to 250 psig and the second stage compressing from 250 psig to 3000 psig), low-pressure cylinder diameters may be approximately 20 inches to approximately 50 inches (e.g., approximately 24 inches to approximately 42 inches) and high-pressure cylinder diameters may be approximately 6 inches to approximately 15 inches (e.g., approximately 8 inches to approximately 12 inches). Stroke lengths may be approximately 20 inches to approximately 80 inches (e.g., approximately 30 inches to approximately 60 inches). Peak piston speeds may be between 3 and 15 feet per second. In various embodiments, any of the above-described cylinders are utilized singly or in systems featuring two or more cylinders (that are identical to or different from each other).



FIG. 8 pertains to another aspect of efficient heat-transfer using liquid sprays injected into gas, namely the effect of spray-head channel geometry on spray generation. FIG. 8 shows three possible types of spray-channel cross-sections, namely convergent profile 800, parallel profile 802, and divergent profile 804. The material of the plate through which the channels pass may be metal, ceramic, or any other rigid substance of sufficient strength. Liquid flow through each channel is indicated by arrows 806. The space above the plate through which the channels pass is presumed to be filled with liquid and the space below the plate is presumed to be filled primarily with gas. All three channel types shown in FIG. 8 may be readily manufactured using known techniques, such as mechanical drilling and laser drilling. Channel cross-section affects the mode of liquid flow through the channel and, consequently, the mode of jet or spray formation at the outlet of the channel (i.e., at the spray orifice). Our experimental work shows that for simple nozzles the divergent channel type 804 produces an atomized, well-dispersed spray with the least energy expenditure at a given gas pressure. Spray energy may also be reduced by use of more complex nozzle designs such as axial full-cone spray nozzles with internal vanes, large free-passage helical nozzles, and angled vaneless spray nozzles, all of which are available commercially from companies such as Spraying Systems Corporation in Wheaton, Ill.



FIG. 9 is an isometric view of an illustrative embodiment of the invention in the form of a spray head 900 configured for mounting within, e.g., a vertically-oriented pneumatic cylinder having a cylindrical interior cross section. As shown, the spray head 900 has the form of a round, straight-sided torus approximately 18 cm in exterior diameter, although other shapes (e.g., disc, square) and dimensions are within the scope of the invention. The faceplate 910 of the spray head 900 is perforated by a number of orifices 920 that are each approximately 900 μm in diameter. The orifices 920 are arranged in a triangular grid so that, in the ideal or infinitely extended grid, each orifice 920 is approximately 1 cm from each of its six nearest neighbors (where each orifice and its six nearest neighbors collectively define a hexagon centered on the orifice and having approximately equal sides). Other arrangements of orifices 920 may be employed in accordance with embodiments of the invention. For example, concentric rings of orifices 920 may be centered on a central opening 930 of the spray head 900.


The spray head 900 may be mounted horizontally within a vertically-oriented cylinder with its faceplate 910 facing downward at the top of a gas-filled chamber within the cylinder (for example, in cylinder assembly 102). A piston shaft typically passes snugly through the circular central opening 930 of the spray head 900 and the lateral surface 940 of the spray head 900 is typically in snug contact with the cylindrical inner wall of the cylinder. The open horizontal area at the top of the cylinder chamber may be wholly occupied by the faceplate 910 of the spray head 900. Each orifice 920 communicates with the upper side of the faceplate 910 through a channel that may be convergent, straight-sided, or divergent, as shown in FIG. 8, or which may have some other configuration (and/or may incorporate mechanisms such as vanes inside, as described above).


The spray head 900 is primarily affixed to the cylinder by means of a threaded protruding collar (1200 in FIGS. 12 and 13) on its upper side. To prevent the threaded collar from backing out during operation, two set-screws (or some other suitable number of set-screws) may be inserted through the spray head 900 through openings 950. Since the spray head 900 preferably fits snugly into the cylinder and around a central piston rod, provision is generally made for applying torque to the spray head 900 in order to screw its threaded collar (1200 in FIGS. 12, 13) into a matching thread in the upper end of the cylinder. Four notches 960 (or some other suitable number of notches 960) may be provided to enable a tool to apply torque to the spray head 900 during installation; however, other methods of securing the spray head within the cylinder are contemplated and considered within the scope of the invention.


Heat-exchange liquid is conveyed to the channels of the orifices 920 through an arrangement of channels or hollows in the body of the spray head (see FIGS. 13 and 14) from a source exterior to the cylinder. Heat-exchange liquid issues from the orifices 920 into the gas-filled chamber of the cylinder. If injection pressure is sufficient, the liquid will form an atomized spray upon exiting each orifice. In an illustrative embodiment of the invention, injection pressure drop from the interior of the spray head 900 to the exterior is in the range of approximately 30 psi to approximately 70 psi, for example approximately 50 psi. This illustrative embodiment will efficiently produce a spray effective for purposes of heat transfer during injection into gas over the approximate pressure range of 3,000 psi to 300 psi (e.g., during expansion to 300 psi of a quantity of gas starting at 3,000 psi or during compression to 3,000 psi of a quantity of gas starting at 300 psi).



FIG. 10 is a plan view of the lower surface of spray head 900. When the spray head 900 is installed, the hole 930 is typically filled with the cylinder piston rod and the lateral surface 940 of the spray head 900 is in contact with the interior wall of the cylinder. In this view, in one state of operation, liquid spray is directed out of the page.



FIG. 11 is a schematic view of spray coverage from a spray head 1100 resembling spray head 900 but having a smaller central hole 1110 and fewer orifices (not explicitly shown). Due to air resistance, the spray droplets from each spray-head orifice travel a limited horizontal distance before beginning to fall approximately vertically (i.e., out of the page) at their terminal velocity. Each orifice therefore tends to produce a column of vertically falling droplets centered under it. The approximate cross-sectional widths and locations of a number of such columns are shown in FIG. 11 by circles 1120. In various preferred embodiments of the invention, the orifices are spaced so that when liquid is being injected into high-pressure gas at an appropriate injection pressure, the columns of falling spray overlap or interact with each other, entirely or almost entirely filling the column of gas contained within the chamber of the cylinder and maximizing the rate of liquid-gas heat transfer. In a preferred embodiment, droplets of liquid fill or rain through substantially the entire gas volume of the chamber of the cylinder, e.g., with only a few (for example, 1 to 5) droplet diameters of gas-filled space between any two falling drops. In this preferred embodiment, a minimal amount of fluid runs down the sides of the cylinder body (e.g., after droplets impact the sides of the cylinder body), and the majority of the fluid is raining through the gas.



FIG. 12 is a side view of the spray head 900. The lower surface of the faceplate 910 of the spray head 900 is shown edge-on. One notch 960 for the torque-applying insertion tool described above is visible. As previously described, the spray head 900 includes a protruding threaded collar 1200. The outer lateral face of the collar 1200 is preferably threaded (threads not shown) and screws into a complementary threaded opening disposed in the top of the cylinder.



FIG. 13 is an axial cross section of the spray head 900, in which the faceplate 910 of the spray head 900 is shown edge-on. A toroidal or ring-shaped channel 1300 (visible in cross-section in FIG. 13) is disposed in the upper surface of the spray head 900 and, during operation of the spray head 900, is partially or substantially filled with a pressurized liquid from an exterior source admitted through inlets in the upper end of the cylinder (not shown). When the spray head 900 is screwed into position, o-rings within o-ring grooves 1310, 1320 seal the spray head 900 against the inside of the cylinder and prevent fluid within channel 1300 from exiting around the o-ring grooves 1310, 1320 into the cylinder.


Six holes 1330 (two of which are visible in cross-section in FIG. 13 and all of which are visible end-on in FIG. 14) pass through the floor of channel 1300 to a second ring-shaped channel 1340 within the spray head 900. This interior channel 1340 conducts liquid to the faceplate 910 and spray orifices 920. When the spray head 900 is screwed into position, there may be no precise control over its final angular orientation, but the upper-surface channel 1300, holes 1330, and interior channel 1340 ensure that, regardless of the orientation of the fully installed spray head 900 with respect to the liquid inlets in the upper end of the cylinder, liquid may flow unimpeded to the spray orifices 920.



FIG. 14 is a top-down view of the spray head 900, in which the upper ring-shaped channel 1300 is fully visible, as are the six holes 1330 that communicate with the inner ring-shaped channel 1340 (FIG. 13). As shown, six holes 1330 are arranged at equal distances apart about the inner ring-shaped channel; however, any number and arrangement of holes 1330 may be used to suit a particular application. The two set-screw clearance holes 950 are also visible.



FIG. 15 is a cross-sectional side view of one illustrative embodiment of the invention utilizing a spray head as described herein. A high-pressure cylinder 1500 contains a piston 1510 that is attached to two shafts 1520, 1530 that pass through opposite ends of the cylinder 1500. One spray head 1540 of the design described with respect to FIG. 9 is mounted in the upper end of the cylinder 1500. A second spray head 1550 of the design described with respect to FIG. 9 is mounted on the lower surface of the piston 1510. Liquid is conveyed to the upper spray head 1540 directly through the upper end of the cylinder. A center-drilled channel 1560 within shaft 1520 enables water (or another suitable heat-exchange fluid) to be conveyed to the spray head 1550 mounted on the piston 1510 so as to introduce a liquid spray into the lower chamber 1590. A center-drilled channel 1570 within shaft 1530 enables water to be conveyed out of the upper chamber 1580 of the cylinder 1500. A system of channels for introduction of liquid to and removal of liquid from the chambers of a pneumatic cylinder as described in the '513 application may be utilized with various embodiments of the invention.


In the illustrative embodiment shown in FIG. 15, the cylinder 1500 may compress or expand gas in either chamber and is, therefore, double-acting. For example, if the cylinder 1500 is being used to extract mechanical work from the expansion of a gas in the upper chamber 1580, the upper spray head 1540 may be used to perform liquid-gas heat exchange during the expansion, during which the piston 1510 moves downward. Similarly, the lower spray head 1550 may be used during the expansion of a gas in the lower chamber 1590, during which the piston 1510 moves upward. Whatever mode of operation is chosen, atomized sprays from the orifices of the active spray head 1540, 1550 form vertical, interacting (and/or overlapping) cylinders of falling droplets that exchange heat with substantially all of the interior of the chamber 1580, 1590 being injected with liquid. In other applications, both spray heads 1540, 1550 are employed simultaneously.



FIG. 16 is an isometric view of another illustrative embodiment of the invention in the form of a spray head 1600 configured for mounting within a vertically-oriented pneumatic cylinder having a cylindrical interior cross section. As shown in FIG. 16, the spray head 1600 has the form of a round, straight-sided torus approximately 58 cm in exterior diameter. In other embodiments it has other shapes (e.g., disc, square) and dimensions. The faceplate 1610 of the spray head 1600 contains a number of countersinks 1620 each of which houses a nozzle 1630. The nozzles 1630 are arranged in concentric rings centered on the central hole 1640 of spray head 200 such that each nozzle 1630 is approximately 7 cm from each of its six nearest neighbors. Other arrangements of nozzles 1630 may be employed, e.g., a triangular grid as depicted in FIG. 9.


The spray head 1600 may be mounted horizontally within a vertically-oriented cylinder with its faceplate 1610 facing downward at the top of a gas-filled chamber within the cylinder (such as in, e.g., cylinder assembly 102). A piston shaft typically passes snugly through the circular central opening 1640, and the lateral surface 1650 of the spray head 1600 is typically in snug contact with the cylindrical inner wall of the cylinder. The open horizontal area at the top of the cylinder chamber is preferably wholly occupied by the faceplate 1610. The spray head 1600 is primarily affixed to a cylinder by means of through-holes 1660 that enable the spray head 1600 to be bolted to the inside of the cylinder.



FIG. 17 is a plan view of the lower surface of the spray head 1600. When the spray head 1600 is installed, the hole 1640 is typically at least substantially filled with the cylinder piston rod and the lateral surface 1650 of the spray head 1600 is in contact with the interior wall of the cylinder. In this view, in one state of operation, liquid spray (not shown) is directed out of the page. As described above with reference to FIG. 11, due to air resistance, the spray droplets in the spray cone from each spray-head nozzle will travel a limited horizontal distance before beginning to fall approximately vertically (i.e., out of the page) at their terminal velocity. Each orifice therefore tends to produce a column of vertically falling droplets centered under it. In various embodiments of the invention, the nozzles 1630 are spaced so that when liquid is being injected into gas at an appropriate injection pressure, the columns of falling spray overlap or interact with each other, entirely or almost entirely filling the column of gas contained within the chamber of the cylinder and maximizing the rate of liquid-gas heat transfer.



FIG. 18 is an assembly view of spray head 1600, which as shown includes a faceplate 1610 and a base plate 1800, sealed together via inner o-ring 1810, outer o-ring 1820, and bolt o-rings 1830, and connected via a number of connecting bolts 1840. Nozzles 1630 may be threaded into tapered, countersunk holes in faceplate 1610. Water (and/or another suitable heat-transfer fluid) is directed from an external source into the spray head 1600 via two inlet ports 1850.



FIG. 19 is an axial cross section of spray head 1600 in which the faceplate 1610 is shown edge-on. Three interconnected toroidal or ring-shaped channels 1900 (visible in cross-section) are disposed in the inner surface of the base plate 1800 and direct heat-transfer fluid from the inlet ports 1850 to the nozzles 1630. During operation of the spray head 1600, channels 1900 are typically partially or substantially filled with a pressurized liquid from an exterior source admitted through inlets in the upper end of the cylinder (not shown). When the spray head 1600 is bolted into position, o-rings within o-ring grooves 1910 seal the spray head 1600 against the inside of a cylinder.



FIG. 20 is a rear or bottom view of the spray head 1600, in which the inlet ports 1850 through base plate 1800 are clearly visible, as are the connecting bolts 1840 and the mounting through-holes 1660. Annular area 2000 is preferably smoothly polished so that o-rings in o-ring grooves 1910 seal well when spray head 1600 is mounted to the inside of a cylinder.



FIG. 21 is a cross-sectional side view of one embodiment incorporating a spray mechanism as described herein. A cylinder 2100 contains a piston 2110 that is attached to two shafts 2120, 2130 that pass through opposite ends of the cylinder 2100. One spray head 1600-1 may be mounted in the upper end of the cylinder 2100. A second spray head 1600-2 may be mounted on the lower surface of the piston 2110. Liquid may be conveyed to the upper spray head 1600-1 directly through the upper end of the cylinder. A center-drilled channel 2140 within shaft 2120 enables water to be conveyed to the spray head 1600-2 mounted on the piston 2110, thus enabling introduction of a liquid spray into the lower chamber 2150. A center-drilled channel 2160 within shaft 2130 enables water to be conveyed out of the upper chamber 2170 of the cylinder 2100. A system of channels for the introduction of liquid to and the removal of liquid from the chambers of a pneumatic cylinder as described in the '513 application may be utilized with various embodiments of the invention.


In the illustrative application shown in FIG. 21, the cylinder 2100 may compress or expand gas in either chamber and is, therefore, double-acting. For example, if the cylinder is being used to extract mechanical work from the expansion of a gas in the upper chamber 2170, the upper spray head 1600-1 may be used to perform liquid-gas heat exchange during the expansion, during which the piston 2110 moves downward. Similarly, the lower spray head 1600-2 may be used during the expansion of a gas in the lower chamber 2150, during which the piston 2110 moves upward. Whatever mode of operation is chosen, atomized sprays from the orifices of the active spray head 1600-1 and/or 1600-2 preferably form vertical, interacting (and/or overlapping) cylinders of falling droplets that exchange heat with all or nearly all of the interior of the chamber 2150 and/or 2170 being injected with liquid. In various applications, both spray heads 1600-1, 1600-2 are employed simultaneously.


Spray mechanisms (e.g., spray heads) in accordance with various embodiments of the invention may incorporate multiple individually controllable groups of nozzles (each of which may include, e.g., one or more nozzles) utilized to introduce heat-transfer fluid into a gas in order to thermally condition the gas during, e.g., expansion and/or compression of the gas. FIG. 22A depicts portions of an illustrative system 2200 that compresses and/or expands gas. System 2200 includes a cylinder 2205 (that may be vertically oriented, as shown) containing a mobile piston 2210 that divides the interior of the cylinder 2205 into a gas-filled (pneumatic) chamber 2215 and a liquid-filled (hydraulic) chamber 2220. Alternatively, both chambers 2215 and 2220 may be gas-filled.


A spray head 2225 (that may share any number of characteristics with spray heads 900 and 1600 described above) holds in place a number of spray nozzles 2230, 2235 (eight nozzles are shown; only two are labeled explicitly). Two independent sets of spray nozzles are shown, namely (1) the four nozzles 2230 fed by pipe 2240 and manifold 2245, herein termed Nozzle Set 1 and depicted with cross-hatching, and (2) the four nozzles 2235 fed by pipe 2250 and manifold 2255, herein termed Nozzle Set 2 and depicted without cross-hatching. A valve 2260 controls flow of heat-exchange liquid to Nozzle Set 1 and a valve 2265 controls flow of heat-exchange liquid to Nozzle Set 2. Other embodiments are equipped with three or more independently valved nozzle sets and with any number of nozzles in each set; also, different nozzle sets may contain different nozzle types (for example, any of the nozzle types described above and/or depicted in FIG. 8) or mixtures of nozzle types. The valves 2260, 2265 may be controlled by control system 105 or may be a cracking-pressure type that allows liquid to flow into the spray head 2225 whenever the liquid input pressure exceeds a certain threshold. The valves 2260, 2265 may be identical, or of different types.


In the state of operation shown in FIG. 22A, chamber 2215 contains a quantity of gas undergoing compression. Valve 2265 is closed and valve 2260 is open. Heat-exchange liquid flows through pipe 2240, into manifold 2245, and then into the four spray nozzles 2230 of Nozzle Set 1. The heat-exchange liquid issues from Nozzle Set 1as a spray 2270 that thermally conditions (i.e., exchanges heat with) the gas in chamber 2215. Little or no spray issues from the four spray nozzles 2235 of Nozzle Set 2. Thus, Nozzle Set 1 is “active” and Nozzle Set 2 is not.



FIG. 22B depicts the system 2200 in a state of operation different from that shown in FIG. 22A. In the state of operation depicted in FIG. 22B, the piston 2210 and rod 2275 have moved closer to the spray head 2225 than in FIG. 22A and the gas in chamber 2215 is more compressed. In this or some other state(s) of operation it may be intended that the rate of heat exchange between the gas in chamber 2215 and the heat-exchange spray 2270 be increased. As depicted in FIG. 22B, the amount of spray falling into chamber 2215 may be increased by allowing heat-exchange liquid to pass through Nozzle Set 2. In FIG. 22B, valve 2260 is open. Heat-exchange liquid flows through pipe 2240, into manifold 2245, and then into the four spray nozzles 2230 of Nozzle Set 1. Valve 2265 is also open, so that heat-exchange liquid flows through pipe 2250, into manifold 2255, and then into the four spray nozzles 2235 of Nozzle Set 2. Thus, in this state of operation, spray issues from both Nozzle Set 1 and Nozzle Set 2. In this illustrative embodiment, Nozzle Set 2 contains nozzles of a different design (e.g., being of a different type and/or having a different size and/or throughput) from those in Nozzle Set 1 and produces a spray 2280 of, e.g., heavier droplets that fall more rapidly through the gas in chamber 2215 than does the spray 2270 from Nozzle Set 1 (and/or a greater volume of droplets than is produced by Nozzle Set 1). It will be clear to any person familiar with the art of pneumatic and hydraulic cylinders that system 2200 may be operated in reverse, that is, to expand gas rather than compress it.


The use of two or more independently operable nozzle sets, as in, e.g., FIG. 22A and FIG. 22B, allows an operator to control spray quality and quantity as gas pressure in the pneumatic cylinder (e.g., 2205) varies over a single stroke or over the course of multiple piston strokes. For example, a given flow rate of liquid sprayed into a cylinder chamber for heat transfer produces a certain rate of heat transfer (i.e., heat-transfer power) for a given spray character and initial temperature difference between the gas in the chamber and the liquid entering the chamber. If the power of a compression or expansion—that is, the rate at which the gas in the cylinder performs work on the piston, or at which the piston performs work on the gas—increases during a piston stroke, a higher flow rate of liquid may be utilized to maintain substantially isothermal compression or expansion. Under such conditions, by activating a second (or third, or fourth, etc.) set of nozzles, the higher flow rate may be achieved with the same through-nozzle pressure drop as with the lower flow rate for a single nozzle set, or at least without increasing the through-nozzle pressure drop as much as would be required by a similar increase of flow rate through a single nozzle set. Likewise, if compression or expansion power decreases, a lower flow rate of liquid may be utilized, and this may be achieved by de-activating one or more nozzle sets. Moreover, different nozzle sets may provide different spray qualities and average drop sizes for similar flow rates and pressure drops. In some instances, larger droplets may be advantageous for rapid coverage of a cylinder volume (due to their higher terminal velocity), whereas smaller droplets may be advantageous for heat transfer (due to their larger surface area). In some such instances, two or more sets of nozzles may be activated to produce a bi-modal (or multi-modal) distribution of droplet sizes, achieving both full volume coverage and rapid heat transfer in an efficient (i.e., low-pumping-power) manner.


In FIGS. 22A and 22B, Nozzle Set 1 and Nozzle Set 2 (and/or any other nozzle sets) may be individually and/or collectively controlled by control system 105 based at least in part upon the pressure within chamber 2215 and/or chamber 2220. For example, control system 105 may be responsive to a pressure sensor that measures the pressure within chamber 2215 and/or chamber 2220. The number of individually controllable nozzle sets spraying heat-transfer fluid into a chamber may be increased with increasing pressure within the chamber(s) (and vice versa) in order to more efficiently exchange heat with the gas within the chamber(s).


The system 2300 in FIG. 23 generally resembles the system 100 in FIG. 1 except for the means by which heat-exchange spray 2305 (136 in FIG. 1) is produced in an upper chamber 2310 of a cylinder 2315. System 2300 operates in accordance with embodiments of the invention described above with relation to FIGS. 22A and 22B. The operation of the cylinder 2315 in FIG. 23 may be identical to that of cylinder 2205 depicted in FIGS. 22A and 22B. In FIG. 23, valve 2320 is open and valve 2325 is closed. Valves 2320, 2325 enable heat-exchange liquid to pass through pipes 2330 and/or 2335 into at least one of the two sets of spray nozzles incorporated into spray head 2340 (which may also share any number of features with spray heads 900 and/or 1600 described above). In other embodiments, a spray rod or other contrivance for mounting the spray nozzles is employed. Heat-exchange liquid 2345 issues from Nozzle Set 1 in spray head 2340 as spray 2305 that may accumulate on the upper surface of a piston 2350. A center-drilled channel 2355 in a rod 2360 enables the heat-exchange liquid 2345 to be withdrawn through a flexible hose 2365 and through a pipe 2370 to 2a pump 2375 (which may be similar or identical to pump 124 described above with reference to FIG. 1). In other embodiments, alternate techniques of conducting the heat-exchange liquid 2345 to pump 2370 are employed, such as internal piping as described in U.S. Provisional Patent Application No. 61/384,814, filed Sep. 21, 2010, the entire disclosure of which is incorporated by reference herein. Exiting the pump 2375, the heat-exchange liquid is preferably conveyed by a pipe 2380 to a heat exchanger 2385 where its temperature may be altered (e.g., to maintain the heat-exchange liquid at a substantially constant desired temperature as it enters cylinder 2315). Exiting the heat exchanger 2385, the heat-exchange liquid enters pipes 2330 and 2335. In the state of operation depicted in FIG. 23, liquid is prevented from flowing through pipe 2335 because valve 2325 is closed. In another state of operation (not shown), valves 2320 and 2325 are both open and spray head 2340 produces spray from multiple sets of nozzles, e.g., in the manner depicted for spray head 2225 in FIG. 22B. It will be clear to any person familiar with the art of pneumatic and hydraulic cylinders that system 2300 may be operated in reverse, that is, to expand gas rather than compress it.


The pneumatic cylinders shown herein may be outfitted with an external gas heat exchanger instead of or in addition to liquid sprays. An external gas heat exchanger may also allow expedited heat transfer to or from the high-pressure gas being expanded (or compressed) in the cylinders. Such methods and systems for isothermal gas expansion (or compression) using an external heat exchanger are shown and described in the '426 patent.


Generally, the systems described herein may be operated in both an expansion mode and in the reverse compression mode as part of a full-cycle energy storage system with high efficiency. For example, the systems may be operated as both compressor and expander, storing electricity in the form of the potential energy of compressed gas and producing electricity from the potential energy of compressed gas. Alternatively, the systems may be operated independently as compressors or expanders.


The terms and expressions employed herein are used as terms of description and not of limitation, and there is no intention, in the use of such terms and expressions, of excluding any equivalents of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the invention claimed.

Claims
  • 1. A compressed-gas energy storage and recovery system comprising: a cylinder assembly comprising a first pneumatic chamber for compressing gas to store energy and expanding gas to recover energy and a second pneumatic chamber, separated from the first pneumatic chamber;selectively fluidly connected to the first chamber, (i) a compressed-gas reservoir for storage of gas after compression and supply of compressed gas for expansion thereof, and (ii) a vent for exhausting expanded gas to atmosphere and supply of gas for compression thereof;a spray mechanism for introducing heat-transfer fluid within the first chamber of the cylinder assembly to exchange heat with gas therein, thereby increasing efficiency of the energy storage and recovery, the spray mechanism comprising a plurality of nozzles for collectively producing an aggregate spray filling substantially an entire volume of the first chamber; anda circulation apparatus for circulating the heat-transfer fluid to the spray mechanism,wherein the aggregate spray comprises a plurality of overlapping individual sprays each produced by one of the plurality of nozzles.
  • 2. The system of claim 1, wherein each individual spray is an atomized spray of individual droplets.
  • 3. The system of claim 2, wherein the individual droplets have an average diameter ranging from approximately 0.2 mm to approximately 1 mm.
  • 4. The system of claim 1, wherein the plurality of nozzles maintains a Weber value of gas within the chamber of at least 40.
  • 5. The system of claim 1, wherein each nozzle maintains a pressure drop thereacross of less than approximately 50 psi.
  • 6. The system of claim 1, wherein at least one nozzle has a divergent cross-sectional profile.
  • 7. The system of claim 1, wherein at least one nozzle comprises a mechanism for breaking up a flow of heat-transfer fluid therethrough.
  • 8. The system of claim 7, wherein the mechanism comprises at least one of a plurality of vanes or a corkscrew.
  • 9. The system of claim 1, wherein the spray mechanism comprises an interior channel for transmitting heat-transfer fluid from a source external to the cylinder assembly to the plurality of nozzles.
  • 10. The system of claim 1, further comprising, connected to the cylinder assembly, an intermittent renewable energy source of wind or solar energy, wherein (i) energy stored during compression of gas originates from the intermittent renewable energy source, and (ii) energy is recovered via expansion of gas when the intermittent renewable energy source is nonfunctional.
  • 11. The system of claim 1, wherein the spray mechanism comprises at least one of a spray head or a spray rod.
  • 12. The system of claim 1, further comprising a heat exchanger for maintaining the heat-transfer fluid at a substantially constant temperature, wherein the circulation apparatus circulates heat-transfer fluid from the cylinder assembly through the heat exchanger and back to the cylinder assembly.
  • 13. A compressed-gas energy storage and recovery system comprising: a cylinder assembly comprising a chamber for compressing gas to store energy and expanding gas to recover energy;selectively fluidly connected to the chamber, (i) a compressed-gas reservoir for storage of gas after compression and supply of compressed gas for expansion thereof, and (ii) a vent for exhausting expanded gas to atmosphere and supply of gas for compression thereof;a spray mechanism for introducing heat-transfer fluid within the chamber of the cylinder assembly to exchange heat with gas therein, thereby increasing efficiency of the energy storage and recovery, the spray mechanism comprising a plurality of nozzles for collectively producing an aggregate spray filling substantially an entire volume of the chamber;a control system for controlling the introduction of heat-transfer fluid into the chamber such that the compression and expansion of gas is substantially isothermal; anda circulation apparatus for circulating the heat-transfer fluid to the spray mechanism,wherein the aggregate spray comprises a plurality of overlapping individual sprays each produced by one of the plurality of nozzles.
  • 14. The system of claim 1, wherein the plurality of nozzles is organized into at least two nozzle groups, at least one nozzle group not being active during a portion of a single cycle of compression or expansion.
  • 15. The system of claim 1, further comprising: a movable piston separating the first chamber from the second chamber within the cylinder assembly; anda piston rod connected to the movable piston,wherein the piston and piston rod define a fluid passageway selectively fluidly connected to the circulation apparatus.
  • 16. The system of claim 1, further comprising a reservoir of heat-transfer fluid fluidly connected to the circulation apparatus, the reservoir of heat-transfer fluid containing an additive reducing surface tension of the heat-transfer fluid.
  • 17. The system of claim 1, further comprising a control system for controlling the introduction of heat-transfer fluid into the first chamber such that the compression and expansion of gas is substantially isothermal.
  • 18. The system of claim 13, wherein the chamber is a pneumatic chamber separated from a hydraulic chamber in the cylinder assembly.
  • 19. The system of claim 1, wherein the spray mechanism occupies approximately an entire top surface of the first chamber.
  • 20. A compressed-gas energy storage and recovery system comprising: a cylinder assembly comprising a first chamber for compressing gas to store energy and expanding gas to recover energy and a second chamber;selectively fluidly connected to the first chamber, (i) a compressed-gas reservoir for storage of gas after compression and supply of compressed gas for expansion thereof, and (ii) a vent for exhausting expanded gas to atmosphere and supply of gas for compression thereof;a spray mechanism for introducing heat-transfer fluid within the first chamber and second chamber of the cylinder assembly to exchange heat with gas therein, thereby increasing efficiency of the energy storage and recovery, the spray mechanism comprising a plurality of nozzles disposed in the first chamber and second chamber for collectively producing an aggregate spray filling substantially an entire volume of the chambers; anda circulation apparatus for circulating the heat-transfer fluid to the spray mechanism,wherein the aggregate spray comprises a plurality of overlapping individual sprays each produced by one of the plurality of nozzles.
RELATED APPLICATIONS

This application claims the benefit of and priority to U.S. Provisional Patent Application No. 61/334,722, filed May 14, 2010, U.S. Provisional Patent Application No. 61/349,009, filed May 27, 2010, U.S. Provisional Patent Application No. 61/363,072, filed Jul. 9, 2010, and U.S. Provisional Patent Application No. 61/393,725, filed Oct. 15, 2010, and is a continuation-in-part of U.S. patent application Ser. No. 12/639,703, filed Dec. 16, 2009, which (i) is a continuation-in-part of U.S. patent application Ser. No. 12/421,057, filed Apr. 9, 2009, which claims the benefit of and priority to U.S. Provisional Patent Application No. 61/148,691, filed Jan. 30, 2009, and U.S. Provisional Patent Application No. 61/043,630, filed Apr. 9, 2008; (ii) is a continuation-in-part of U.S. patent application Ser. No. 12/481,235, filed Jun. 9, 2009, which claims the benefit of and priority to U.S. Provisional Patent Application No. 61/059,964, filed Jun. 9, 2008; and (iii) claims the benefit of and priority to U.S. Provisional Patent Application Nos. 61/166,448, filed on Apr. 3, 2009; 61/184,166, filed on Jun. 4, 2009; 61/223,564, filed on Jul. 7, 2009; 61/227,222, filed on Jul. 21, 2009; and 61/251,965, filed on Oct. 15, 2009. The entire disclosure of each of these applications is hereby incorporated herein by reference.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH

This invention was made with government support under IIP-0810590 and IIP-0923633 awarded by the National Science Foundation and DE-OE0000231 awarded by the Department of Energy. The government has certain rights in the invention.

US Referenced Citations (698)
Number Name Date Kind
114297 Ivens et al. May 1871 A
224081 Eckart Feb 1880 A
233432 Pitchford Oct 1880 A
1353216 Carlson Sep 1920 A
1635524 Aikman Jul 1927 A
1681280 Bruckner Aug 1928 A
2025142 Zahm et al. Dec 1935 A
2042991 Harris, Jr. Jun 1936 A
2141703 Bays Dec 1938 A
2280100 SinQleton Apr 1942 A
2280845 Parker Apr 1942 A
2404660 Rouleau Jul 1946 A
2420098 Rouleau May 1947 A
2486081 Weenen Oct 1949 A
2539862 Rushing Jan 1951 A
2628564 Jacobs Feb 1953 A
2632995 Noe Mar 1953 A
2712728 Lewis et al. Jul 1955 A
2813398 Wilcox Nov 1957 A
2829501 Walls Apr 1958 A
2880759 Wisman Apr 1959 A
3041842 Heinecke Jul 1962 A
3100965 Blackburn Aug 1963 A
3236512 Caslav et al. Feb 1966 A
3269121 Ludwig Aug 1966 A
3538340 LanQ Nov 1970 A
3608311 Roesel, Jr. Sep 1971 A
3648458 McAlister Mar 1972 A
3650636 Eskeli Mar 1972 A
3672160 Kim Jun 1972 A
3677008 Koutz Jul 1972 A
3704079 Berlyn Nov 1972 A
3757517 RiQollot Sep 1973 A
3793848 Eskeli Feb 1974 A
3801793 Goebel Apr 1974 A
3803847 McAlister Apr 1974 A
3839863 Frazier Oct 1974 A
3847182 Greer Nov 1974 A
3895493 Riqollot Jul 1975 A
3903696 Carman Sep 1975 A
3935469 Haydock Jan 1976 A
3939356 Loane Feb 1976 A
3942323 Maillet Mar 1976 A
3945207 Hyatt Mar 1976 A
3948049 Ohms et al. Apr 1976 A
3952516 Lapp Apr 1976 A
3952723 Browning Apr 1976 A
3958899 Coleman, Jr. et al. May 1976 A
3986354 Erb Oct 1976 A
3988592 Porter Oct 1976 A
3988897 Strub Nov 1976 A
3990246 Wilmers Nov 1976 A
3991574 Frazier Nov 1976 A
3996741 Herberg Dec 1976 A
3998049 McKinley et al. Dec 1976 A
3999388 Nystrom Dec 1976 A
4008006 Bea Feb 1977 A
4027993 Wolff Jun 1977 A
4030303 Kraus et al. Jun 1977 A
4031702 Burnett et al. Jun 1977 A
4031704 Moore et al. Jun 1977 A
4041708 Wolff Aug 1977 A
4050246 Bourquardez Sep 1977 A
4055950 Grossman Nov 1977 A
4058979 Germain Nov 1977 A
4075844 Schiferli Feb 1978 A
4089744 Cahn May 1978 A
4094356 Ash et al. Jun 1978 A
4095118 Rathbun Jun 1978 A
4100745 Gyarmathy et al. Jul 1978 A
4104955 Murphy Aug 1978 A
4108077 Laing Aug 1978 A
4109465 Plen Aug 1978 A
4110987 Cahn et al. Sep 1978 A
4112311 Theyse Sep 1978 A
4117342 Melley, Jr. Sep 1978 A
4117696 Fawcett et al. Oct 1978 A
4118637 Tackett Oct 1978 A
4124182 Loeb Nov 1978 A
4126000 Funk Nov 1978 A
4136432 Melley, Jr. Jan 1979 A
4142368 Mantegani Mar 1979 A
4147204 Pfenninger Apr 1979 A
4149092 Cros Apr 1979 A
4150547 Hobson Apr 1979 A
4154292 Herrick May 1979 A
4167372 Tackett Sep 1979 A
4170878 Jahnig Oct 1979 A
4173431 Smith Nov 1979 A
4189925 Long Feb 1980 A
4194889 Wanner Mar 1980 A
4197700 Jahnig Apr 1980 A
4197715 Fawcett et al. Apr 1980 A
4201514 Huetter May 1980 A
4204126 Diggs May 1980 A
4206608 Bell Jun 1980 A
4209982 Pitts Jul 1980 A
4220006 Kindt Sep 1980 A
4229143 Pucher Oct 1980 A
4229661 Mead et al. Oct 1980 A
4232253 Mortelmans Nov 1980 A
4237692 Ahrens et al. Dec 1980 A
4242878 Brinkerhoff Jan 1981 A
4246978 Schulz et al. Jan 1981 A
4262735 Courrege Apr 1981 A
4273514 Shore et al. Jun 1981 A
4274010 Lawson-tancred Jun 1981 A
4275310 Summers et al. Jun 1981 A
4281256 Ahrens et al. Jul 1981 A
4293323 Cohen Oct 1981 A
4299198 Woodhull Nov 1981 A
4302684 Gogins Nov 1981 A
4304103 Hamrick Dec 1981 A
4311011 Lewis Jan 1982 A
4316096 Syverson Feb 1982 A
4317439 Emmerling Mar 1982 A
4335867 Bihlmaier Jun 1982 A
4340822 Gregg Jul 1982 A
4341072 Clyne Jul 1982 A
4348863 Taylor et al. Sep 1982 A
4353214 Gardner Oct 1982 A
4354420 Bianchetta Oct 1982 A
4355956 Ringrose et al. Oct 1982 A
4358250 Payne Nov 1982 A
4367786 Hafner et al. Jan 1983 A
4368692 Kita Jan 1983 A
4368775 Ward Jan 1983 A
4370559 Langley, Jr. Jan 1983 A
4372114 Burnham Feb 1983 A
4375387 deFilippi et al. Mar 1983 A
4380419 Morton Apr 1983 A
4392062 Bervig Jul 1983 A
4393752 Meier Jul 1983 A
4411136 Funk Oct 1983 A
4416114 Martini Nov 1983 A
4421661 Claar et al. Dec 1983 A
4428711 Archer Jan 1984 A
4435131 Ruben Mar 1984 A
4444011 Kolin Apr 1984 A
4446698 Benson May 1984 A
4447738 Allison May 1984 A
4449372 Rilett May 1984 A
4452046 Valentin Jun 1984 A
4452047 Hunt et al. Jun 1984 A
4454429 Buonome Jun 1984 A
4454720 Leibowitz Jun 1984 A
4455834 Earle Jun 1984 A
4462213 Lewis Jul 1984 A
4474002 Perry Oct 1984 A
4476851 Brugger et al. Oct 1984 A
4478553 Leibowitz et al. Oct 1984 A
4489554 Otters Dec 1984 A
4491739 Watson Jan 1985 A
4492539 Specht Jan 1985 A
4493189 Slater Jan 1985 A
4496847 Parkins Jan 1985 A
4498848 Petrovsky Feb 1985 A
4502284 Chrisoghilos Mar 1985 A
4503673 Schachle Mar 1985 A
4515516 Perrine et al. May 1985 A
4520840 Michel Jun 1985 A
4525631 Allison Jun 1985 A
4530208 Sato Jul 1985 A
4547209 Netzer Oct 1985 A
4574592 Eskeli Mar 1986 A
4585039 Hamilton Apr 1986 A
4589475 Jones May 1986 A
4593202 Dickinson Jun 1986 A
4619225 Lowther Oct 1986 A
4624623 Wagner Nov 1986 A
4648801 Wilson Mar 1987 A
4651525 Cestero Mar 1987 A
4653986 Ashton Mar 1987 A
4671742 Gyimesi Jun 1987 A
4676068 Funk Jun 1987 A
4679396 Heggie Jul 1987 A
4691524 Holscher Sep 1987 A
4693080 Van Hooff Sep 1987 A
4706456 Backe Nov 1987 A
4707988 Palmers Nov 1987 A
4710100 Laing et al. Dec 1987 A
4735552 Watson Apr 1988 A
4739620 Pierce Apr 1988 A
4760697 Heggie Aug 1988 A
4761118 Zanarini et al. Aug 1988 A
4765142 Nakhamkin Aug 1988 A
4765143 Crawford et al. Aug 1988 A
4767938 Bervig Aug 1988 A
4792700 Ammons Dec 1988 A
4849648 Longardner Jul 1989 A
4870816 Nakhamkin Oct 1989 A
4872307 Nakhamkin Oct 1989 A
4873828 Laing et al. Oct 1989 A
4873831 Dehne Oct 1989 A
4876992 Sobotowski Oct 1989 A
4877530 Moses Oct 1989 A
4885912 Nakhamkin Dec 1989 A
4886534 Castan Dec 1989 A
4907495 Sugahara Mar 1990 A
4936109 Longardner Jun 1990 A
4942736 Bronicki Jul 1990 A
4947977 Raymond Aug 1990 A
4955195 Jones et al. Sep 1990 A
4984432 Corey Jan 1991 A
5056601 Grimmer Oct 1991 A
5058385 Everett, Jr. Oct 1991 A
5062498 Tobias Nov 1991 A
5107681 Wolfbauer, III Apr 1992 A
5133190 Abdelmalek Jul 1992 A
5138838 Crosser Aug 1992 A
5140170 Henderson Aug 1992 A
5152260 Erickson et al. Oct 1992 A
5161449 Everett, Jr. Nov 1992 A
5169295 Stogner et al. Dec 1992 A
5182086 Henderson et al. Jan 1993 A
5203168 Oshina Apr 1993 A
5209063 Shirai et al. May 1993 A
5213470 Lundquist May 1993 A
5239833 Fineblum Aug 1993 A
5259345 Richeson Nov 1993 A
5271225 Adamides Dec 1993 A
5279206 Krantz Jan 1994 A
5296799 Davis Mar 1994 A
5309713 Vassallo May 1994 A
5321946 Abdelmalek Jun 1994 A
5327987 Abdelmalek Jul 1994 A
5339633 Fujii et al. Aug 1994 A
5341644 Nelson Aug 1994 A
5344627 Fujii et al. Sep 1994 A
5364611 Iijima et al. Nov 1994 A
5365980 Deberardinis Nov 1994 A
5375417 Barth Dec 1994 A
5379589 Cohn et al. Jan 1995 A
5384489 Bellac Jan 1995 A
5387089 Stogner et al. Feb 1995 A
5394693 Plyter Mar 1995 A
5427194 Miller Jun 1995 A
5436508 Sorensen Jul 1995 A
5448889 Bronicki Sep 1995 A
5454408 Dibella et al. Oct 1995 A
5454426 Moseley Oct 1995 A
5467722 Meratla Nov 1995 A
5477677 Krnavek Dec 1995 A
5491969 Cohn et al. Feb 1996 A
5491977 Cho Feb 1996 A
5524821 Vie et al. Jun 1996 A
5537822 Shnaid et al. Jul 1996 A
5544698 Paulman Aug 1996 A
5557934 Beach Sep 1996 A
5561978 Buschur Oct 1996 A
5562010 McGuire Oct 1996 A
5579640 Gray, Jr. et al. Dec 1996 A
5584664 Elliott et al. Dec 1996 A
5592028 Pritchard Jan 1997 A
5595587 Steed Jan 1997 A
5598736 Erskine Feb 1997 A
5599172 Mccabe Feb 1997 A
5600953 Oshita et al. Feb 1997 A
5616007 Cohen Apr 1997 A
5634340 Grennan Jun 1997 A
5641273 Moseley Jun 1997 A
5674053 Paul et al. Oct 1997 A
5685154 Bronicki et al. Nov 1997 A
5685155 Brown Nov 1997 A
5768893 Hoshino et al. Jun 1998 A
5769610 Paul et al. Jun 1998 A
5771693 Coney Jun 1998 A
5775107 Sparkman Jul 1998 A
5778675 Nakhamkin Jul 1998 A
5794442 Lisniansky Aug 1998 A
5797980 Fillet Aug 1998 A
5819533 Moonen Oct 1998 A
5819635 Moonen Oct 1998 A
5831757 DiFrancesco Nov 1998 A
5832728 Buck Nov 1998 A
5832906 Douville et al. Nov 1998 A
5839270 Jirnov et al. Nov 1998 A
5845479 Nakhamkin Dec 1998 A
5873250 Lewis Feb 1999 A
5901809 Berkun May 1999 A
5924283 Burke, Jr. Jul 1999 A
5934063 Nakhamkin Aug 1999 A
5934076 Coney Aug 1999 A
5937652 Abdelmalek Aug 1999 A
5971027 Beachley et al. Oct 1999 A
6012279 Hines Jan 2000 A
6023105 Youssef Feb 2000 A
6026349 Heneman Feb 2000 A
6029445 Lech Feb 2000 A
6073445 Johnson Jun 2000 A
6073448 Lozada Jun 2000 A
6085520 Kohno Jul 2000 A
6090186 Spencer Jul 2000 A
6119802 Puett, Jr. Sep 2000 A
6132181 Mccabe Oct 2000 A
6145311 Cyphelly Nov 2000 A
6148602 Demetri Nov 2000 A
6153943 Mistr, Jr. Nov 2000 A
6158499 Rhodes Dec 2000 A
6170443 Hofbauer Jan 2001 B1
6178735 Frutschi Jan 2001 B1
6179446 Sarmadi Jan 2001 B1
6188182 Nickols et al. Feb 2001 B1
6202707 Woodall et al. Mar 2001 B1
6206660 Coney et al. Mar 2001 B1
6210131 Whitehead Apr 2001 B1
6216462 Gray, Jr. Apr 2001 B1
6225706 Keller May 2001 B1
6276123 Chen et al. Aug 2001 B1
6327858 Negre et al. Dec 2001 B1
6327994 Labrador Dec 2001 B1
6349543 Lisniansky Feb 2002 B1
RE37603 Coney Mar 2002 E
6352576 Spencer et al. Mar 2002 B1
6360535 Fisher Mar 2002 B1
6367570 Long, III Apr 2002 B1
6372023 Kiyono et al. Apr 2002 B1
6389814 Viteri et al. May 2002 B2
6397578 Tsukamoto Jun 2002 B2
6401458 Jacobson Jun 2002 B2
6407465 Peltz et al. Jun 2002 B1
6419462 Horie et al. Jul 2002 B1
6422016 Alkhamis Jul 2002 B2
6453659 Van Liere et al. Sep 2002 B1
6478289 Trewin Nov 2002 B1
6484498 Bonar, II Nov 2002 B1
6512966 Lof Jan 2003 B2
6513326 Maceda et al. Feb 2003 B1
6516615 Stockhausen et al. Feb 2003 B1
6516616 Carver Feb 2003 B2
6554088 Severinsky et al. Apr 2003 B2
6598392 Majeres Jul 2003 B2
6598402 Kataoka et al. Jul 2003 B2
6606860 McFarland Aug 2003 B2
6612348 Wiley Sep 2003 B1
6619930 Jansen et al. Sep 2003 B2
6626212 Morioka et al. Sep 2003 B2
6629413 Wendt et al. Oct 2003 B1
6637185 Hatamiva et al. Oct 2003 B2
6652241 Alder Nov 2003 B1
6652243 Krasnov Nov 2003 B2
6666024 Moskal Dec 2003 B1
6670402 Lee et al. Dec 2003 B1
6672056 Roth et al. Jan 2004 B2
6675765 Endoh Jan 2004 B2
6688108 Van Liere Feb 2004 B1
6698472 Camacho et al. Mar 2004 B2
6711984 Tagge et al. Mar 2004 B2
6712166 Rush et al. Mar 2004 B2
6715514 Parker, III Apr 2004 B2
6718761 Merswolke et al. Apr 2004 B2
6739131 Kershaw May 2004 B1
6739419 Jain et al. May 2004 B2
6745569 Gerdes Jun 2004 B2
6745801 Cohen et al. Jun 2004 B1
6748737 Lafferty Jun 2004 B2
6762926 Shiue et al. Jul 2004 B1
6786245 Eichelberger Sep 2004 B1
6789387 Brinkman Sep 2004 B2
6789576 Umetsu et al. Sep 2004 B2
6797039 Spencer Sep 2004 B2
6815840 Aldendeshe Nov 2004 B1
6817185 Coney et al. Nov 2004 B2
6834737 Bloxham Dec 2004 B2
6840309 Wilson et al. Jan 2005 B2
6848259 Keller-sornig Feb 2005 B2
6857450 Rupp Feb 2005 B2
6874453 Coney et al. Apr 2005 B2
6883775 Coney et al. Apr 2005 B2
6886326 Holtzapple et al. May 2005 B2
6892802 Kelly et al. May 2005 B2
6900556 Provanzana May 2005 B2
6922991 Polcuch Aug 2005 B2
6925821 Sienel Aug 2005 B2
6927503 Enish et al. Aug 2005 B2
6931848 Maceda et al. Aug 2005 B2
6935096 Haiun Aug 2005 B2
6938415 Last Sep 2005 B2
6938654 Gershtein et al. Sep 2005 B2
6946017 Leppin et al. Sep 2005 B2
6948328 Kidwell Sep 2005 B2
6952058 Mccoin Oct 2005 B2
6959546 Corcoran Nov 2005 B2
6963802 Enis Nov 2005 B2
6964165 Uhl et al. Nov 2005 B2
6964176 Kidwell Nov 2005 B2
6974307 Antoune et al. Dec 2005 B2
7000389 Lewellin Feb 2006 B2
7007474 Ochs et al. Mar 2006 B1
7017690 Burke Mar 2006 B2
7028934 Burynski, Jr. Apr 2006 B2
7040083 Horii et al. May 2006 B2
7040108 Flammang May 2006 B1
7040859 Kane May 2006 B2
7043920 Viteri et al. May 2006 B2
7047744 Robertson et al. May 2006 B1
7055325 Wolken Jun 2006 B2
7067937 Enish et al. Jun 2006 B2
7075189 Heronemus Jul 2006 B2
RE39249 Link, Jr. Aug 2006 E
7084520 Zambrano Aug 2006 B2
7086231 Pinkerton Aug 2006 B2
7093450 Jimenez Haertel et al. Aug 2006 B2
7093626 Li et al. Aug 2006 B2
7098552 Mccoin Aug 2006 B2
7107766 Zacche′ et al. Sep 2006 B2
7107767 Frazer et al. Sep 2006 B2
7116006 Mccoin Oct 2006 B2
7124576 Cherney et al. Oct 2006 B2
7124586 Negre et al. Oct 2006 B2
7127895 Pinkerton et al. Oct 2006 B2
7128777 Spencer Oct 2006 B2
7134279 White Nov 2006 B2
7155912 Enis et al. Jan 2007 B2
7168928 West Jan 2007 B1
7168929 Sieqel et al. Jan 2007 B2
7169489 Redmond Jan 2007 B2
7177751 Froloff Feb 2007 B2
7178337 Pflanz Feb 2007 B2
7191603 Taube Mar 2007 B2
7197871 Yoshino Apr 2007 B2
7201095 Hughey Apr 2007 B2
7218009 Hendrickson et al. May 2007 B2
7219779 Bauer et al. May 2007 B2
7225762 Mahlanen Jun 2007 B2
7228690 Barker Jun 2007 B2
7230348 Poole Jun 2007 B2
7231998 Schechter Jun 2007 B1
7240812 Kamikozuru Jul 2007 B2
7249617 Musselman et al. Jul 2007 B2
7254944 Goetzinger et al. Aug 2007 B1
7273122 Rose Sep 2007 B2
7281371 Heidenreich Oct 2007 B1
7308361 Enis et al. Dec 2007 B2
7317261 Rolt Jan 2008 B2
7322377 Baltes Jan 2008 B2
7325401 Kesseli et al. Feb 2008 B1
7328575 Hedman Feb 2008 B2
7329099 Hartman Feb 2008 B2
7347049 Rajendran et al. Mar 2008 B2
7353786 Scuderi et al. Apr 2008 B2
7353845 Underwood et al. Apr 2008 B2
7354252 Baatrup et al. Apr 2008 B2
7364410 Link, Jr. Apr 2008 B2
7392871 Severinsky et al. Jul 2008 B2
7406828 Nakhamkin Aug 2008 B1
7407501 Zvuloni Aug 2008 B2
7415835 Cowans et al. Aug 2008 B2
7415995 Plummer et al. Aug 2008 B2
7417331 De La Torre et al. Aug 2008 B2
7418820 Harvey et al. Sep 2008 B2
7436086 Mcclintic Oct 2008 B2
7441399 Utamura Oct 2008 B2
7448213 Mitani Nov 2008 B2
7453164 Borden et al. Nov 2008 B2
7469527 Negre et al. Dec 2008 B2
7471010 Fingersh Dec 2008 B1
7481337 Luharuka et al. Jan 2009 B2
7488159 Bhatt et al. Feb 2009 B2
7527483 Glauber May 2009 B1
7579700 Meller Aug 2009 B1
7603970 Scuderi et al. Oct 2009 B2
7607503 Schechter Oct 2009 B1
7693402 Hudson et al. Apr 2010 B2
7802426 Bollinger Sep 2010 B2
7827787 Cherney et al. Nov 2010 B2
7832207 McBride et al. Nov 2010 B2
7843076 Gogoana et al. Nov 2010 B2
7874155 McBride et al. Jan 2011 B2
7900444 McBride et al. Mar 2011 B1
7958731 McBride et al. Jun 2011 B2
7963110 Bollinger et al. Jun 2011 B2
8037678 McBride et al. Oct 2011 B2
8046990 Bollinger et al. Nov 2011 B2
8104274 McBride et al. Jan 2012 B2
8109085 McBride et al. Feb 2012 B2
8117842 McBride et al. Feb 2012 B2
8122718 McBride et al. Feb 2012 B2
8171728 Bollinger et al. May 2012 B2
8191362 McBride et al. Jun 2012 B2
8225606 McBride et al. Jul 2012 B2
8234862 McBride et al. Aug 2012 B2
8234863 McBride et al. Aug 2012 B2
8234868 Bollinger et al. Aug 2012 B2
8240140 McBride et al. Aug 2012 B2
8240146 Bollinger Aug 2012 B1
8245508 Bollinger et al. Aug 2012 B2
8250863 Bollinger et al. Aug 2012 B2
8272212 Blieske Sep 2012 B2
20010045093 Jacobson Nov 2001 A1
20030131599 Gerdes Jul 2003 A1
20030145589 Tillyer Aug 2003 A1
20030177767 Keller-sornig et al. Sep 2003 A1
20030180155 Coney et al. Sep 2003 A1
20040050042 Frazer Mar 2004 A1
20040050049 Wendt et al. Mar 2004 A1
20040146406 Last Jul 2004 A1
20040146408 Anderson Jul 2004 A1
20040148934 Pinkerton et al. Aug 2004 A1
20040211182 Gould Oct 2004 A1
20040244580 Coney et al. Dec 2004 A1
20040261415 Negre et al. Dec 2004 A1
20050016165 Enis et al. Jan 2005 A1
20050028529 Bartlett et al. Feb 2005 A1
20050047930 Schmid Mar 2005 A1
20050072154 Frutschi Apr 2005 A1
20050115234 Asano et al. Jun 2005 A1
20050155347 Lewellin Jul 2005 A1
20050166592 Larson et al. Aug 2005 A1
20050274334 Warren Dec 2005 A1
20050275225 Bertolotti Dec 2005 A1
20050279086 Hoos Dec 2005 A1
20050279292 Hudson et al. Dec 2005 A1
20050279296 Coney et al. Dec 2005 A1
20060055175 Grinblat Mar 2006 A1
20060059912 Romanelli et al. Mar 2006 A1
20060059936 Radke et al. Mar 2006 A1
20060059937 Perkins et al. Mar 2006 A1
20060075749 Cherney et al. Apr 2006 A1
20060090467 Crow May 2006 A1
20060090477 Rolff May 2006 A1
20060107664 Hudson et al. May 2006 A1
20060162543 Abe et al. Jul 2006 A1
20060162910 Kelly et al. Jul 2006 A1
20060175337 Defosset Aug 2006 A1
20060201148 Zabtcioqlu Sep 2006 A1
20060218924 Mitani Oct 2006 A1
20060248886 Ma Nov 2006 A1
20060248892 Ingersoll Nov 2006 A1
20060254281 Badeer et al. Nov 2006 A1
20060260311 Ingersoll Nov 2006 A1
20060260312 Ingersoll Nov 2006 A1
20060262465 Wiederhold Nov 2006 A1
20060266034 Ingersoll Nov 2006 A1
20060266035 Ingersoll et al. Nov 2006 A1
20060266036 Ingersoll Nov 2006 A1
20060266037 Ingersoll Nov 2006 A1
20060280993 Keefer et al. Dec 2006 A1
20060283967 Cho et al. Dec 2006 A1
20070006586 Hoffman et al. Jan 2007 A1
20070022754 Perkins et al. Feb 2007 A1
20070022755 Pinkerton et al. Feb 2007 A1
20070062194 Ingersoll Mar 2007 A1
20070074533 Hugenroth et al. Apr 2007 A1
20070095069 Joshi et al. May 2007 A1
20070113803 Froloff et al. May 2007 A1
20070116572 Barbu et al. May 2007 A1
20070137595 Greenwell Jun 2007 A1
20070151528 Hedman Jul 2007 A1
20070158946 Annen et al. Jul 2007 A1
20070181199 Weber Aug 2007 A1
20070182160 Enis et al. Aug 2007 A1
20070205298 Harrison et al. Sep 2007 A1
20070234749 Enis et al. Oct 2007 A1
20070243066 Baron Oct 2007 A1
20070245735 Ashikian Oct 2007 A1
20070258834 Froloff et al. Nov 2007 A1
20080000436 Goldman Jan 2008 A1
20080016868 Ochs et al. Jan 2008 A1
20080047272 Schoell Feb 2008 A1
20080050234 Ingersoll et al. Feb 2008 A1
20080072870 Chomyszak et al. Mar 2008 A1
20080087165 Wright et al. Apr 2008 A1
20080104939 Hoffmann et al. May 2008 A1
20080112807 Uphues et al. May 2008 A1
20080127632 Finkenrath et al. Jun 2008 A1
20080138265 Lackner et al. Jun 2008 A1
20080155975 Brinkman Jul 2008 A1
20080155976 Smith et al. Jul 2008 A1
20080157528 Wang et al. Jul 2008 A1
20080157537 Richard Jul 2008 A1
20080164449 Gray et al. Jul 2008 A1
20080185194 Leone Aug 2008 A1
20080202120 Karyambas Aug 2008 A1
20080211230 Gurin Sep 2008 A1
20080228323 Laumer et al. Sep 2008 A1
20080233029 Fan et al. Sep 2008 A1
20080238105 Ortiz et al. Oct 2008 A1
20080238187 Garnett et al. Oct 2008 A1
20080250788 Nuel et al. Oct 2008 A1
20080251302 Lynn et al. Oct 2008 A1
20080272597 Althaus Nov 2008 A1
20080272598 Nakhamkin Nov 2008 A1
20080272605 Borden et al. Nov 2008 A1
20080308168 O'Brien, II et al. Dec 2008 A1
20080308270 Wilson Dec 2008 A1
20080315589 Malmrup Dec 2008 A1
20090000290 Brinkman Jan 2009 A1
20090007558 Hall et al. Jan 2009 A1
20090008173 Hall et al. Jan 2009 A1
20090010772 Siemroth Jan 2009 A1
20090020275 Neher et al. Jan 2009 A1
20090021012 Stull et al. Jan 2009 A1
20090056331 Zhao et al. Mar 2009 A1
20090071153 Boyapati et al. Mar 2009 A1
20090107784 Gabriel et al. Apr 2009 A1
20090145130 Kaufman Jun 2009 A1
20090158740 Littau et al. Jun 2009 A1
20090178409 Shinnar Jul 2009 A1
20090200805 Kim et al. Aug 2009 A1
20090220364 Rigal et al. Sep 2009 A1
20090229902 Stansbury, III Sep 2009 A1
20090249826 Hugelman Oct 2009 A1
20090282822 McBride et al. Nov 2009 A1
20090282840 Chen et al. Nov 2009 A1
20090294096 Mills et al. Dec 2009 A1
20090301089 Bollinger Dec 2009 A1
20090317267 Gill et al. Dec 2009 A1
20090322090 Wolf Dec 2009 A1
20100018196 Li et al. Jan 2010 A1
20100077765 Japikse Apr 2010 A1
20100089063 McBride et al. Apr 2010 A1
20100133903 Rufer Jun 2010 A1
20100139277 McBride et al. Jun 2010 A1
20100193270 Deshaies et al. Aug 2010 A1
20100199652 Lemofouet et al. Aug 2010 A1
20100205960 McBride et al. Aug 2010 A1
20100229544 Bollinger et al. Sep 2010 A1
20100307156 Bollinger Dec 2010 A1
20100326062 Fong et al. Dec 2010 A1
20100326064 Fong et al. Dec 2010 A1
20100326066 Fong et al. Dec 2010 A1
20100326068 Fong et al. Dec 2010 A1
20100326069 Fong et al. Dec 2010 A1
20100326075 Fong et al. Dec 2010 A1
20100329891 Fong et al. Dec 2010 A1
20100329903 Fong et al. Dec 2010 A1
20100329909 Fong et al. Dec 2010 A1
20110023488 Fong et al. Feb 2011 A1
20110023977 Fong et al. Feb 2011 A1
20110030359 Fong et al. Feb 2011 A1
20110030552 Fong et al. Feb 2011 A1
20110056193 McBride et al. Mar 2011 A1
20110056368 McBride et al. Mar 2011 A1
20110061741 Ingersoll et al. Mar 2011 A1
20110061836 Ingersoll et al. Mar 2011 A1
20110062166 Ingersoll et al. Mar 2011 A1
20110106321 Cherian et al. May 2011 A1
20110107755 McBride et al. May 2011 A1
20110115223 Stahlkopf et al. May 2011 A1
20110131966 McBride et al. Jun 2011 A1
20110138797 Bollinger et al. Jun 2011 A1
20110167813 McBride et al. Jul 2011 A1
20110204064 Crane et al. Aug 2011 A1
20110219760 McBride et al. Sep 2011 A1
20110219763 McBride et al. Sep 2011 A1
20110232281 McBride et al. Sep 2011 A1
20110233934 Crane et al. Sep 2011 A1
20110252777 Bollinger et al. Oct 2011 A1
20110258996 Ingersoll et al. Oct 2011 A1
20110258999 Ingersoll et al. Oct 2011 A1
20110259001 McBride et al. Oct 2011 A1
20110259442 McBride et al. Oct 2011 A1
20110266810 McBride et al. Nov 2011 A1
20110283690 Bollinger et al. Nov 2011 A1
20110296821 Bollinger et al. Dec 2011 A1
20110296822 Bollinger et al. Dec 2011 A1
20110296823 McBride et al. Dec 2011 A1
20110314800 Fong et al. Dec 2011 A1
20110314804 Fong et al. Dec 2011 A1
20120000557 McBride et al. Jan 2012 A1
20120006013 McBride et al. Jan 2012 A1
20120017580 Fong et al. Jan 2012 A1
20120019009 Fong et al. Jan 2012 A1
20120023919 Fong et al. Feb 2012 A1
20120036851 McBride et al. Feb 2012 A1
20120042772 Fong et al. Feb 2012 A1
20120047884 McBride et al. Mar 2012 A1
20120055146 Baraga et al. Mar 2012 A1
20120057996 Fong et al. Mar 2012 A1
20120057998 Ingersoll et al. Mar 2012 A1
20120067036 Fong et al. Mar 2012 A1
20120073432 Ingersoll et al. Mar 2012 A1
20120085086 Bollinger et al. Apr 2012 A1
20120090314 Fong et al. Apr 2012 A1
20120096845 Ingersoll et al. Apr 2012 A1
20120102935 Ingersoll et al. May 2012 A1
20120102954 Ingersoll et al. May 2012 A1
20120118137 Fong et al. May 2012 A1
20120119513 McBride et al. May 2012 A1
20120119514 Crane et al. May 2012 A1
20120137668 McBride et al. Jun 2012 A1
20120174569 Ingersoll et al. Jul 2012 A1
20120197683 Marcus Aug 2012 A1
20120210705 McBride et al. Aug 2012 A1
20120222424 Ingersoll et al. Sep 2012 A1
20120255292 Fong et al. Oct 2012 A1
20120260645 Fong et al. Oct 2012 A1
20120269651 Fong et al. Oct 2012 A1
20120279209 McBride et al. Nov 2012 A1
20120285154 Bollinger et al. Nov 2012 A1
20120286522 Stahlkopf et al. Nov 2012 A1
20120291989 Fong et al. Nov 2012 A1
20120297772 McBride et al. Nov 2012 A1
20120297776 Bollinger et al. Nov 2012 A1
20120299310 McBride et al. Nov 2012 A1
20130001958 Crane et al. Jan 2013 A1
20130009408 Crane et al. Jan 2013 A1
Foreign Referenced Citations (204)
Number Date Country
898225 Mar 1984 BE
1008885 Aug 1996 BE
1061262 May 1992 CN
1171490 Jan 1998 CN
1276308 Dec 2000 CN
1277323 Dec 2000 CN
1412443 Apr 2003 CN
1743665 Mar 2006 CN
2821162 Sep 2006 CN
2828319 Oct 2006 CN
2828368 Oct 2006 CN
1884822 Dec 2006 CN
1888328 Jan 2007 CN
1967091 May 2007 CN
101033731 Sep 2007 CN
101042115 Sep 2007 CN
101070822 Nov 2007 CN
101149002 Mar 2008 CN
101162073 Apr 2008 CN
201103518 Aug 2008 CN
201106527 Aug 2008 CN
101289963 Oct 2008 CN
201125855 Oct 2008 CN
101377190 Apr 2009 CN
101408213 Apr 2009 CN
101435451 May 2009 CN
25 38 870 Jun 1977 DE
19530253 Nov 1996 DE
19903907 Aug 2000 DE
19911534 Sep 2000 DE
10042020 May 2001 DE
20118183 Mar 2003 DE
20120330 Apr 2003 DE
10147940 May 2003 DE
10205733 Aug 2003 DE
10212480 Oct 2003 DE
20312293 Dec 2003 DE
10220499 Apr 2004 DE
10334637 Feb 2005 DE
10 2005 047622 Apr 2007 DE
0204748 Mar 1981 EP
0091801 Oct 1983 EP
0097002 Dec 1983 EP
0196690 Oct 1986 EP
0212692 Mar 1987 EP
0364106 Apr 1990 EP
0507395 Oct 1992 EP
0821162 Jan 1998 EP
0 857 877 Aug 1998 EP
1 388 442 Feb 2004 EP
1405662 Apr 2004 EP
1657452 Nov 2004 EP
1726350 Nov 2006 EP
1741899 Jan 2007 EP
1 780 058 May 2007 EP
1988294 Nov 2008 EP
2014896 Jan 2009 EP
2078857 Jul 2009 EP
2449805 Sep 1980 FR
2816993 May 2002 FR
2829805 Mar 2003 FR
722524 Nov 1951 GB
772703 Apr 1957 GB
1449076 Sep 1976 GB
1479940 Jul 1977 GB
2106992 Apr 1983 GB
2223810 Apr 1990 GB
2 300 673 Nov 1996 GB
2373546 Sep 2002 GB
2403356 Dec 2004 GB
57010778 Jan 1982 JP
57070970 May 1982 JP
57120058 Jul 1982 JP
58183880 Oct 1982 JP
58150079 Sep 1983 JP
58192976 Nov 1983 JP
60206985 Oct 1985 JP
62101900 May 1987 JP
63227973 Sep 1988 JP
2075674 Mar 1990 JP
2247469 Oct 1990 JP
3009090 Jan 1991 JP
3281984 Dec 1991 JP
4121424 Apr 1992 JP
6185450 Jul 1994 JP
8145488 Jun 1996 JP
9166079 Jun 1997 JP
10313547 Nov 1998 JP
2000-346093 Jun 1999 JP
11351125 Dec 1999 JP
2000166128 Jun 2000 JP
2000346093 Dec 2000 JP
2002127902 May 2002 JP
2003083230 Mar 2003 JP
2005023918 Jan 2005 JP
2005036769 Feb 2005 JP
2005068963 Mar 2005 JP
2006220252 Aug 2006 JP
2007001872 Jan 2007 JP
2007145251 Jun 2007 JP
2007211730 Aug 2007 JP
2008038658 Feb 2008 JP
840000180 Feb 1984 KR
2004004637 Jan 2004 KR
2101562 Jan 1998 RU
2169857 Jun 2001 RU
2213255 Sep 2003 RU
800438 Jan 1981 SU
69030 Aug 2004 UA
WO-8200319 Feb 1982 WO
WO-8802818 Apr 1988 WO
WO-9222741 Dec 1992 WO
WO-9306367 Apr 1993 WO
WO-9311363 Jun 1993 WO
WO-9324754 Dec 1993 WO
WO 9412785 Jun 1994 WO
WO-9525381 Sep 1995 WO
WO-9601942 Jan 1996 WO
WO-9622456 Jul 1996 WO
WO-9634213 Oct 1996 WO
WO-9701029 Jan 1997 WO
WO-9717546 May 1997 WO
WO-9802818 Jan 1998 WO
WO-9817492 Apr 1998 WO
WO-9941498 Aug 1999 WO
WO-0001945 Jan 2000 WO
WO-0037800 Jun 2000 WO
WO-0065212 Nov 2000 WO
WO-0068578 Nov 2000 WO
WO 0175290 Oct 2001 WO
WO-0175308 Oct 2001 WO
WO-0225083 Mar 2002 WO
WO-0246621 Jun 2002 WO
WO-02103200 Dec 2002 WO
WO-03021107 Mar 2003 WO
WO-03021702 Mar 2003 WO
WO-03078812 Sep 2003 WO
WO-03081011 Oct 2003 WO
WO-2004034391 May 2004 WO
WO-2004059155 Jul 2004 WO
WO-2004072452 Aug 2004 WO
WO-2004074679 Sep 2004 WO
WO-2004109172 Dec 2004 WO
WO-2005044424 May 2005 WO
WO-2005062969 Jul 2005 WO
WO-2005067373 Jul 2005 WO
WO-2005079461 Sep 2005 WO
WO-2005088131 Sep 2005 WO
WO-2005095155 Oct 2005 WO
WO-2006029633 Mar 2006 WO
WO-2006058085 Jun 2006 WO
WO-2006124006 Nov 2006 WO
WO-2007002094 Jan 2007 WO
WO-2007003954 Jan 2007 WO
WO-2007012143 Feb 2007 WO
WO-2007035997 Apr 2007 WO
WO-2007051034 May 2007 WO
WO-2007066117 Jun 2007 WO
WO-2007086792 Aug 2007 WO
WO-2007089872 Aug 2007 WO
WO-2007096656 Aug 2007 WO
WO-2007111839 Oct 2007 WO
WO-2007136765 Nov 2007 WO
WO-2007140914 Dec 2007 WO
WO-2008003950 Jan 2008 WO
WO-2008014769 Feb 2008 WO
WO-2008023901 Feb 2008 WO
WO-2008027259 Mar 2008 WO
WO-2008028881 Mar 2008 WO
WO-2008039725 Apr 2008 WO
WO-2008045468 Apr 2008 WO
WO-2009045468 Apr 2008 WO
WO-2008051427 May 2008 WO
WO-2008074075 Jun 2008 WO
WO-2008084507 Jul 2008 WO
WO-2008091373 Jul 2008 WO
WO 2008102292 Aug 2008 WO
WO-2008106967 Sep 2008 WO
WO-2008108870 Sep 2008 WO
WO-2008109006 Sep 2008 WO
WO-2008110018 Sep 2008 WO
WO-2008115479 Sep 2008 WO
WO-2008121378 Oct 2008 WO
WO-2008139267 Nov 2008 WO
WO-2008152432 Dec 2008 WO
WO-2008153591 Dec 2008 WO
WO-2008157327 Dec 2008 WO
WO-2009034548 Mar 2009 WO
WO-2009038973 Mar 2009 WO
WO-2009034421 Mar 2009 WO
WO-2009045110 Apr 2009 WO
WO-2009044139 Apr 2009 WO
WO-2009114205 Sep 2009 WO
WO-2009126784 Oct 2009 WO
WO-2010006319 Jan 2010 WO
WO-2010009053 Jan 2010 WO
WO-2010040890 Apr 2010 WO
WO-2010105155 Sep 2010 WO
WO-2010135658 Nov 2010 WO
WO-2011008321 Jan 2011 WO
WO-2011008325 Jan 2011 WO
WO-2011008500 Jan 2011 WO
WO-2011079267 Jun 2011 WO
WO-2011079271 Jun 2011 WO
Non-Patent Literature Citations (18)
Entry
International Search Report and Written Opinion mailed May 25, 2011 for International Application No. PCT/US2010/027138, 12 pages.
Rufer et al., “Energetic Performance of a Hybrid Energy Storage System Based on Compressed Air and Super Capacitors,” Power Electronics, Electrical Drives, Automation and Motion, (May 1, 2006), pp. 469-474.
Lemofouet et al. “Hybrid Energy Storage Systems based on Compressed Air and Supercapacitors with Maximum Efficiency Point Tracking,” Industrial Electronics Laboratory (LEI), (2005), pp. 1-10.
Lemofouet et al. “Hybrid Energy Storage Systems based on Compressed Air and Supercapacitors with Maximum Efficiency Point Tracking,” The International Power Electronics Conference, (2005), pp. 461-468.
“Hydraulic Transformer Supplies Continuous High Pressure,” Machine Design, Penton Media, vol. 64, No. 17, (Aug. 1992), 1 page.
Lemofouet, “Investigation and Optimisation of Hybrid Electricity Storage Systems Based on Compressed Air and Supercapacitors,” (Oct. 20, 2006), 250 pages.
Cyphelly et al., “Usage of Compressed Air Storage Systems,” BFE-Program “Electricity,” Final Report, May 2004, 14 pages.
Lemofouet et al., “A Hybrid Energy Storage System Based on Compressed Air and Supercapacitors with Maximum Efficiency Point Tracking (MEPT),” IEEE Transactions on Industrial Electron, vol. 53, No. 4, (Aug. 2006) pp. 1105-1115.
International Search Report and Written Opinion issued Sep. 15, 2009 for International Application No. PCT/US2009/040027, 8 pages.
International Search Report and Written Opinion issued Aug. 30, 2010 for International Application No. PCT/US2010/029795, 9 pages.
International Search Report and Written Opinion issued Dec. 3, 2009 for International Application No. PCT/US2009/046725, 9 pages.
International Search Report and Written Opinion issued Jan. 4, 2011 for International Application No. PCT/US2010/055279, 13 pages.
International Preliminary Report on Patentability mailed Oct. 13, 2011 for International Application No. PCT/US2010/029795 (9 pages).
Stephenson et al., “Computer Modelling of Isothermal Compression in the Reciprocating Compressor of a Complete Isoengine,” 9th International Conference on Liquid Atomization and Spray Systems (Jul. 13-17, 2003).
Coney et al., “Development of a Reciprocating Compressor Using Water Injection to Achieve Quasi-Isothermal Compression,” Purdue University International Compressor Engineering Conference (2002).
Linnemann et al., “The Isoengine—A Novel High Efficiency Engine with Optional Compressed Air Energy Storage (CAES),” International Joint Power Generation Conference (Jun. 16-19, 2003).
Linnemann et al., “The Isoengine: Realisation of a High-Efficiency Power Cycle Based on Isothermal Compression,” Int. J. Energy Tech. and Policy, vol. 3, Nos. 1-2, pp. 66-84 (2005).
Winterburn et al., “Mechanisms of Ultrasound Foam Interactions,” Asia-Pac. J. Chem. Eng., vol. 4, pp. 184-190 (2009).
Related Publications (1)
Number Date Country
20110314803 A1 Dec 2011 US
Provisional Applications (12)
Number Date Country
61334722 May 2010 US
61349009 May 2010 US
61363072 Jul 2010 US
61393725 Oct 2010 US
61148691 Jan 2009 US
61043630 Apr 2008 US
61059964 Jun 2008 US
61166448 Apr 2009 US
61184166 Jun 2009 US
61223564 Jul 2009 US
61227222 Jul 2009 US
61251965 Oct 2009 US
Continuation in Parts (3)
Number Date Country
Parent 12639703 Dec 2009 US
Child 13105986 US
Parent 12421057 Apr 2009 US
Child 12639703 US
Parent 12481235 Jun 2009 US
Child 11639703 US