1. Field of the Invention
This invention relates to a paper machine mesh, in particular a forming mesh.
2. Description of the Related Art
Forming meshes are used in the forming section of a paper machine. During the forming process, a fiber suspension from the headbox of the paper machine is applied to one forming mesh or to two forming meshes (in the case of gap formers). It is an object of the forming mesh in this case to dewater the fiber suspension and to form a fibrous web, whereby as little cellulose fiber and filler material as possible should be separated from the fiber suspension during the dewatering process.
The quality of the formed fibrous web is co-defined in this case to a great extent by the structure of the surface of the forming mesh facing the fibrous web (paper side). The life of the forming mesh, on the other hand, is greatly influenced by the structure of the surface of the forming mesh facing the paper machine (machine side).
To be able to take account of these in part contradictory requirements, multilayer paper machine meshes with a paper-side fabric layer and a machine-side fabric layer were developed, whereby the two fabric layers are connected to each other by so-called binders. To guarantee as uniform a paper-side fabric structure as possible, the binder threads are preferably an integral component of the paper-side weaving structure (integral binder threads), as the result of which a tendency to marking due to the tying of the binder threads is reduced.
On the weft-tied paper machine meshes with integral interchanging binder threads known from the prior art, the binder threads weave alternately with warp threads of the upper and the lower fabric layer, whereby each binder thread is woven as a rule with several upper warp threads before said binder thread crosses a single lower warp thread on the outer side of the lower fabric layer in order to form a tie-on point and subsequently to weave again with several upper warp threads.
The known meshes of said kind have the disadvantage that the lower fabric layer is tied at each tie-on point only by way of one warp thread to the upper fabric layer, as the result of which a high force acts on said warp thread and pulls it into the inside of the mesh, thus exerting a negative effect on the flatness of the mesh.
Furthermore, the binder threads on the known meshes of said kind often cover a large distance between the upper and the lower fabric layer, as the result of which the meshes known from the prior art are often very thick and therefore carry a lot of water.
In addition, the meshes known from the prior art often display a dewatering behavior which varies greatly over the mesh surface and can lead to hydraulic marking of the paper formed on such meshes.
Furthermore, on the known meshes the binder threads between the fabric layers are often exposed to high wear because often said threads are not sufficiently fixed between the fabric layers.
What is needed in the art is a paper machine mesh on which the disadvantages previously referred to no longer arise or arise at least to a reduced extent only.
The inventive paper machine mesh, in particular forming mesh, has an upper and a lower fabric layer and binder threads to join the two fabric layers. The outer side of the upper fabric layer provides the side of the mesh which can be moved into contact with the paper web, while the outer side of the lower fabric layer provides the side of the mesh which can be moved into contact with the machine.
The lower fabric layer of the paper machine mesh is formed furthermore by the binder threads, by lower transverse threads and by lower longitudinal threads which are woven with the binder threads and the lower transverse threads and extend transverse thereto. The lower fabric layer has a weaving pattern which is repeated in lower repeats. On the inventive paper machine mesh the binder threads are arranged in pairs. In addition, the binder threads of each pair are interchangingly woven with upper and with lower longitudinal threads. Furthermore, each binder thread pair is flanked on both sides respectively by one lower transverse thread, whereby each of the two flanking lower transverse threads is woven in periodic sequence with lower longitudinal threads as follows:
The inventive paper machine mesh is characterized in that within the lower repeat each binder thread of each pair forms together with lower longitudinal threads at least one segment, each segment being formed in that the respective binder thread of the pair continually crosses two or more directly consecutive lower longitudinal threads on the outer side of the lower fabric layer, and in that within the lower repeat the segments of each binder thread pair are arranged relative to the lower transverse threads flanking said segments such that:
When weaving with the lower longitudinal threads, the binder threads form segments which extend over two or more consecutive lower longitudinal threads, hence the binder threads extend to a greater extent on the outer side of the lower fabric layer and not between the fabric layers, as the result of which the thickness of the mesh and disadvantages connected therewith are clearly reduced.
The inventive characteristic that each binder thread weaves over at least two consecutive lower longitudinal threads means furthermore that, when weaving with the lower longitudinal threads, each binder thread extends “flatly” along the outer side of the lower fabric layer and is protected against wear by the lower transverse threads which flank said binder thread on both sides and as a rule have a larger cross-section than the binder threads, thus clearly reducing the risk of delamination of the two fabric layers. Furthermore, within the lower repeat the one of the two flanking lower transverse threads forms respectively one knuckle with the lower longitudinal thread directly preceding the corresponding tie segment and the other of the two flanking lower transverse threads forms respectively one knuckle with the lower longitudinal thread directly following the corresponding tie segment, hence each tie segment of the lower repeat is held firmly in position, thus preventing a relative movement of the binder threads between the lower and upper fabric layer and clearly reducing the inner wear of the mesh resulting therefrom.
Furthermore, in the lower fabric layer the long floats of the lower transverse threads on the outer side of the lower fabric layer form dewatering channels in regions which extend between two lower transverse threads extending side by side and floating on the outer side. The two flanking lower transverse threads continually cross on the outer side of the lower fabric layer at least the same lower longitudinal threads which together with the binder threads of the pair form the lower segments, hence the cross-sections of the dewatering channels formed by the floats are reduced, thus reducing the otherwise uniform dewatering speed and with it the tendency toward marking.
The above-mentioned and other features and advantages of this invention, and the manner of attaining them, will become more apparent and the invention will be better understood by reference to the following description of embodiments of the invention taken in conjunction with the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate embodiments of the invention, and such exemplifications are not to be construed as limiting the scope of the invention in any manner.
Referring now to the drawings, and more particularly to
The forming mesh 100 has upper longitudinal threads 1,3,5,7,9,11,13,15,17 and 19 constructed as warp threads and lower longitudinal threads 2,4,6,8,10,12,14,16,18 and 20 constructed as warp threads. The longitudinal threads extend in this case perpendicularly from the drawing plane of
Furthermore, the forming mesh 100 has binder threads it to i20 which are arranged in binder thread pairs it and i2, i3 and i4 to i19 and i20.
Also, the forming mesh 100 has upper transverse threads T1 to T20 constructed as weft threads and lower transverse threads B1 to B20 constructed as weft threads. On the forming mesh 100 presented in
The inventive forming mesh 100 has an upper fabric layer 101 and a lower fabric layer 102, whereby the two fabric layers 101 and 102 are joined together by the binder threads it and i2 to i19 and i20.
The upper fabric layer is formed by the binder threads i1 to i20, by the upper transverse threads T1 to T20 and by the upper longitudinal threads 1,3,5,7,9,11,13,15,17 and 19 which extend transverse to the binder threads it to i20 and the upper transverse threads T1 to T20 and are woven therewith. It also could be possible to form the upper fabric layer only by the upper longitudinal threads and the binder threads.
The lower fabric layer 102 is formed by the binder threads it to i20, by the transverse threads B1 to B2 and by the lower longitudinal threads 2,4,6,8,10,12,14,16,18 and 20 which extend transverse thereto and are woven therewith.
The binder threads of a pair are interchangingly woven with upper longitudinal threads 1,3,5,7,9,11,13,15,17 and 19 and with lower longitudinal threads 2,4,6,8,10,12,14,16,18 and 20 such that when the first binder thread of the pair is woven with upper longitudinal threads, the second binder thread of the pair is woven with lower longitudinal threads and when the second binder thread of the pair is woven with upper longitudinal threads, the first binder thread of the pair is woven with lower longitudinal threads.
The weaving pattern of the upper fabric layer 101 forms a linen bond, whereby the weaving pattern formed by the weaving of the upper longitudinal threads 1,3,5,7,9,11,13,15,17 and 19 with the upper transverse threads T1 to T20 is continued by the interchanging weaving of the binder threads it to i20 of the binder thread pairs with the upper longitudinal threads 1,3,5,7,9,11,13,15,17 and 19. Accordingly, when weaving with consecutive upper longitudinal threads 1,3,5,7,9,11,13,15,17 and 19, each binder thread it to i20 crosses upper longitudinal threads 1,3,5,7,9,11,13,15,17 and 19 extending alternately on the outer side 103 of the upper fabric layer 101 and between the two fabric layers 101, 102.
As is evident from
Each binder thread pair it and i2 to i19 and i20 is flanked on both sides respectively by one lower transverse thread B1 to B20, whereby each of the two flanking lower transverse threads B1 to B20 is woven in periodic sequence with lower longitudinal threads 2,4,6,8,10,12,14,16,18 and 20 as follows:
For example, the binder thread pair it and i2 is flanked on the one side by the lower transverse thread B2 and on the other side by the lower transverse thread B3.
On the embodiment in question, all the lower transverse threads B1 to B20 of the mesh 100 are woven in periodic sequence with lower longitudinal threads in the order stipulated above.
Provision is made according to the invention for each binder thread of a pair within the lower repeat to form with lower longitudinal threads at least one tie segment S1 to S20 and for each tie segment S1 to S20 to be formed in that the respective binder thread of the pair continually crosses at least two directly consecutive lower longitudinal threads on the outer side 104 of the lower fabric layer 102.
This means that for example the binder thread it of the binder thread pair it and i2 forms the tie segment S1 and the binder thread i2 of the binder thread pair i1 and i2 forms the tie segment S2 within the lower repeat. In this case the tie segment S1 is formed in that the binder thread it of the pair continually crosses the two directly consecutive lower longitudinal threads 14 and 16 on the outer side 104 of the lower fabric layer 102. Furthermore, the tie segment S2 is formed in that the binder thread i2 of the pair continually crosses the two directly consecutive lower longitudinal threads 4 and 6 on the outer side 104 of the lower fabric layer 102.
In addition, the segments are such that between two consecutive tie segments, for example S1, formed by the same binder thread, for example it, said binder thread, for example it, continually crosses at least one upper longitudinal thread, for example 1 and 3, on the outer side 103 of the upper fabric layer 101.
Furthermore, the tie segments of each binder thread pair within the lower repeat are arranged relative to the lower transverse threads flanking said segments such that the two flanking lower transverse threads continually cross on the outer side of the lower fabric layer at least the same lower longitudinal threads which together with the binder threads of the pair form the tie segments.
For example the lower transverse thread B2 and the lower transverse thread B3 continually cross on the outer side 104 of the lower fabric layer 102 respectively the lower longitudinal threads 4 and 6 and 14 and 16 which also form the tie segments S1 and S2.
Furthermore the one of the two flanking lower transverse threads forms respectively one knuckle with the lower longitudinal thread which directly precedes the corresponding tie segment.
This means that for example the lower transverse thread B2 forms a knuckle with the lower longitudinal thread 2 and with the lower longitudinal thread 12, whereby the lower longitudinal thread 2 directly precedes the tie segment S2 and the lower longitudinal thread 12 directly precedes the tie segment S1.
Furthermore provision is made according to the invention for the other of the two flanking lower transverse threads to form respectively one knuckle with the lower longitudinal thread which directly follows the corresponding tie segment.
For example the lower transverse thread B3 forms a knuckle with the lower longitudinal thread 8 and with the lower longitudinal thread 18, whereby the lower longitudinal thread 8 directly follows the tie segment S2 and the lower longitudinal thread 18 directly follows the tie segment S1.
As is evident from the representation in
Furthermore, each binder thread pair has a binder thread of a first kind i2, i4, i6, i8, i10, i12, i14, i16, i18 and i20 and a binder thread of a second kind i1, i3, i5, i7, i9, i11, i13, i15, i17 and i19, whereby in the upper repeat unit the binder thread of a first kind i2, i4, i6, i8, i10, i12, i14, i16, i18 and i20 crosses two upper longitudinal threads when it runs along the outer side 103 of the upper fabric layer 101 and the binder thread of a second kind i1, i3, i5, i7, i9, i11, i13, i15, i17 and i19 crosses three upper longitudinal threads when it runs along the outer side 103 of the upper fabric layer 101.
Furthermore, the tie segments formed by binder threads of the same kind from directly adjacent binder thread pairs are offset by one lower longitudinal thread relative to each other in the transverse thread direction and therefore overlap each other in part. This means that for example the binder threads of a first kind i2, i4, i6, i8, i10, i12, i14, i16, i18 and i20 form together with the corresponding lower longitudinal threads the tie segments S2, S4, S6, S8, S10, S12, S14, S16, S18 and S20, whereby for example the tie segments S2 and S4, which are arranged directly side by side, are arranged side by side with overlapping of the lower longitudinal thread 6 in the transverse thread direction.
The mesh 110 presented in
Furthermore, tie segments formed by binder threads of the same kind from directly adjacent binder thread pairs are—unlike in FIG. 1—directly adjacent each other in the transverse thread direction. This means that for example the binder threads of a first kind i2, i3, i6, i7, i10, i11, i14, i15, i18 and i19 form together with the corresponding lower transverse threads the tie segments S2, S3, S6, S7, S10, S11, S14, S15, S18 and S19, whereby for example the tie segments S2 and S3, which are arranged directly side by side, are arranged directly—meaning without overlapping or spacing of one or more lower longitudinal threads—side by side.
On the forming meshes shown in
The inventive characteristics are clearly evident, namely that within the lower repeat:
The binder thread pair i3 and i4 can be drawn on as an example. Within the lower repeat, the binder thread i3 forms together with the lower longitudinal threads 14 and 16 the tie segment S3 and the binder thread i4 forms together with the lower binder threads 4 and 6 the tie segment S4. The tie segment S4 is formed in that the binder thread i4 continually crosses the two directly consecutive lower longitudinal threads 4 and 6 on the outer side 114 of the lower fabric layer 112. The tie segment S3 is formed in that the binder thread i3 continually crosses the two directly consecutive lower longitudinal threads 14 and 16 on the outer side 114 of the lower fabric layer 112.
Furthermore, the tie segments S3 and S4 are arranged relative to the lower transverse threads B2 and B3 flanking said segments such that:
While this invention has been described with respect to at least one embodiment, the present invention can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains and which fall within the limits of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
DE 102007020071.6 | Apr 2007 | DE | national |