Not applicable.
The present invention concerns forming of a paper or board web from aqueous wood fibre stock. More specifically, the invention concerns a method and device for forming paper or board at a high speed in the early stage of web formation.
When making paper of aqueous wood fibre stock, the initial formation was then done on one forming wire, such as a Fourdrinier wire part, or in a twin-wire former, such as the so-called gap former, wherein a pair of opposite wire loops traveling in the same direction forms a closing gap, into which a stock jet is supplied from a headbox into the space between the forming wires, water is removed from the stock through the forming wires in order to start formation of the paper web by leaving the woodpulp fibres randomly distributed on the forming wire or in between the forming wires traveling together.
Depending on the quality of the paper or board to be made, fibre pulps of different types are used. The quantity, with which water can be removed from different fibre pulps in order to bring about a paper product of good quality, is a function of many factors, such as, for example, a function of the desired standard of the paper product, of the desired caliper of the paper product to be made, of the design velocity of the paper machine, and of the desired standard of fines, fibres and fillers in the final paper product.
It is known in the state of the art to use forming shoes to guide one or two forming wires on the forming section of the paper machine. It is also known to use a so-called forming roll equipped with an open, for example, perforated surface to receive water through the forming wire into the interior of the forming roll from the fibre pulp supported by the outer surface of the forming wire.
It is further known to use a forming shoe, whose surface has grooves starting in the downfeed direction from the leading edge of the forming shoe and extending at a small angle in relation to the machine direction (that is, in relation to the traveling direction of the paper web through the paper machine).
Devices of several types are known in the paper machine's forming section, that is, in the former, such as foil blades, suction boxes, hitch rolls, suction rolls and rolls provided with an open surface, which have been used in several different formations and sequences when trying to optimize the quantity of exiting water, the time and the location during the paper web formation. The making of paper is still an art in part in that simply removing water as quickly as possible will not produce a paper product of optimum quality. In other words, the production of a high-quality paper product at high velocities, for example, at approximately 2000 m/min, is a function of the quantity of removed water, of the manner in which water is removed, of the duration of dewatering and of the location where water is removed from the stock or in between the forming wires.
Earlier when paper machines operated at lower velocities, for example at 900-1200 m/min, relative utilization of the above-mentioned factors could vary in order to achieve the desired quality in the paper product. In addition, when desiring to maintain or improve the product quality when making a product at higher speeds, unforeseen problems will occur in most processes, so that either the production quantity must be reduced to maintain or achieve the desired quality or the desired quality must be sacrificed in order to achieve a higher production quantity.
The blade elements or foils of earlier forming shoes or blade shoes had a forming shoe surface of a curved or planar shape, they had several gaps in between the blade elements, which extended in the longitudinal direction over the blade element length. The gaps for their part define leading edges for the blade elements, which blade elements are arranged in the cross-machine direction at right angles to the traveling direction of the forming wire. Such an arrangement works well. The stock jet is directed against the forming wire over the leading edge of the forming shoe/blade in such a way that a part of the water in the stock jet will travel through the forming wire and end up below the shoe/blade. Each foil, blade element or forming shoe is either open to atmospheric pressure at its bottom or they are connected to an underpressure source in order to improve dewatering by forcing water into gaps in between adjacent foils or blade elements. The blade elements form the top surface or deck of the foil or forming shoe.
However, with increasing paper machine velocities to make paper products with ever improved economy, new phenomena begin occurring in connection with the paper machine's runnability and also relating to the appearance and internal structure of the produced paper product. Most of these changes are not desirable.
These phenomena may occur in different forms, such as an undesirable distribution of fines and fillers in the paper product's surface or internal parts, whereby the acceptable retention or finer retention would decrease. These changes and imperfections are disastrous for the paper product and affect its saleability.
There are two techniques in principle, which are in general use in the formation of printing stock and writing paper, that is, blade type gap formers and roll gap formers. Both these techniques have certain advantages and disadvantages, of which the following may be listed.
Advantages of the roll gap former are that the impingement of the headbox jet onto a roll having a relatively large radius is very insensitive to minor geometrical errors in the jet quality and to external effects, such as windage and water drops, that Z direction properties, such as regards fillers and anisotropy, can be achieved and excellent two-sidedness due to the fact that a fibre mat is formed at first at the same time on both wires at a constant (that is, non-pulsating) dewatering pressure, and that a good retention can be achieved due to the fact that initially a constant (that is, non-pulsating) dewatering pressure exists in the dewatering zone. A considerable disadvantage of this technique is that rotation of the forming roll results in a vacuum pulse on the exit side of the roll nip. This pulse will partly damage (crush) the formed paper structure as it travels from the zone with a constant pressure into the following zone with a pulsating pressure, if the paper is too wet at this point. In practice, this limits the formation quality of this type of former, because the quantity of water, which can be made to transfer into the pulsating dewatering zone, is limited by this vacuum pulse. Essential disadvantages are also the costs of the forming roll and its spare parts as well as the roll's need of maintenance and the resulting time of machine shutdown. Another noticed problem with the roll gap former is the insufficient dewatering capacity at high speeds (>1600 m/min) and with dense pulps.
Advantages of the blade type gap former are that because to begin with the jet dewatering is carried out at a pulsating pressure, the formation potential of this type of former is very good. Since all dewatering components are fixed, acquisition and maintenance costs are lower than when using a roll as the first dewatering device.
This technique has the following disadvantages, among others. The jet inpingement onto a shoe having a relatively large radius and constructed to create pulsating dewatering is very sensitive to numerous errors. This is the main limitation of an efficient operation of formers of this type. The initial dewatering is quite asymmetric, which results in a very one-sided paper structure in the Z direction, especially as regards fillers and anisotropy. Because dewatering of the pulp is initially done with a pulsating pressure, the retention is low.
As regards the state of the art, reference is also made to U.S. Pat. No. 5,798,024; US patent application publication No. 2001/0025697, now U.S. Pat. No. 6,372,091; and GB patent No. 1,288,277.
With the aid of the present invention the above-mentioned drawbacks and disadvantages have been eliminated or reduced, which are caused by the forming shoe or blade element on the paper machine's forming section to the production and quality of the paper product. A method is provided in the twin-wire forming section of a paper or board machine, wherein fibrous stock supplied by a headbox is guided in between forming wires formed as wire loops, where water is removed from the fibrous stock in at least two successive dewatering zones. At least a part of the first dewatering zone is formed with the aid of a fixed forming shoe having a curved surface and against which one of the forming wires is supported while the opposite forming wire is unsupported in the area of the forming shoe. The other dewatering zone is formed by fixed dewatering blades on the other side of the forming wires and supported against the fibrous stock located in between them and on the opposite side of the forming wires by dewatering blades, which can be loaded in a controlled manner against the fixed dewatering blades at gaps between these in such a way that pulsating dewatering is caused in the fibrous stock in the second dewatering zone. The forming wires are guided from the beginning of the twinwire forming section into the area of the fixed forming shoe of the first dewatering zone in such a way that the fixed forming shoe is used to cause essentially non-pulsating dewatering in the fibrous stock traveling in between the forming wires, which dewatering is applied to the fibrous stock in the area after the leading edge of the fixed forming shoe. The invention also concerns a twinwire forming section.
Other objects, characteristic features and advantages of the invention will emerge from the following detailed description and from the figures in the appended drawing.
Referring in greater detail to the figures in the drawing and first to
In former 10 there are two successive dewatering zones Z1, Z2, of which the lip jet 2 of headbox 1 is brought to the area of the first dewatering zone Z1. The first dewatering zone Z1 includes a forming shoe 3, wherein a surface touching the second forming wire 12 is of a curved shape, so that it will not cause any pulsating dewatering in the web W traveling between forming wires 11, 12. The forming shoe 3 and the first dewatering zone Z1 are examined more closely in connection with
Dewatering blades 24, which can be loaded in a controlled manner, are arranged against the second forming wire 12 on the side of the second forming wire 12, inside the second wire loop. The controlled dewatering blades 24 are in the cross-machine direction and they are arranged especially in such a way that the controlled dewatering blades 24 are located at the gaps 22 in between the fixed dewatering blades 21. With these dewatering blades (fixed/controlled) 21, 24 and with the combination of loading elements and the suction box 23 pulsating dewatering is brought about in web W.
Thus, the first dewatering zone Z1 is formed by a curved forming shoe 3 located against the second forming wire 12, over which shoe the second forming wire 12 travels and in which forming shoe 3 there is a curved deck 5 provided with holes, openings, grooves, gaps or such 6 and forming the upper surface (
The holes 6 or such are preferably arranged in the manner shown by
In former 10a there are two successive dewatering zones Z1, Z2, from which the lip jet 2 of headbox 1 is brought into the area of the first dewatering zone Z1. The first dewatering zone Z1 includes forming shoes 3, 3a, and wherein the surface contacting forming wire 11, 12 corresponding to a forming shoe is given a curved shape in such a way that it will not cause any pulsating dewatering in web W traveling in between forming wires 11, 12. Thus, in the embodiment shown in
In the manner shown in
The first dewatering zone Z1 is followed by a second dewatering zone Z2, wherein pulsating dewatering is caused to occur in the web W traveling in between the forming wires. In the embodiment shown in
On the side of the first forming wire 11, inside the first wire loop, are arranged dewatering blades 24, which can be loaded in a controlled manner against the first forming wire 11. The controlled dewatering blades 24 are in the cross-machine direction and they are arranged especially in such a way that the controlled dewatering blades 24 are located at the gaps 22 located in between the fixed dewatering blades 21. With these dewatering blades (fixed/controlled) 21, 24 and with the combination of loading elements and suction box 23 pulsating dewatering is caused in web W. As is illustrated in
Thus, in the presentation of
By looking more closely at
The free directing of the lip jet 2 in the desired manner into the unsupported area of the first forming wire 11 after the first breast roll 13 is made possible by the geometry presented in
It is an advantage of a blade type gap former 10, 10a of this type that it can be used to make symmetric paper, because underpressure levels can be used to control the dewatering distribution removed by the dewatering zones Z1, Z2 on the side of the different wire loops. In addition, this type of blade type gap former 10, 10a can be used to guide the web W with a sufficiently low dry matter content to the loading element-suction box combination 21, 23, 24, whereby pulsating dewatering can be used to achieve as good a formation of paper/board web W as possible. If the dry matter content of the web W is too high, the formation of paper can no longer be improved with the loading element-suction box combination 21, 23, 24. Retention also remains good, because the non-pulsating forming shoe 3 removes water from web W depending on the ratio between the tension of wire 11, 12 and the curvature of the deck 5 of the forming shoe 3 (dewatering pressure=tension of wire 11, 12/radius of curvature of deck 5 of forming shoe 3, that is, P=T/R) and assisted by the underpressure of forming shoe 3. The underpressure level is preferably 1-25 kPa.
Blade type gap formers have been known for quite a long time. In these known formers, the first dewatering element has been the forming shoe, which has been used to cause pulsating dewatering in the web. With such an arrangement formation has been good, but retention poor, and the paper has been one-sided, that is, asymmetric. US patent application publication No. 2001/0025697 (U.S. Pat. No. 6,372,091) presents as the first dewatering element a non-pulsating forming shoe, whereby it can be assumed that with the solution according to this publication both retention and paper symmetry have been improved, but good formation of the paper is lost at the same time, because after this non-pulsating forming shoe a dewatering zone is arranged, which does not cause pressure pulses of sufficient strength in the web.
Dewatering systems including two or more dewatering zones are known as such. It is also known to use a combination of non-pulsating dewatering zone together with a pulsating dewatering zone in blade type gap formers, wherein the stock is guided from the headbox into a gap between two forming wires, whereby the first non-pulsating dewatering zone includes a forming roll (an open suction roll), which is followed by the pulsating dewatering zone containing a combination of loading element and suction box. With such an arrangement good retention and symmetric paper have been achieved, but poorer formation than with the traditional blade type gap formers. It was found that the reason for this was the fact that the forming roll's rotation causes an underpressure peak in the web after the forming roll, which peak damages the already formed web. It is an advantage of the present invention in this regard that the fixed non-pulsating forming shoe does not cause any underpressure peak after the forming shoe, with the result that the web can be brought into the loading element-suction box combination with a low dry matter content, whereby an excellent formation is achieved in the web with this combination of loading element and suction box. This means that the present invention combines the good points and advantages of the blade type gap formers and the roll and blade gap formers.
Correspondingly, the forming roll 34 (the first forming roll) is shown on the wire loop side of the second forming wire 12, through which forming roll the second forming wire 12 is guided into a dewatering area, and a guiding roll 40 guiding the second forming wire 12 after the formation area to form the second wire loop. Breast roll 13 and forming roll 34 are arranged in such a way that the forming wires 11, 12 traveling through them into the dewatering area will form in between them a wedge-shaped forming gap G, into which headbox 1 supplies the stock as a lip jet 2. Forming roll 34 is a suction roll provided with an open, for example, perforated surface and containing a suction zone 36 limited by the roll's internal axial, that is, crosswise seals 35.
Former 30, 30a has two successive dewatering zones Z1, Z2 and the lip jet 2 of headbox 1 is brought into the area of the first dewatering zone Z1. The first dewatering zone Z1 is a non-pulsating dewatering zone and it is in fact divided into two parts in such a way that the first part of the non-pulsating dewatering zone includes the forming roll 34 located on the side of the second forming wire 12, and correspondingly, the second part includes a forming shoe 3, which is located after forming roll 34 and is arranged on the side of the first forming wire 11, in which forming shoe the surface contacting the first forming wire 11 is given a curved shape, so that it will not cause any pulsating dewatering in web W traveling in between forming wires 11, 12. The forming shoe 3 used in these embodiments is connected to an underpressure source 4 and it is of a similar kind to that already described in connection with the former 10 of
In these embodiments, too, the first dewatering zone Z1 is followed by a second dewatering zone Z2, wherein pulsating dewatering is brought about in web W traveling in between the forming wires. The pulsating dewatering is brought about in the roll and blade gap former 30 according to
In the embodiment shown in
A former unit 60 is installed on top of fourdrinier wire 51 in such a way that the concerned former unit 60 together with fourdrinier wire 51 form a twin-wire part in former 50. Former unit 60 includes a top wire 61, which is made to form an endless wire loop with the aid of hitch rolls and guiding rolls 62, 63, 64, 65 and the first roll 62 of which is fitted above fourdrinier wire 51 in such a way that at the beginning of the twin-wire part a wedge-like gap G is formed, into which the stock supplied on to fourdrinier wire 51 is guided. Before the stock ends up in the gap water has already been removed from it with the aid of the dewatering equipment 53 of fourdrinier wire 51. Inside top wire loop 61 a suction box 66 is mounted, which in the example shown in
According to the invention, the lower surface of the first chamber 66a of suction box 66, which lower surface is contacting top wire 61, is formed by a forming shoe 3 of a kind similar to that described earlier in connection with the embodiments according to
Thus, at the first chamber 66a of suction box 66 a forming shoe 3 is mounted in the manner described above, which forming shoe does not cause any pulsating dewatering in the web. Forming shoe 3 is further arranged in such a way that the fibrous stock arriving on fourdrinier wire 51 into gap G will not hit the leading edge of forming shoe 3, but it is guided after the leading edge into the area of the deck of forming shoe 3. Thus, the leading edge of forming shoe 3 will not remove water from the fibrous stock, exactly in the same manner as was described, for example, in connection with
Thus, the advantages of the solution according to
As was already noted above, the new former according to the invention is a combination of two elements both as regards its structure and in process technical terms, in such a way that all advantages of roll and blade gap formers, blade type gap formers and hybrid formers can be achieved without any of their associated drawbacks. The first element is a new type of fixed forming shoe 3 having a curved deck 5, in which forming shoe it is possible to use underpressure 4 to control the dewatering and to make it more efficient. This forming shoe may be used either below or above web W. It is constructed in such a way that dewatering may take place freely and simultaneously through both forming wires traveling over the curved deck 5 of forming shoe 3. It is an important characteristic feature of the forming shoe 3 according to the invention that its deck 5 is constructed to give an essentially constant dewatering pressure in accordance with equation P=T/R, wherein P=pressure of the liquid located in between the forming wires traveling over the forming shoe, T=tension of the outer fabric and R=curvature of the fixed forming shoe. The purpose is that the forming shoe does not cause any pulsating dewatering even when dewatering is boosted by underpressure. Such an idea is possible, that the forming shoe according to the invention is the arch of a “fixed roll” provided with an open surface. The deck has a large open surface area and through openings it is connected to an underpressure chamber located inside the forming shoe. The openings in the deck of the forming shoe are formed in such a way that pulsating dewatering is avoided, which would result if the openings were directed essentially in the crosswise direction. In order to achieve this essentially constant pressure, these openings are either round holes, elliptic holes, gaps arranged essentially in the machine direction, wavelike gaps, protruding contact surfaces to support the fabric above the shoe deck, etc.
In the present invention, the second dewatering element is a pulsating dewatering zone known in the state of the art, wherein there are crosswise fixed dewatering blades provided with gaps, which bring about dewatering that is made even more efficient by using controlled dewatering blades on the opposite side of the forming wires in order to increase the pulsating effect even further.
There are several possible different ways of combining these two different types of dewatering elements in order to achieve the advantages of formers of a known type without their associated drawbacks, such as is shown in
Dewatering first takes place essentially at a constant pressure in the non-pulsating zone as two-sided dewatering (as happens also with a roll), owing to which the structure in the Z direction is as symmetric as with a roll.
The effect of the lip jet of the headbox is also analogous as regards what happens in connection with a roll, that is, the lip jet is directed over the surface having a slight curvature, which may be associated with underpressure-assisted dewatering into the convex deck of the forming shoe.
The resulting angle of fabrics or forming wires reducing in a wedge-like fashion makes the lip jet insensitive to numerous faults and trouble.
On the output side of the non-pulsating zone having a constant pressure no under-pressure peaks will occur, because the structure forming this zone is fixed. In this way the web-damaging effect is avoided, which will occur when the originally constant-pressure or non-pulsating zone is formed by a roll. The constant-pressure zone does not limit the former's dewatering capacity, but the relatively wet web may be transferred into the pulsating dewatering zone in order to achieve the full advantage from the ability of this second dewatering zone to improve formation.
The capital and maintenance costs of the fixed structure of the non-pulsating dewatering zone according to the invention are lower than the corresponding costs of a roll and standby roll.
It is possible to vary the radius of the non-pulsating dewatering zone according to the invention over a larger area than is practical when using a roll. Compared with a roll, it is a further advantage of the fixed dewatering zone that the forming shoe radius can be modified (for example, in such a way that it is longer at the input end, but it becomes progressively shorter as a spiral curve towards the exit end). In such a case the dewatering pressure is no longer constant over the forming shoe, but it still remains non-pulsating and it is therefore still advantageous compared with state-of-the-art forming shoes. The possibility to alter the radius in both these ways means that the non-pulsating dewatering can be designed at each time to be suitable for each application better than it is possible to do with a roll.
The combination of the fixed non-pulsating dewatering zone and the state-of-the-art pulsating zone allows easier control of the dewatering degree between the non-pulsating and pulsating dewatering zones, whereby the dewatering zone can be controlled better and more easily than in the state-of-the-art formers. Thus, the balance between formation and retention can be better controlled.
It should be understood that the invention is not strictly limited to any one special structure and arrangement described and specified herein, but it can be modified within the scope of the appended claims.
This application is a U.S. national stage application of International App. No. PCT/FI2003/000481, filed Jun. 16, 2003, and claims the benefit of priority of U.S. provisional applications Nos. 60/405,372 and 60/405,373, filed Aug. 23, 2002, the disclosures of all of which applications are incorporated by reference herein.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FI03/00481 | 6/16/2003 | WO | 5/24/2005 |
Number | Date | Country | |
---|---|---|---|
60405372 | Aug 2002 | US | |
60405373 | Aug 2002 | US |