The contents of Japanese Patent Application No. 2019-061368, and of International Patent Application No. PCT/JP2020/005368, on the basis of each of which priority benefits are claimed in an accompanying application data sheet, are in their entirety incorporated herein by reference.
A certain embodiment of the present invention relates to a forming system.
In the related art, a forming apparatus for forming a metal pipe including a pipe portion and a flange portion by supplying a gas into a heated metal pipe material and expanding the material is known. For example, the following the related art discloses a forming apparatus including: upper and lower dies to be paired with each other; a gas supply portion that supplies a high-pressure gas into a metal pipe material held between the upper and lower dies; a heating mechanism that heats the metal pipe material; and a cavity portion formed by combining the upper and lower dies.
According to an embodiment of the present invention, there is provided a forming system for forming a metal pipe having a hollow shape, the system including: a forming apparatus including a gas supply portion that supplies gas into a heated metal pipe material when forming the metal pipe, and a discharge unit that discharges the gas into the formed metal pipe, in which an exhaust port of the discharge unit is positioned in an internal space of a structure having the internal space.
In order to improve the productivity of the metal pipe formed by the forming apparatus as shown in the related art, it is necessary to rapidly discharge the high-pressure gas from the metal pipe. In this case, the discharge noise of the gas becomes loud, and thus, the discharge noise can be noise to the worker of the forming apparatus or the like. Therefore, countermeasures against the above-described discharge noise are required.
It is desirable to provide a forming system capable of taking countermeasures against discharge noise.
According to the forming system, the exhaust port of the discharge unit is positioned in the internal space of the structure having the internal space. Therefore, the discharge noise generated when the high-pressure gas is exhausted from the exhaust port is generated in the structure. In this case, the structure functions as a silencer for the discharge noise. Therefore, the discharge noise is less likely to be noisy to a worker and the like who works around the forming apparatus. Therefore, by using the above-described forming system, it is possible to take countermeasures against the discharge noise.
The forming system includes: a floor surface on which the forming apparatus is placed; and an underground pit provided at a lower portion of the floor surface. The discharge unit may include an exhaust pipe positioned in the underground pit as the structure and provided with the exhaust port.
According to this forming system, the exhaust pipe included in the discharge unit and provided with the exhaust port is positioned in the underground pit provided at the lower portion of the floor surface. Accordingly, the discharge noise generated when the high-pressure gas is exhausted from the exhaust port is generated in the underground pit. Therefore, the discharge noise is less likely to be noisy to the worker and the like who is on the floor surface and works around the forming apparatus. Therefore, by using the above-described forming system, it is possible to take countermeasures against the discharge noise. The structure that functions as a silencer is provided in the underground pit, which contributes to reducing the space of the entire forming apparatus.
The forming apparatus may further include an electrode for heating the metal pipe material and a power supply line connected to the electrode, the power supply line may have a conductor accommodated in the underground pit, and in the underground pit, the exhaust port may face the conductor. In this case, the conductor heated by energizing the electrodes can be cooled by the gas exhausted from the exhaust port.
Hereinafter, preferred embodiments of a forming system according to an aspect of the present disclosure will be described with reference to the drawings. In addition, in each drawing, the same reference numerals are assigned to the same portions or the corresponding portions, and repeated descriptions thereof are omitted.
Configuration of Forming Apparatus
The lower die 11, which is one part of the forming die 13, is fixed to a base stage 15. The lower die 11 is formed of a large steel block and includes a rectangular cavity (recessed portion) 16 on the upper surface of the lower die 11, for example. A cooling water passage 19 is formed in the lower die 11. Further, the lower die 11 includes a thermocouple 21 inserted from below substantially at the center. The thermocouple 21 is supported to be movable upward or downward by a spring 22.
Furthermore, the spaces 11a are provided in the vicinity of left and right ends (left and right ends in
Insulating materials 91 for preventing energization are respectively provided between the lower die 11 and the lower electrode 17 and under the lower electrode 17, and between the lower die 11 and the lower electrode 18 and under the lower electrode 18. Each of the insulating materials 91 is fixed to an advancing and retreating rod 95, which is a movable portion of an actuator (not shown) that configures the pipe holding mechanism 30. The actuator is for moving the lower electrodes 17 and 18 or the like upward or downward and a fixation portion of the actuator is held on the base stage 15 side together with the lower die 11.
The upper die 12, which is the other part of the forming die 13, is fixed to a slide 81 (which will be described later) that configures the drive mechanism 80. The upper die 12 is formed of a large steel block, a cooling water passage 25 is formed in the upper die 12, and the upper die 12 includes a rectangular cavity (recessed portion) 24 on the lower surface of the upper die 12, for example. The cavity 24 is provided at a position facing the cavity 16 of the lower die 11.
Similar to the lower die 11, spaces 12a are provided in the vicinity of left and right ends (left and right ends in
Insulating materials 92 for preventing energization are respectively provided between the upper die 12 and the upper electrode 17 and above the upper electrode 17, and between the upper die 12 and the upper electrode 18 and above the upper electrode 18. Each of the insulating materials 92 is fixed to an advancing and retreating rod 96, which is a movable portion of an actuator (not shown) that configures the pipe holding mechanism 30. The actuator is for moving the upper electrodes 17 and 18 or the like upward or downward and a fixation portion of the actuator is held on the slide 81 side of the drive mechanism 80 together with the upper die 12.
At the right part of the pipe holding mechanism 30, a semi-arc-shaped concave groove 18a corresponding to an outer peripheral surface of the metal pipe material 14 is formed on each of surfaces of the electrodes 18 and 18 that face each other (refer to
At the left part of the pipe holding mechanism 30, a semi-arc-shaped concave groove 17a corresponding to an outer peripheral surface of the metal pipe material 14 is formed on each of surfaces of the electrodes 17 and 17 that face each other (refer to
Returning to
The heating mechanism 50 includes a power supply portion 55 and a power supply line 52 which electrically connects the power supply portion 55 and the electrodes 17 and 18 to each other. The power supply portion 55 includes a DC power source and a switch and can energize the metal pipe material 14 through the power supply line 52 and the electrodes 17 and 18 in a state where the electrodes 17 and 18 are electrically connected to the metal pipe material 14. The power supply line 52 has a power supply line 52A connected to the lower electrode 17 and a power supply line 52B connected to the lower electrode 18.
In the heating mechanism 50, a DC current output from the power supply portion 55 is transmitted through the power supply line 52A and input to the electrode 17. Then, the DC current passes through the metal pipe material 14 and is input to the electrode 18. Then, the DC current is transmitted through the power supply line 52B and input to the power supply portion 55.
Returning to
The gas supply portion 60 includes a gas source 61, an accumulator 62 in which the gas supplied by the gas source 61 is collected, a first tube 63 which extends from the accumulator 62 to the cylinder unit 42 of the gas supply mechanism 40, a pressure control valve 64 and a switching valve 65 which are provided in the first tube 63, a second tube 67 which extends from the accumulator 62 to the gas passage 46 formed in the seal member 44, and a pressure control valve 68 and a check valve 69 which are provided in the second tube 67. The pressure control valve 64 plays a role of supplying a gas, which has an operation pressure applied to a pressing force against the metal pipe material 14 of the seal member 44, to the cylinder unit 42. The check valve 69 plays a role of preventing the high-pressure gas from backflowing in the second tube 67. The pressure control valve 68 provided in the second tube 67 plays a role of supplying a gas having an operation pressure for expanding the metal pipe material 14 to the gas passage 46 of the seal member 44 by being controlled by the controller 70. The second tube 67 is branched from the check valve 69 into two, and has a gas supply line L1 that extends to one of the gas supply mechanisms 40 and a gas supply line L2 that extends to the other one of the gas supply mechanisms 40.
The forming apparatus 10 includes exhaust mechanisms (discharge units) 200A and 200B for exhausting the gas in the formed metal pipe. The exhaust mechanism 200A is connected to the gas supply line L1, and the exhaust mechanism 200B is connected to the gas supply line L2. Therefore, the exhaust mechanism 200A exhausts the gas in the metal pipe through the gas supply line L1 and the gas passage 46 of one of the gas supply mechanisms 40. The exhaust mechanism 200B exhausts the gas in the metal pipe through the gas supply line L2 and the gas passage 46 of the other one of the gas supply mechanisms 40. Each of the exhaust mechanisms 200A and 200B has, for example, an exhaust pipe (details thereof will be described later) that branches from each supply line and is provided with an exhaust port. Each of the exhaust mechanisms 200A and 200B has a pressure control valve, a safety valve, and the like of which opening and closing are controlled by the controller 70. The position where the pressure control valve, the safety valve, and the like are provided is not particularly limited.
The controller 70 can control the pressure control valve 68 of the gas supply portion 60 such that a gas having a desired operation pressure is supplied into the metal pipe material 14. With the information transmitted from (A) shown in
The water circulation mechanism 72 includes a water tank 73 which collects water, a water pump 74 which pumps up the water collected in the water tank 73 and pressurizes and sends the water to the cooling water passage 19 of the lower die 11 and the cooling water passage 25 of the upper die 12, and a pipe 75. Although omitted, a cooling tower for lowering the water temperature and a filter for purifying the water may be provided in the pipe 75.
Metal Pipe Forming Method Using Forming Apparatus
Next, a metal pipe forming method using the forming apparatus 10 will be described. First, the quenchable steel type cylindrical metal pipe material 14 is prepared. For example, the metal pipe material 14 is placed (loaded) on the electrodes 17 and 18 provided on the lower die 11 side by using a robot armor the like. Since the concave grooves 17a and 18a are formed on the electrodes 17 and 18, the metal pipe material 14 is positioned by the concave grooves 17a and 18a.
Next, the controller 70 controls the drive mechanism 80 and the pipe holding mechanism 30 such that the metal pipe material 14 is held by the pipe holding mechanism 30. Specifically, the drive mechanism 80 is driven such that the upper die 12 held on the slide 81 side and the upper electrodes 17 and 18 are moved to the lower die 11 side, the actuator that can make the upper electrodes 17 and 18 and the lower electrodes 17 and 18 included in the pipe holding mechanism 30 advance and retreat is operated, and accordingly, the vicinity of the both end portions of the metal pipe material 14 is sandwiched by the pipe holding mechanism 30 from above and below. The sandwiching is performed in an aspect in which the concave grooves 17a and 18a formed on the electrodes 17 and 18 and the concave grooves formed on the insulating materials 91 and 92 are provided such that the electrodes 17 and 18 come into close contact with the vicinity of the both end portions of the metal pipe material 14 over the entire periphery.
At this time, as shown in
Next, the controller 70 controls the heating mechanism 50 so as to heat the metal pipe material 14. Specifically, the controller 70 controls the power supply portion 55 of the heating mechanism 50 such that electric power is supplied. As a result, the electric power transmitted to the lower electrodes 17 and 18 through the power supply line 52 is supplied to the upper electrodes 17 and 18 that sandwiches the metal pipe material 14 and the metal pipe material 14, and due to a resistance of the metal pipe material 14, the metal pipe material 14 itself generates heat by Joule heat. In other words, the metal pipe material 14 enters an energized and heated state.
Next, the controller 70 controls the drive mechanism 80 such that the forming die 13 is closed with respect to the heated metal pipe material 14. Accordingly, the cavity 16 of the lower die 11 and the cavity 24 of the upper die 12 are combined with each other such that the metal pipe material 14 is disposed in a cavity portion between the lower die 11 and the upper die 12 and is sealed.
Thereafter, by operating the cylinder unit 42 of the gas supply mechanism 40, the seal member 44 advances such that both ends of the metal pipe material 14 are sealed. At this time, as shown in
The metal pipe material 14 is heated to a high temperature (approximately 950° C.) and softened, and accordingly, the gas supplied into the metal pipe material 14 thermally expands. Therefore, for example, compressed air may be used as the gas to be supplied such that expansion is easily performed by compressed air obtained by thermally expanding the metal pipe material 14 of 950° C.
An outer peripheral surface of the blow-formed and expanded metal pipe material 14 comes into contact with the cavity 16 of the lower die 11 so as to be rapidly cooled and comes into contact with the cavity 24 of the upper die 12 so as to be rapidly cooled (since the upper die 12 and the lower die 11 have a large heat capacity and are controlled to a low temperature, when the metal pipe material 14 comes into contact with the upper die 12 and the lower die 11, the heat of the pipe surface is taken to the die side at once) at the same time, and thus, quenching is performed. The above-described cooling method is referred to as die contact cooling or die cooling. Immediately after being rapidly cooled, austenite transforms into martensite (hereinafter, transformation from austenite to martensite is referred to as martensitic transformation). The cooling speed is set to be low in a second half of the cooling, and thus, martensite transforms into another structure (such as troostite, sorbite, or the like) due to recuperation. Therefore, it is not necessary to separately perform tempering treatment. In the present embodiment, the cooling may be performed by supplying a cooling medium into, for example, the cavity 24, instead of or in addition to the die cooling. For example, cooling may be performed by bringing the metal pipe material 14 into contact with the dies (the upper die 12 and the lower die 11) until a temperature at which the martensitic transformation starts is reached, and the dies may be opened thereafter with a cooling medium (cooling gas) blown onto the metal pipe material 14 such that martensitic transformation occurs.
As described above, a metal pipe having an approximately rectangular main body is obtained by performing cooling after the blow forming with respect to the metal pipe material 14 and by performing die opening.
Configuration of Forming System
Next, with reference to
As shown in
The first placing unit 101 is positioned on one side of the center of the forming apparatus 10 in the direction X, and is positioned on one side of the center of the forming apparatus 10 in the direction Y. The second placing unit 102 is positioned on the other side of the center of the forming apparatus 10 in the direction X, and is positioned on one side of the center of the forming apparatus 10 in the direction Y. The transport mechanism 103 is a mechanism for installing the metal pipe material 14 on the forming apparatus 10 and taking out the formed metal pipe, and has a main body 103a and a robot arm 103b. The transport mechanism 103 is positioned between the first placing unit 101 and the second placing unit 102 in the direction X. In the direction Y, the main body 103a is further separated from the forming apparatus 10 than the first placing unit 101 and the second placing unit 102, but is not limited thereto.
The floor surface 300 is a placement surface on which the base stage 15 of the forming apparatus 10, the forming die 13, the gas supply mechanism 40, the drive mechanism 80, and the like are placed. The floor surface 300 may be, for example, the floor itself of a factory or the like, or the surface of a table provided on the floor. The floor surface 300 is provided with an opening 301 through which the power supply line 52A and 52B are inserted. The underground pit 400 is an accommodation space for accommodating a part of the forming apparatus 10. At least a part of the underground pit 400 overlaps a portion of the forming apparatus 10 positioned on the floor surface 300. The space on the floor surface 300 and the underground pit 400 are connected to each other through the opening 301. Although not shown, the entrance and exit of the underground pit 400 is provided at a location that does not overlap with the forming apparatus 10 in the direction Z. The opening 301 may be closed by a lid or the like.
The power supply portion 55 in the heating mechanism 50 is a device that supplies electric power to the electrodes 17 and 18 through the power supply lines 52A and 52B. The power supply portion 55 is positioned on the other side of the center of the forming apparatus 10 in the direction Y, and is accommodated in the underground pit 400. The power supply portion 55 is disposed at a position that does not overlap the base stage 15 in the direction Z.
The power supply line 52A has a plurality of electric wires 52a and a busbar 52b (conductor). The plurality of electric wires 52a are a wire for connecting the electrode 17 and the busbar 52b. Therefore, one terminal of the electric wire 52a is connected to the electrode 17, and the other terminal of the electric wire 52a is connected to the busbar 52b. A large part of the electric wire 52a is routed on the floor surface 300. A part of the electric wire 52a including the other terminal is disposed in the underground pit 400 through the opening 301 provided in the floor surface 300. The busbar 52b is a conductive structure that connects the power supply portion 55 and the electric wire 52a, and is accommodated in the underground pit 400. The busbar 52b is a conductor made of a metal such as copper or an alloy, and is a location where the heat can be generated most in the power supply line 52A. The busbar 52b is placed on a pedestal 401 fixed in, for example, the underground pit 400. The busbar 52b is disposed at a position that does not overlap the base stage 15 in the direction Z. The busbar 52b has a substantially L-shaped main body 56 and a terminal unit 57 to which the electric wire 52a is attached. The terminal unit 57 is attached to the floor surface 300 side of the main body 56 in the direction Z.
The power supply line 52B has a plurality of electric wires 52c and a busbar 52d (conductor). The plurality of electric wires 52c are wires for connecting the electrode 18 and the busbar 52d. Therefore, one terminal of the electric wire 52c is connected to the electrode 18, and the other terminal of the electric wire 52c is connected to the busbar 52d. A large part of the electric wire 52c is routed on the floor surface 300. Apart of the electric wire 52c including the other terminal is disposed in the underground pit 400 through the opening 301 provided in the floor surface 300. The busbar 52d is a conductive structure that connects the power supply portion 55 and the electric wire 52c, and similar to the busbar 52b, the busbar 52d is accommodated in the underground pit 400. The busbar 52d is a conductor made of a metal such as copper or an alloy, and is a location where the heat can be generated most in the power supply line 52B. The busbar 52d is placed on a pedestal 401 fixed in, for example, the underground pit 400. The busbar 52d is disposed at a position that does not overlap the base stage 15 in the direction Z. The busbar 52d has a substantially L-shaped main body 58 and a terminal unit 59 to which the electric wire 52c is attached. The terminal unit 59 is attached to the floor surface 300 side of the main body 58 in the direction Z.
As shown in
The exhaust pipes 210 and 220 are made of a material that can withstand the high-pressure gas, and are, for example, metal or alloy pipes. In this case, the exhaust pipes 210 and 220 may exhibit conductivity. From the viewpoint of suppressing an increase in resistance of the power supply line 52A, the tip part 212 is separated from the busbar 52b. From the viewpoint of preventing contact between the tip part 212 and the busbar 52b, an insulating material or the like may be provided between the tip part 212 and the busbar 52b. Similarly, the tip part 222 is separated from the busbar 52d.
Here, with reference to
As described above, the tip part 212 is disposed along the busbar 52b, and the tip part 222 is disposed along the busbar 52b. In addition, the exhaust port 214 provided at the tip part 212 is provided so as to face the busbar 52b. Accordingly, the gas exhausted from the exhaust port 214 is blown to the busbar 52b. In the present embodiment, the tip part 212 is provided with a plurality of exhaust ports 214, but the present disclosure is not limited thereto. Although not illustrated, the exhaust port provided at the tip part 222 is provided so as to face the busbar 52d.
In the forming system 1, the controller 70 is incorporated in, for example, a fixed control panel, and is positioned on one side of the center of the forming apparatus 10 in the direction Y. Therefore, the controller 70 is positioned on the opposite side of the heating mechanism 50 with the forming apparatus 10 in the direction Y therebetween. In addition, the controller 70 is positioned on the opposite side of the tip parts 212 and 222 of the exhaust pipes 210 and 220 with the forming apparatus 10 in the direction Y therebetween. Accordingly, in a case where the worker uses the control panel, it is less likely to receive the influence of the heat generated from the heating mechanism 50 and gas exhausted from the exhaust mechanisms 200A and 200B. The controller 70 is positioned on the opposite side of the forming apparatus 10 with the transport mechanism 103 in the direction Y therebetween. Accordingly, in a case where the worker uses the control panel, the worker of the transport mechanism 103 is not hindered by the worker.
Next, the effects of the forming system 1 according to the present embodiment will be described. According to the forming system 1, the exhaust port 214 of the exhaust mechanism 200A is positioned in the internal space of the underground pit 400 which is a structure having an internal space. Therefore, the discharge noise generated when the high-pressure gas is exhausted from the exhaust port 214 is generated in the underground pit 400. In this case, the underground pit 400 functions as a silencer for the discharge noise. Therefore, the discharge noise is less likely to be noisy to a worker and the like who works around the forming apparatus 10. Therefore, by using the above-described forming system 1, it is possible to take countermeasures against the discharge noise. The structure that functions as a silencer is provided in the underground pit, which contributes to reducing the space of the entire forming apparatus.
According to the above-described forming system. 1, the tip part 212 of the exhaust pipe 210 included in the exhaust mechanism 200A and provided with the exhaust port 214 is positioned in the underground pit 400 provided at the lower portion of the floor surface 300. Accordingly, the discharge noise generated when the high-pressure gas is exhausted from the exhaust port 214 is generated in the underground pit 400. In addition, the tip part 222 of the exhaust pipe 220 included in the exhaust mechanism 200B and provided with the exhaust port is also positioned in the underground pit 400. Accordingly, the discharge noise generated when the high-pressure gas is exhausted from the exhaust port provided at the tip part 222 is generated in the underground pit 400. Therefore, the discharge noise is less likely to be noisy to the worker and the like who is on the floor surface 300 and works around the forming apparatus 10. Therefore, by using the forming system 1, it is possible to take countermeasures against the discharge noise.
In the forming system 1 of the present embodiment, the forming apparatus 10 includes electrodes 17 and 18 for heating the metal pipe material 14 and the power supply lines 52A and 52B connected to the electrodes 17 and 18, the power supply line 52A has the busbar 52b accommodated in the underground pit 400, and in the underground pit 400, the exhaust port 214 faces the busbar 52b. Therefore, the busbar 52b heated by energizing the electrode 17 can be cooled by the gas exhausted from the exhaust port 214. In addition, the power supply line 52B has the busbar 52d accommodated in the underground pit 400, and in the underground pit 400, the exhaust port provided at the tip part 222 faces the busbar 52d. Therefore, the busbar 52d heated by energizing the electrode 18 can also be cooled by the gas exhausted from the exhaust port.
Although the preferred embodiments of the present disclosure have been described above, the present disclosure is not limited to the above-described embodiment. For example, each power supply line may not have a busbar. The tip part is disposed along the outer peripheral surface of the busbar may be disposed along the inner peripheral surface of the busbar.
In the above-described embodiment, in the underground pit, the exhaust port of the exhaust pipe faces the busbar, but the present disclosure is not limited thereto. For example, in a case where the busbar is cooled by using a water-cooled cable or the like, the exhaust port of the exhaust pipe may not face the busbar. In other words, it is not necessary to cool the busbar with the gas exhausted from the exhaust port.
In the above-described embodiment, an underground pit under the floor is used as a structure that functions as a silencer. However, the structure is not particularly limited as long as an internal space in which the gas discharge unit can be disposed is provided and it is possible to block the sound generated in the internal space from leaking to the outside. For example, as shown in
For example, as a structure according to a comparative example, there is a structure in which a muffler is provided at the tip of the gas discharge unit to provide soundproofing. However, in a case where the exhaust pressure is high, there is a possibility that such a muffler cannot withstand the exhaust pressure, and is damaged. On the other hand, since the tank 500 has a sufficiently large internal space, there is a low possibility that the tank 500 is damaged even in a case where the exhaust pressure is high, and can be used for a long period of time. Such an effect can be similarly obtained in a case where the soundproofing is performed in the underground pit.
In the above-described embodiment, in addition to the forming apparatus, the forming system includes the first placing unit, the second placing unit, the transport mechanism, and the like, but the present disclosure is not limited thereto. For example, the forming system may not include at least one of the first placing unit, the second placing unit, and the transport mechanism. Further, the first placing unit, the second placing unit, the transport mechanism, and the like are not limited to the configurations shown in the above-described embodiment.
For example, the forming apparatus in the above-described embodiment does not necessarily have a heating mechanism, and the metal pipe material may have already been heated.
It should be understood that the invention is not limited to the above-described embodiment, but may be modified into various forms on the basis of the spirit of the invention. Additionally, the modifications are included in the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2019-061368 | Mar 2019 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6662611 | Janssen et al. | Dec 2003 | B2 |
10751780 | Saika et al. | Aug 2020 | B2 |
20180015521 | Saika | Jan 2018 | A1 |
Number | Date | Country |
---|---|---|
S58-024701 | Feb 1983 | JP |
2000-185882 | Jul 2000 | JP |
2003-523286 | Aug 2003 | JP |
2012-000654 | Jan 2012 | JP |
2016-190263 | Nov 2016 | JP |
2018-167315 | Nov 2018 | JP |
Entry |
---|
International Search Report issued in Application No. PCT/JP2020/005368, mailed Mar. 17, 2020. |
Number | Date | Country | |
---|---|---|---|
20210346934 A1 | Nov 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2020/005368 | Feb 2020 | WO |
Child | 17384379 | US |