The disclosure relates to a forming method of a metal layer, and more particularly to a forming method of a metal layer suitable for a three-dimensional (3D) printing process.
A layer of metal oxides is inevitably generated on the surface of the metal particles due to oxygen in the external environment. Since the metal oxides have a higher melting point than the metal, the heat treatment has to be performed at a higher temperature. In a general 3D printing process, after metal particles are provided on a substrate, the metal particles are heat-treated to form a dense sintered body of the metal particles to form a metal layer. A layer of metal oxides is inevitably generated on the surface of the metal particles due to oxygen in the external environment. Since the metal oxides have a higher melting point than the metal, the heat treatment has to be performed at a higher temperature.
At present, metal particles having a metal oxide layer formed on the surface are mostly heat-treated by high-energy laser. The high-energy laser may simultaneously melt the metal oxide layer and the metal particles. However, the sintered body thus formed contains metal oxides, thus affecting the characteristics of the resulting metal layer.
The disclosure provides a forming method of a metal layer utilizing an oxide-removing agent to remove metal oxides on metal particles prior to high-temperature sintering.
The forming method of a metal layer of the disclosure is suitable for a 3D printing process and includes the following steps. A plurality of metal particles are provided on a substrate. An oxide-removing agent is applied to the metal particles to remove metal oxides on the metal particles. At a first temperature, a first heat treatment is performed on the metal particles for which the metal oxides are removed to form a near shape. At a second temperature, a second heat treatment is performed on the near shape to form a sintered body. The first temperature is lower than the second temperature.
The forming method of a metal layer of the disclosure is suitable for a 3D printing process and includes the following steps: (1) providing a plurality of first metal particles on a substrate to form a first layer of the plurality of first metal particles; (2) performing a first pre-heat treatment on the first layer at a first pre-heat temperature; (3) applying an oxide-removing agent on selected first metal particles in the first layer to remove metal oxides on the selected first metal particles after providing the plurality of first metal particles on the substrate; (4) providing a plurality of second metal particles on the first layer to form a second layer of the plurality of second metal particles, wherein the second layer is farther away from the substrate than the first layer; (5) performing a second pre-heat treatment on the second layer at a second pre-heat temperature; (6) applying the oxide-removing agent on selected second metal particles in the second layer to remove metal oxides on the selected second metal particles; repeating (1) to (6) until a latent part is formed; performing a first heat treatment on the first and second metal particles of the latent part for which the metal oxides are removed at a first temperature to form a near shape; and performing a second heat treatment on the near shape at a second temperature to form a sintered body. The first temperature is lower than the second temperature.
In an embodiment of the disclosure, after the metal particles are provided on the substrate, the metal oxides on the metal particles are removed with an oxide-removing agent, and thus a near shape may be formed after a low-temperature heat treatment. As a result, the time for a subsequent high-temperature heat treatment may be effectively shortened, and a sintered body of high purity may be formed.
Several exemplary embodiments accompanied with figures are described in detail below to further describe the disclosure in details.
The accompanying drawings are included to provide further understanding, and are incorporated in and constitute a part of this specification. The drawings illustrate exemplary embodiments and, together with the description, serve to explain the principles of the disclosure.
Generally, after the metal particles 202 are provided on the substrate 200, a layer of metal oxides 204 is generated on the surface of the metal particles 202 due to the oxidation of oxygen in the external environment.
Then, in step 102, an oxide-removing agent 206 is applied to the metal particles 202 to remove the metal oxides 204 on the metal particles 202. In the present embodiment, the oxide-removing agent 206 is, for example, an organic acid, an inorganic acid, a flux, or carbon particles. The organic acid is, for example, oxalic acid, acetic acid, citric acid, or a combination thereof. The inorganic acid is, for example, phosphoric acid, sulfuric acid, or a combination thereof. When carbon particles are used as the oxide-removing agent 206, the carbon particles need to be applied to the metal particles 202 under a hydrogen atmosphere to reduce the metal oxides 204 on the metal particles 202 to a metal. A suitable oxide-removing agent 206 may be selected depending on the type of the metal particles 202. For example, when the metal particles 202 are stainless-steel particles, oxalic acid is selected as the oxide-removing agent 206 to effectively remove the oxides from the stainless-steel particles. Further, when the metal oxides 204 on the metal particles 202 are removed by the oxide-removing agent 206, the impurities attached to the metal particles 202 are also removed at the same time. As a result, the sintered body formed in a subsequent step does not contain metal oxides and impurities, and a metal sintered body having high purity may be formed.
The oxide-removing agent 206 may be applied to the metal particles 202 in a variety of ways. For example, the oxide-removing agent 206 may be applied to the metal particles 202 using inkjet, micro-dispensing, or spraying. In the present embodiment, the oxide-removing agent 206 may be applied to the metal particles 202 by a nozzle 208. Further, in the above manner, the oxide-removing agent 206 may be applied to the metal particles 202 of a specific region or applied to all of the metal particles 202. As shown in
Next, referring to
In particular, when the oxide-removing agent needs to remove the metal oxides at the activation temperature, the activation temperature is typically lower than the first temperature. Further, in some embodiments, after the metal oxides are removed at the activation temperature, the temperature may be directly raised from the activation temperature to the first temperature to continuously perform the heating.
Next, referring to
The effects of the forming method of a metal layer of the disclosure are described below by experimental examples and a comparative example.
Stainless-steel particles were used as metal particles, and after being provided on a substrate, oxalic acid (pH about 2) was used as an oxide-removing agent to remove oxides on the stainless-steel particles (melting point about 1565° C.), then low-temperature calcination was performed at 800° C. to generate a link effect between the stainless-steel particles to form a near shape, and the result is shown in
Stainless-steel particles were used as metal particles, and after being provided on a substrate, flux (potassium fluoroborate, KBF4) was used as an oxide-removing agent to remove oxides on the stainless-steel particles, then low-temperature calcination was performed at 800° C. to generate a link effect between the stainless-steel particles to form a near shape, and the result is shown in
Stainless-steel particles were used as metal particles, and after being provided on a substrate, low-temperature calcination was directly performed at 800° C. At this time, a link effect could not be generated, and the result is shown in
As may be seen from
Referring to
Next, the oxide-removing agent 206 is applied to the selected metal particles 202 to remove the metal oxides 204 on the selected metal particles 202. In the present embodiment, the selected metal particles 202 are the metal particles in the intermediate region of the first layer 10, but the disclosure is not limited thereto. The oxide-removing agent 206 may be applied to the metal particles 202 in a variety of ways, as described above. For example, the oxide-removing agent 206 may be applied to the metal particles 202 using inkjet, micro-dispensing, or spraying. In the present embodiment, the oxide-removing agent 206 may be applied to the metal particles 202 using the inkjet 308. The inkjet 308 may be implemented by a direct inkjet printing system for fabricating a part by an additive manufacturing process. The direct inkjet printing system performs a drop-on-demand inkjet printing process. The direct inkjet printing system includes a print head for applying an inkjet ink as the oxide-removing agent 206 onto the substrate 200. Further, the inkjet ink may be a water-based ink. In the present embodiment, the inkjet ink as the oxide-removing agent 206 may contain an oxide-removing agent dispersion containing from about 1 to about 25 parts of potassium fluoroborate (KBF4), an aqueous carrier medium containing from about 70 to about 95 parts of water, a humectant such as ethylene glycol, diethylene glycol or propylene glycol from about 0.5 to about 20 parts, and a wetting agent such as BYK-333, BYK-348, BYK-3455, BYK-DYNWET 800 N from about 0.01 to about 10 parts. The inkjet ink may have a viscosity about 2 to about 25 cp at a predetermined working temperature.
Referring to
Next, an oxide-removing agent 306 is applied to the selected metal particles 302 in the same or similar way as the oxide-removing agent 206 to remove the metal oxides 304 on a selected metal particles 302. For example, the oxide-removing agent 306 may be applied to the metal particles 302 using inkjet, micro-dispensing, or spraying. As described above, the oxide-removing agent 306 may be applied to the metal particles 302 of a specific region or applied to all of the metal particles 302. In the present embodiment, the oxide-removing agent 306 may be applied to the metal particles 302 using the inkjet 308. In the present embodiment, the selected metal particles 302 are the metal particles in the intermediate region of the second layer 20, but the disclosure is not limited thereto. In addition, when spraying is employed, the oxide-removing agent 306 may be applied to the metal particles 302 over a large area. Therefore, the metal oxides 304 on the metal particles 302 may be quickly removed. Additionally, for specific oxide-removing agents, the metal oxides need to be removed at a particular activation temperature. Therefore, the treatment temperature is raised to the above activation temperature during the application of the oxide-removing agent.
In the present embodiment, only the first layer 10 and the second layer 20 are formed to form a latent part on the substrate 100, but the disclosure is not limited thereto. In other embodiment, the steps described in
Next, referring to
In particular, when the oxide-removing agents need to remove the metal oxides at the activation temperature, the activation temperature is typically lower than the first temperature. Further, in some embodiments, after the metal oxides are removed at the activation temperature, the temperature may be directly raised from the activation temperature to the first temperature to continuously perform the heating.
Next, referring to
It will be apparent to those skilled in the art that various modifications and variations may be made to the structure of the disclosed embodiments without departing from the scope or spirit of the disclosure. In view of the foregoing, it is intended that the disclosure cover modifications and variations of this disclosure provided they fall within the scope of the following claims and their equivalents.
This application is a continuation-in-part application of and claims the priority benefit of a prior application Ser. No. 16/676,444, filed on Nov. 7, 2019, now pending. The prior application Ser. No. 16/676,444 claims the priority benefit of U.S. provisional application Ser. No. 62/758,520, filed on Nov. 10, 2018. The entirety of each of the above-mentioned patent applications is hereby incorporated by reference herein and made a part of this specification.
Number | Date | Country | |
---|---|---|---|
62758520 | Nov 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16676444 | Nov 2019 | US |
Child | 17033934 | US |