Janus kinase 2 (JAK2) is a non-receptor tyrosine kinase involved in the JAK-STAT signaling pathway, which plays a role in cell processes such as immunity, cell division, and cell death. Dysfunction of the JAK-STAT pathway is implicated in various diseases, including cancer and other proliferative diseases, as well as diseases of the immune system. For example, essentially all BCR-ABL1-negative myeloproliferative neoplasms are associated with mutations that activate JAK2. In particular, JAK2V617F is the most prevalent mutation in myeloproliferative neoplasms, occurring in approx. 70% of all patients, and in up to 95% of patients with polycythemia vera. (Vainchenker, W., Kralovics, R. Blood 2017, 129(6):667-79). Even less common mutations, such as in MPL and CALR, have been shown to effect activation of JAK2, thereby initiating and/or driving disease progression. (Vainchenker, W. et al., F1000Research 2018, 7 (F1000 Faculty Rev): 82). Furthermore, polymorphisms in JAK2 have been linked to various autoimmune diseases and inflammatory conditions, such as psoriasis and inflammatory bowel disease. (O'Shea, J. J. et al., Ann. Rheum. Dis. 2013 April, 72:ii111-ii115). Increased signaling through JAK2, as well as other members of the JAK family, is also associated with atopic dermatitis. (Rodrigues, M. A. and Torres, T. J. Derm. Treat. 2019, 31(1):33-40).
Inhibitors of JAKs (e.g., JAK2) are classified based on their binding mode. All currently approved JAK inhibitors are Type I inhibitors, which are those that bind the ATP-binding site in the active conformation of the kinase domain, thereby blocking catalysis (Vainchenker, W. et al.). However, increased phosphorylation of the JAK2 activation loop is observed with Type I inhibitors and may lead to acquired resistance in certain patients (Meyer S. C., Levine, R. L. Clin. Cancer Res. 2014, 20(8):2051-9). Type II inhibitors, on the other hand, bind the ATP-binding site of the kinase domain in the inactive conformation and, therefore, may avoid hyperphosphorylation observed with Type I inhibitors (Wu, S. C. et al. Cancer Cell 2015 Jul. 13, 28(1):29-41).
Chemical compounds can form one or more different pharmaceutically acceptable salts and/or solid forms, including amorphous and polymorphic crystal forms. Individual salts and solid forms of bioactive chemical compounds can have different properties. There is a need for the identification and selection of appropriate salts and/or solid forms of bioactive chemical compounds (including appropriate crystalline forms, where applicable) for the development of pharmaceutically acceptable dosage forms for the treatment of various diseases or conditions associated with JAK2.
The present disclosure provides novel salts and solid forms useful as inhibitors of JAK2. In general, salt forms or free base forms, and pharmaceutically acceptable compositions thereof, are useful for treating or lessening the severity of a variety of diseases or disorders as described in detail herein.
The compound N-(4-((7-cyano-1-methyl-2-((1-methyl-2-oxo-5-(trifluoromethyl)-1,2-dihydropyridin-3-yl)amino)-1H-imidazo[4,5-h]pyridin-6-yl)oxy)pyridin-2-yl)acetamide:
is a small molecule inhibitor of JAK2. The present disclosure provides various free base and salt forms of Compound 1, solid forms thereof, pharmaceutical compositions thereof, and methods of preparing those novel free base and salt forms of Compound 1 and solid forms thereof.
Compound 1 has shown potency against JAK2 in an in vitro assay. Accordingly, Compound 1 is useful for treating diseases, disorders, or conditions associated with JAK2.
The present disclosure provides various free base solid forms of Compound 1, salt forms of Compound 1 and solid forms thereof, pharmaceutical compositions thereof, and methods of preparing solid forms of Compound 1 and salts and solid forms thereof. Salt forms and solid forms (e.g., crystalline solid forms) impart or may impart characteristics such as improved aqueous solubility, stability, hygroscopicity (e.g., provided forms may be less hygroscopic than another form), absorption, bioavailability, and ease of formulation.
As used herein, unless otherwise indicated the term “salt” refers to a salt or co-crystal of two or more (e.g., two) component molecules (e.g., Compound 1 and a co-former). In the combination of an acid and a base compound for the preparation of a solid form, a Δ pKa (pKa(base)−pKa(acid))≥1 generally will permit the formation of a salt compound where the two compounds are ionized. Where this threshold is not met, non-ionic interactions (e.g., hydrogen bonds) can still occur between neutral acid and the base compounds to form, e.g., a co-crystal. In some embodiments, a provided solid form is a salt. In other embodiments, a provided solid form is a co-crystal.
It will be appreciated that a crystalline solid form of Compound 1 or a salt thereof may exist in a neat (i.e., unsolvated) form, a hydrated form, a solvated form, and/or a heterosolvated form. In some embodiments, a crystalline solid form of Compound 1 or a salt thereof does not have any water or other solvent incorporated into the crystal lattice (i.e., is “unsolvated” or an “anhydrate”). In some embodiments, a crystalline solid form of Compound 1 or a salt thereof comprises water and/or other solvent in the crystal lattice (i.e., are hydrates and/or solvates, respectively). It will be appreciated that solvates comprising only certain solvents (most notably, water) are suitable for development as a drug. Solvates comprising other solvents may be useful for manufacturing and/or testing, inter alia, even if they may not be acceptable for use in an approved therapeutic product.
Without wishing to be bound by any particular theory, it was initially believed that salt forms of Compound 1 (e.g., Compounds 2-5) would be advantageous (e.g., improved aqueous solubility, stability, hygroscopicity, absorption, bioavailability, ease of formulation) as compared to free base solid forms of Compound 1. It will be appreciated that, in some embodiments, it is desirable for compound salt forms to not be prone to disproportionation, e.g., upon storage, in the presence of excipients, and/or when stirred in a solvent (e.g., water) for a period of time, particularly if such salt forms are to be used in a pharmaceutical product. The present disclosure encompasses the recognition that i) certain salt forms of Compound 1 possess properties (e.g., lower solubility and/or propensity for disproportionation) that may render them less favorable for use as pharmaceutical product, and ii) that certain crystalline free base solid forms of Compound 1 unexpectedly possess properties (e.g., stability, solubility, ease of formulation, and/or hygroscopicity) that render them more favorable for use as a pharmaceutical product as compared with other free base solid forms of Compound 1 or salts thereof. As described herein, in some embodiments, certain provided free base forms of Compound 1 are preferred over certain provided salt forms, because certain salt forms are prone to disproportionation. For example, as described in Example 11 herein, Compound 1 Form A can be prepared via a disproportionation reaction of Compound 2, demonstrating a superior stability of Compound 1 Form A over Compound 2.
Without wishing to be bound by any particular theory, the present disclosure recognizes certain challenges in obtaining free base solid forms of Compound 1 in a consistent manner, as well as provides a solution to this problem. As described in Example 9, despite using similar methods of synthesis and purification, different lots of Compound 1 comprised different free base forms and mixtures thereof. The present disclosure provides methods of preparing Compound 1 free base forms that are substantially free of impurities and/or other free base forms, and that reproducibly provide the same polymorphic form. For example, a process for preparing Compound 1 Form A is described in Example 11, and a process for preparing Compound 1 Form N is described in Example 21.
I. Free Base Forms of Compound 1
1. Compound 1
It is contemplated that Compound 1 can exist in a variety of physical forms. For example, Compound 1 can be in solution, suspension, or in solid form. In certain embodiments, Compound 1 is in solid form. When Compound 1 is in solid form, said compound may be amorphous, crystalline, or a mixture thereof. Exemplary solid forms are described in more detail below.
In some embodiments, the present disclosure provides a form of Compound 1 substantially free of impurities. As used herein, the term “substantially free of impurities” means that the compound contains no significant amount of extraneous matter. Such extraneous matter may include different forms of Compound 1, residual solvents, or any other impurities that may result from the preparation of, and/or isolation of, Compound 1. In certain embodiments, at least about 95% by weight of a form of Compound 1 is present. In certain embodiments, at least about 95%, about 96%, about 97%, about 98%, or about 99% by weight of a form of Compound 1 is present. In still other embodiments of the disclosure, at least about 99% by weight of a form of Compound 1 is present.
The terms “about” and “approximately”, unless otherwise stated and when used herein in reference to a value, refers to a value that is similar, in context to the referenced value. In general, those skilled in the art, familiar with the context, will appreciate the relevant degree of variance encompassed by about/approximately in that context. Unless otherwise stated, in some embodiments the term “about” or “approximately” may encompass a range of values that within 25%, 20%, 19%, 18%, 17%, 16%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, or less in either direction (greater than or less than) of the stated reference value unless otherwise stated or otherwise evident from the context (except where such number would be less than 0%, or would exceed 100% of a possible value).
According to one embodiment, a form of Compound 1 is present in an amount of at least about 97.0, 97.5, 98.0, 98.5, 99.0, 99.5, or 99.8 weight percent where the percentages are based on the total weight of the composition. According to another embodiment, a form of Compound 1 contains no more than about 3.0 area percent HPLC of total organic impurities and, in certain embodiments, no more than about 1.5 area percent HPLC total organic impurities relative to the total area of the HPLC chromatogram. In other embodiments, a form of Compound 1 contains no more than about 1.0 area percent HPLC of any single impurity; no more than about 0.6 area percent HPLC of any single impurity, and, in certain embodiments, no more than about 0.5 area percent HPLC of any single impurity, relative to the total area of the HPLC chromatogram.
The structure depicted for a form of Compound 1 is also meant to include all tautomeric forms of Compound 1. Additionally, structures depicted here are also meant to include compounds that differ only in the presence of one or more isotopically enriched atoms. For example, compounds having the present structure except for the replacement of hydrogen by deuterium or tritium, or the replacement of a carbon by a 13C- or 14C-enriched carbon are within the scope of this disclosure.
It has been found that Compound 1 can exist in a variety of solid forms.
In some embodiments, Compound 1 is amorphous. In some embodiments, Compound 1 is amorphous, and is substantially free of crystalline Compound 1. As used herein, the term “substantially free of crystalline Compound 1” means that the compound contains no significant amount of crystalline Compound 1. In some embodiments, at least about 95%, about 96%, about 97%, about 98%, or about 99% by weight of amorphous Compound 1 is present. In some embodiments, at least about 99% by weight of amorphous Compound 1 is present.
In certain embodiments, Compound 1 is a crystalline solid. In some embodiments, Compound 1 is a crystalline solid substantially free of amorphous Compound 1. As used herein, the term “substantially free of amorphous Compound 1” means that the compound contains no significant amount of amorphous Compound 1. In certain embodiments, at least about 95% by weight of crystalline Compound 1 is present. In certain embodiments, at least about 95%, about 96%, about 97%, about 98%, or about 99% by weight of crystalline Compound 1 is present. In still other embodiments of the disclosure, at least about 99% by weight of crystalline Compound 1 is present.
In some embodiments, Compound 1 is provided as a particular crystalline form that is substantially free of other crystalline forms of Compound 1. For example, in some embodiments, a composition comprises Compound 1 Form A substantially free of other crystalline forms of Compound 1 (e.g., Form B, Form C, Form D, Form E, Form F, Form G, Form H, Form J, Form K, Form L, Form M, Form N, Form O, and/or Form P). As used herein, the term “substantially free of other crystalline forms of Compound 1” means that the compound contains no significant amount of other crystalline forms of Compound 1. In some embodiments, at least about 95%, about 96%, about 97%, about 98%, or about 99% by weight of a particular crystalline form (e.g., Form A) of Compound 1 is present. In some embodiments, at least about 99% by weight of a particular crystalline form (e.g., Form A) of Compound 1 is present.
Compound 1 Form 1
In certain embodiments, the present disclosure provides a solid form of Compound 1 referred to herein as Form 1. In some embodiments, Compound 1 is in Form 1, substantially free from other free base forms of Compound 1. It will be appreciated that, in some embodiments, “Compound 1 Form 1” describes a mixture of one or more forms of Compound 1 (e.g., Compound 1 Form A and Compound 1 Form B, as described herein).
In some embodiments, Compound 1 Form 1 has at least 1, 2, 3, 4 or 5 X-ray Powder Diffraction (XRPD) peaks selected from the angles (degrees 2 theta±0.20) listed in Table 1 below.
In some embodiments, Compound 1 Form 1 is characterized by an X-ray powder diffraction (XRPD) pattern having diffractions at angles (degrees 2 theta±0.20) and corresponding d-spacing of:
In some embodiments, Compound 1 Form 1 s characterized in that it has one or more peaks in its X-ray powder diffraction pattern selected from those at about 7.33, 11.22, 11.46, 14.01, 16.89, 18.94, 19.70, 21.71, 23.31, 23.56, 25.22, 26.20, and 26.58 degrees 2-theta. In some embodiments, Compound 1 Form 1 is characterized in that it has two or more peaks in its X-ray powder diffraction pattern selected from those at about 7.33, 11.22, 11.46, 14.01, 16.89, 18.94, 19.70, 21.71, 23.31, 23.56, 25.22, 26.20, and 26.58 degrees 2-theta. In some embodiments, Compound 1 Form 1 is characterized in that it has three or more peaks in its X-ray powder diffraction pattern selected from those at about 7.33, 11.22, 11.46, 14.01, 16.89, 18.94, 19.70, 21.71, 23.31, 23.56, 25.22, 26.20, and 26.58 degrees 2-theta. In some embodiments, Compound 1 Form 1 is characterized in that it has four or more peaks in its X-ray powder diffraction pattern selected from those at about 7.33, 11.22, 11.46, 14.01, 16.89, 18.94, 19.70, 21.71, 23.31, 23.56, 25.22, 26.20, and 26.58 degrees 2-theta. In some embodiments, Compound 1 Form 1 is characterized in that it has five or more peaks in its X-ray powder diffraction pattern selected from those at about 7.33, 11.22, 11.46, 14.01, 16.89, 18.94, 19.70, 21.71, 23.31, 23.56, 25.22, 26.20, and 26.58 degrees 2-theta. In some embodiments, Compound 1 Form 1 is characterized in that it has six or more peaks in its X-ray powder diffraction pattern selected from those at about 7.33, 11.22, 11.46, 14.01, 16.89, 18.94, 19.70, 21.71, 23.31, 23.56, 25.22, 26.20, and 26.58 degrees 2-theta. In some embodiments, Compound 1 Form 1 is characterized in that it has seven or more peaks in its X-ray powder diffraction pattern selected from those at about 7.33, 11.22, 11.46, 14.01, 16.89, 18.94, 19.70, 21.71, 23.31, 23.56, 25.22, 26.20, and 26.58 degrees 2-theta. In some embodiments, Compound 1 Form 1 is characterized in that it has eight or more peaks in its X-ray powder diffraction pattern selected from those at about 7.33, 11.22, 11.46, 14.01, 16.89, 18.94, 19.70, 21.71, 23.31, 23.56, 25.22, 26.20, and 26.58 degrees 2-theta. In some embodiments, Compound 1 Form 1 is characterized in that it has nine or more peaks in its X-ray powder diffraction pattern selected from those at about 7.33, 11.22, 11.46, 14.01, 16.89, 18.94, 19.70, 21.71, 23.31, 23.56, 25.22, 26.20, and 26.58 degrees 2-theta. In some embodiments, Compound 1 Form 1 is characterized in that it has ten or more peaks in its X-ray powder diffraction pattern selected from those at about 7.33, 11.22, 11.46, 14.01, 16.89, 18.94, 19.70, 21.71, 23.31, 23.56, 25.22, 26.20, and 26.58 degrees 2-theta. In some embodiments, Compound 1 Form 1 is characterized in that it has eleven or more peaks in its X-ray powder diffraction pattern selected from those at about 7.33, 11.22, 11.46, 14.01, 16.89, 18.94, 19.70, 21.71, 23.31, 23.56, 25.22, 26.20, and 26.58 degrees 2-theta. In some embodiments, Compound 1 Form 1 is characterized in that it has twelve or more peaks in its X-ray powder diffraction pattern selected from those at about 7.33, 11.22, 11.46, 14.01, 16.89, 18.94, 19.70, 21.71, 23.31, 23.56, 25.22, 26.20, and 26.58 degrees 2-theta. In some embodiments, Compound 1 Form 1 is characterized in that it has peaks in its X-ray powder diffraction pattern comprising those at about 7.33, 11.22, 11.46, 14.01, 16.89, 18.94, 19.70, 21.71, 23.31, 23.56, 25.22, 26.20, and 26.58 degrees 2-theta. In some embodiments, Compound 1 Form 1 is characterized in that it has peaks in its X-ray powder diffraction pattern comprising those at about 7.33, 11.22, 11.46, 14.01, 16.89, 18.94, 19.70, 21.71, 23.31, 23.56, 25.22, 26.20, and 26.58 degrees 2-theta, corresponding to d-spacing shown in Table 2 above. As used herein, the term “about”, when used in reference to a degree 2-theta value refers to the stated value±0.2 degree 2-theta.
In certain embodiments, the X-ray powder diffraction pattern of Compound 1 Form 1 is substantially similar to the XRPD provided in
Methods for preparing Compound 1 Form 1 are described infra.
Compound 1 Form A
In certain embodiments, the present disclosure provides a solid form of Compound 1 referred to herein as Form A. In some embodiments, Compound 1 Form A is a hydrate. In some embodiments, Compound 1 is provided as Form A, substantially free from other free base forms of Compound 1 (e.g., Compound 1 Form B).
In some embodiments, Compound 1 Form A has at least 1, 2, 3, 4 or 5 X-ray Powder Diffraction (XRPD) peaks selected from the angles (degrees 2 theta±0.20) listed in Table A-1 below.
In some embodiments, Compound 1 Form A is characterized by an X-ray powder diffraction (XRPD) pattern having diffractions at angles (degrees 2 theta±0.20) and corresponding d-spacing of:
In some embodiments, Compound 1 Form A is characterized in that it has one or more peaks in its X-ray powder diffraction pattern selected from those at about 7.32, 11.15, 13.99, 16.58, 18.95, 21.68, 23.56, 25.23, and 26.60 degrees 2-theta. In some embodiments, Compound 1 Form A is characterized in that it has two or more peaks in its X-ray powder diffraction pattern selected from those at about 7.32, 11.15, 13.99, 16.58, 18.95, 21.68, 23.56, 25.23, and 26.60 degrees 2-theta. In some embodiments, Compound 1 Form A is characterized in that it has three or more peaks in its X-ray powder diffraction pattern selected from those at about 7.32, 11.15, 13.99, 16.58, 18.95, 21.68, 23.56, 25.23, and 26.60 degrees 2-theta. In some embodiments, Compound 1 Form A is characterized in that it has four or more peaks in its X-ray powder diffraction pattern selected from those at about 7.32, 11.15, 13.99, 16.58, 18.95, 21.68, 23.56, 25.23, and 26.60 degrees 2-theta. In some embodiments, Compound 1 Form A is characterized in that it has five or more peaks in its X-ray powder diffraction pattern selected from those at about 7.32, 11.15, 13.99, 16.58, 18.95, 21.68, 23.56, 25.23, and 26.60 degrees 2-theta. In some embodiments, Compound 1 Form A is characterized in that it has six or more peaks in its X-ray powder diffraction pattern selected from those at about 7.32, 11.15, 13.99, 16.58, 18.95, 21.68, 23.56, 25.23, and 26.60 degrees 2-theta. In some embodiments, Compound 1 Form A is characterized in that it has seven or more peaks in its X-ray powder diffraction pattern selected from those at about 7.32, 11.15, 13.99, 16.58, 18.95, 21.68, 23.56, 25.23, and 26.60 degrees 2-theta. In some embodiments, Compound 1 Form A is characterized in that it has eight or more peaks in its X-ray powder diffraction pattern selected from those at about 7.32, 11.15, 13.99, 16.58, 18.95, 21.68, 23.56, 25.23, and 26.60 degrees 2-theta. In some embodiments, Compound 1 Form A is characterized in that it has peaks in its X-ray powder diffraction pattern selected from those at about 7.32, 11.15, 13.99, 16.58, 18.95, 21.68, 23.56, 25.23, and 26.60 degrees 2-theta. In some embodiments, Compound 1 Form A is characterized in that it has peaks in its X-ray powder diffraction pattern selected from those at about 7.32, 11.15, 13.99, 16.58, 18.95, 21.68, 23.56, 25.23, and 26.60 degrees 2-theta, corresponding to d-spacing shown in Table A-2 above. As used herein, the term “about”, when used in reference to a degree 2-theta value refers to the stated value±0.2 degree 2-theta.
In certain embodiments, the X-ray powder diffraction pattern of Compound 1 Form A is substantially similar to the XRPD provided in
Methods for preparing Compound 1 Form A are described infra.
Compound 1 Form B
In certain embodiments, the present disclosure provides a solid form of Compound 1 referred to herein as Form B. In some embodiments, Compound 1 Form B is anhydrous. In some embodiments, Compound 1 is provided as Form B, substantially free from other free base forms of Compound 1.
In certain embodiments, the X-ray powder diffraction pattern of Compound 1 Form B is substantially similar to the XRPD provided in
Methods for preparing Compound 1 Form B are described infra.
Compound 1 Form C
In certain embodiments, the present disclosure provides a solid form of Compound 1 referred to herein as Form C. In some embodiments, Compound 1 Form C is a tri-acetic acid cocrystal. In some embodiments, Compound 1 is provided as Form C, substantially free from other free base forms of Compound 1.
In certain embodiments, the X-ray powder diffraction pattern of Compound 1 Form C is substantially similar to the XRPD provided in
Methods for preparing Compound 1 Form C are described infra.
Compound 1 Form D
In certain embodiments, the present disclosure provides a solid form of Compound 1 referred to herein as Form D. In some embodiments, Compound 1 Form D is a bis-dimethylacetamide (DMA) solvate. In some embodiments, Compound 1 is provided as Form D, substantially free from other free base forms of Compound 1.
In certain embodiments, the X-ray powder diffraction pattern of Compound 1 Form D is substantially similar to the XRPD provided in
Methods for preparing Compound 1 Form D are described infra.
Compound 1 Form E
In certain embodiments, the present disclosure provides a solid form of Compound 1 referred to herein as Form E. In some embodiments, Compound 1 Form E is a tris-dimethylsulfoxide (DMSO) solvate. In some embodiments, Compound 1 is provided as Form E, substantially free from other free base forms of Compound 1.
In certain embodiments, the X-ray powder diffraction pattern of Compound 1 Form E is substantially similar to the XRPD provided in
Methods for preparing Compound 1 Form E are described infra.
Compound 1 Form F
In certain embodiments, the present disclosure provides a solid form of Compound 1 referred to herein as Form F. In some embodiments, Compound 1 Form F is a bis-N-methyl-2-pyrrolidone (NMP) solvate. In some embodiments, Compound 1 is provided as Form F, substantially free from other free base forms of Compound 1.
In certain embodiments, the X-ray powder diffraction pattern of Compound 1 Form F is substantially similar to the XRPD provided in
Methods for preparing Compound 1 Form F are described infra.
Compound 1 Form G
In certain embodiments, the present disclosure provides a solid form of Compound 1 referred to herein as Form G. In some embodiments, Compound 1 Form G is a bis-dimethylformamide (DMF) solvate. In some embodiments, Compound 1 is provided as Form G, substantially free from other free base forms of Compound 1.
In certain embodiments, the X-ray powder diffraction pattern of Compound 1 Form G is substantially similar to the XRPD provided in
Methods for preparing Compound 1 Form G are described infra.
Compound 1 Form H
In certain embodiments, the present disclosure provides a solid form of Compound 1 referred to herein as Form H. In some embodiments, Compound 1 is provided as Form H, substantially free from other free base forms of Compound 1.
In certain embodiments, the X-ray powder diffraction pattern of Compound 1 Form H is substantially similar to the XRPD provided in
Methods for preparing Compound 1 Form H are described infra.
Compound 1 Form J
In certain embodiments, the present disclosure provides a solid form of Compound 1 referred to herein as Form J. In some embodiments, Compound 1 is provided as Form J, substantially free from other free base forms of Compound 1.
In certain embodiments, the X-ray powder diffraction pattern of Compound 1 Form J is substantially similar to the XRPD provided in
Methods for preparing Compound 1 Form J are described infra.
Compound 1 Form K
In certain embodiments, the present disclosure provides a solid form of Compound 1 referred to herein as Form K. In some embodiments, Compound 1 is provided as Form K, substantially free from other free base forms of Compound 1.
In certain embodiments, the X-ray powder diffraction pattern of Compound 1 Form K is substantially similar to the XRPD provided in
Methods for preparing Compound 1 Form K are described infra.
Compound 1 Form L
In certain embodiments, the present disclosure provides a solid form of Compound 1 referred to herein as Form L. In some embodiments, Compound 1 Form L is a bis-tetrahydrofuran (THF) solvate. In some embodiments, Compound 1 is provided as Form L, substantially free from other free base forms of Compound 1.
In certain embodiments, the X-ray powder diffraction pattern of Compound 1 Form L is substantially similar to the XRPD provided in
Methods for preparing Compound 1 Form L are described infra.
Compound 1 Form M
In certain embodiments, the present disclosure provides a solid form of Compound 1 referred to herein as Form M. In some embodiments, Compound 1 Form M is a bis- or tris-dimethylformamide (DMF) solvate. In some embodiments, Compound 1 is provided as Form M, substantially free from other free base forms of Compound 1.
In certain embodiments, the X-ray powder diffraction pattern of Compound 1 Form M is substantially similar to the XRPD provided in
Methods for preparing Compound 1 Form M are described infra.
Compound 1 Form N
In certain embodiments, the present disclosure provides a solid form of Compound 1 referred to herein as Form N. In some embodiments, Compound 1 Form N is anhydrous. In some embodiments, Compound 1 is provided as Form N, substantially free from other free base forms of Compound 1.
In some embodiments, Compound 1 Form N has at least 1, 2, 3, 4 or 5 X-ray Powder Diffraction (XRPD) peaks selected from the angles (degrees 2 theta±0.20) listed in Table N-1
In some embodiments, Compound 1 Form N is characterized by an X-ray powder diffraction (XRPD) pattern having diffractions at angles (degrees 2 theta±0.20) and corresponding d-spacing of:
In some embodiments, Compound 1 Form N is characterized in that it has one or more peaks in its X-ray powder diffraction pattern selected from those at about 8.08, 11.76, 15.73, 17.31, 19.32, 19.54, 23.13, 25.90, and 27.31 degrees 2-theta. In some embodiments, Compound 1 Form N is characterized in that it has two or more peaks in its X-ray powder diffraction pattern selected from those at about 8.08, 11.76, 15.73, 17.31, 19.32, 19.54, 23.13, 25.90, and 27.31 degrees 2-theta. In some embodiments, Compound 1 Form N is characterized in that it has three or more peaks in its X-ray powder diffraction pattern selected from those at about 8.08, 11.76, 15.73, 17.31, 19.32, 19.54, 23.13, 25.90, and 27.31 degrees 2-theta. In some embodiments, Compound 1 Form N is characterized in that it has four or more peaks in its X-ray powder diffraction pattern selected from those at about 8.08, 11.76, 15.73, 17.31, 19.32, 19.54, 23.13, 25.90, and 27.31 degrees 2-theta. In some embodiments, Compound 1 Form N is characterized in that it has five or more peaks in its X-ray powder diffraction pattern selected from those at about 8.08, 11.76, 15.73, 17.31, 19.32, 19.54, 23.13, 25.90, and 27.31 degrees 2-theta. In some embodiments, Compound 1 Form N is characterized in that it has six or more peaks in its X-ray powder diffraction pattern selected from those at about 8.08, 11.76, 15.73, 17.31, 19.32, 19.54, 23.13, 25.90, and 27.31 degrees 2-theta. In some embodiments, Compound 1 Form N is characterized in that it has seven or more peaks in its X-ray powder diffraction pattern selected from those at about 8.08, 11.76, 15.73, 17.31, 19.32, 19.54, 23.13, 25.90, and 27.31 degrees 2-theta. In some embodiments, Compound 1 Form N is characterized in that it has eight or more peaks in its X-ray powder diffraction pattern selected from those at about 8.08, 11.76, 15.73, 17.31, 19.32, 19.54, 23.13, 25.90, and 27.31 degrees 2-theta. In some embodiments, Compound 1 Form N is characterized in that it has peaks in its X-ray powder diffraction pattern selected from those at about 8.08, 11.76, 15.73, 17.31, 19.32, 19.54, 23.13, 25.90, and 27.31 degrees 2-theta. In some embodiments, Compound 1 Form N is characterized in that it has peaks in its X-ray powder diffraction pattern selected from those at about 8.08, 11.76, 15.73, 17.31, 19.32, 19.54, 23.13, 25.90, and 27.31 degrees 2-theta, corresponding to d-spacing shown in Table N-2 above. As used herein, the term “about”, when used in reference to a degree 2-theta value refers to the stated value±0.2 degree 2-theta.
In certain embodiments, the X-ray powder diffraction pattern of Compound 1 Form N is substantially similar to the XRPD provided in
Methods for preparing Compound 1 Form N are described infra.
Compound 1 Form O
In certain embodiments, the present disclosure provides a solid form of Compound 1 referred to herein as Form O. In some embodiments, Compound 1 is provided as Form O, substantially free from other free base forms of Compound 1.
In certain embodiments, the X-ray powder diffraction pattern of Compound 1 Form O is substantially similar to the XRPD provided in
Methods for preparing Compound 1 Form O are described infra.
Compound 1 Form P
In certain embodiments, the present disclosure provides a solid form of Compound 1 referred to herein as Form P. In some embodiments, Compound 1 Form P is a mono- or bis-ethyl acetate solvate. In some embodiments, Compound 1 is provided as Form P, substantially free from other free base forms of Compound 1.
In certain embodiments, the X-ray powder diffraction pattern of Compound 1 Form P is substantially similar to the XRPD provided in
Methods for preparing Compound 1 Form P are described infra.
II. Combinations of Co-Formers with Compound 1
In some embodiments, Compound 1 and a co-former (e.g., an acid) are combined to provide a species where Compound 1 and the co-former are, e.g., ionically bonded or are hydrogen bonded to form a provided compound, as described herein. It is contemplated that provided compounds can exist in a variety of physical forms. For example, provided compounds can be in solution, suspension, or in solid form. In certain embodiments, a provided compound is in solid form. When provided compounds are in solid form, said compounds may be amorphous, crystalline, or a mixture thereof. Exemplary solid forms of Compounds 2 through 5 are described in more detail below.
2. Compound 2 (Hydrochloric Acid×Compound 1)
In some embodiments, the present disclosure provides a chemical species Compound 2 comprising Compound 1 and hydrochloric acid:
It is contemplated that Compound 2 can exist in a variety of physical forms. For example, Compound 2 can be in solution, suspension, or in solid form. In certain embodiments, Compound 2 is in solid form. When Compound 2 is in solid form, said compound may be amorphous, crystalline, or a mixture thereof.
In some embodiments, a solid form of Compound 2 has a stoichiometry of (Compound 1):(hydrochloric acid) that is about 1:1. As used herein, the term “about”, when used in reference to a stoichiometric ratio refers to 1:(1f0.25) ratio of (Compound 1):(co-former, e.g., an acid), e.g., a 1:(10.25) ratio, a 1:(10.2) ratio, a 1:(1f0.1) ratio, or a 1:(1±0.05) ratio.
In some embodiments, the present disclosure provides Compound 2 substantially free of impurities. As used herein, the term “substantially free of impurities” means that the compound contains no significant amount of extraneous matter. Such extraneous matter may include excess hydrochloric acid, excess Compound 1, residual solvents, or any other impurities that may result from the preparation of, and/or isolation of, Compound 2. In certain embodiments, at least about 95% by weight of Compound 2 is present. In certain embodiments, at least about 95%, about 96%, about 97%, about 98%, or about 99% by weight of Compound 2 is present. In still other embodiments of the disclosure, at least about 99% by weight of Compound 2 is present.
According to one embodiment, Compound 2 is present in an amount of at least about 97.0, 97.5, 98.0, 98.5, 99.0, 99.5, or 99.8 weight percent where the percentages are based on the total weight of the composition. According to another embodiment, Compound 2 contains no more than about 3.0 area percent HPLC of total organic impurities and, in certain embodiments, no more than about 1.5 area percent HPLC total organic impurities relative to the total area of the HPLC chromatogram. In some embodiments, Compound 2 contains no more than about 1.0 area percent HPLC of any single impurity; no more than about 0.6 area percent HPLC of any single impurity, and, in certain embodiments, no more than about 0.5 area percent HPLC of any single impurity, relative to the total area of the HPLC chromatogram.
The structure depicted for Compound 2 is also meant to include all tautomeric forms of Compound 2. Additionally, structures depicted here are also meant to include compounds that differ only in the presence of one or more isotopically enriched atoms. For example, compounds having the present structure except for the replacement of hydrogen by deuterium or tritium, or the replacement of a carbon by a 13C- or 14C-enriched carbon are within the scope of this disclosure.
It has been found that Compound 2 can exist in a variety of solid forms. Exemplary such forms include polymorphs such as those described herein.
As used herein, the term “polymorph” refers to the different crystal structures into which a compound, or a salt or co-crystal or solvate thereof, can crystallize.
In some embodiments, Compound 2 is amorphous. In some embodiments, Compound 2 is amorphous, and is substantially free of crystalline Compound 2. As used herein, the term “substantially free of crystalline Compound 2” means that the compound contains no significant amount of crystalline Compound 2. In some embodiments, at least about 95%, about 96%, about 97%, about 98%, or about 99% by weight of amorphous Compound 2 is present. In some embodiments, at least about 99% by weight of amorphous Compound 2 is present.
In certain embodiments, Compound 2 is a crystalline solid. In other embodiments, Compound 2 is a crystalline solid substantially free of amorphous Compound 2. As used herein, the term “substantially free of amorphous Compound 2” means that the compound contains no significant amount of amorphous Compound 2. In certain embodiments, at least about 95% by weight of crystalline Compound 2 is present. In certain embodiments, at least about 95%, about 96%, about 97%, about 98%, or about 99% by weight of crystalline Compound 2 is present. In still other embodiments of the disclosure, at least about 99% by weight of crystalline Compound 2 is present.
When Compound 1 is in contact with one equivalent of HCl in various solvents, the resulting Compound 2 can exist in at least two polymorphic forms. In some embodiments, the present disclosure provides a polymorphic form of Compound 2 referred to herein as Form A. In some embodiments, the present disclosure provides a polymorphic form of Compound 2 referred to herein as Form B.
Compound 2 Form A
In some embodiments, Compound 2 Form A has at least 1, 2, 3, 4 or 5 X-ray Powder Diffraction (XRPD) peaks selected from the angles (degrees 2 theta±0.20) listed in Table 3 below.
In some embodiments, Compound 2 Form A is characterized by an X-ray powder diffraction (XRPD) pattern having diffractions at angles (degrees 2 theta±0.20) and corresponding d-spacing of:
In some embodiments, Compound 2 Form A is characterized in that it has one or more peaks in its X-ray powder diffraction pattern selected from those at about 7.38, 8.17, 11.98, 12.30, 15.63, 19.21, 20.12, 20.71, 21.64, 22.11, 24.16, 25.40, and 27.23 degrees 2 theta. In some embodiments, Compound 2 Form A is characterized in that it has two or more peaks in its X-ray powder diffraction pattern selected from those at about 7.38, 8.17, 11.98, 12.30, 15.63, 19.21, 20.12, 20.71, 21.64, 22.11, 24.16, 25.40, and 27.23 degrees 2 theta. In some embodiments, Compound 2 Form A is characterized in that it has three or more peaks in its X-ray powder diffraction pattern selected from those at about 7.38, 8.17, 11.98, 12.30, 15.63, 19.21, 20.12, 20.71, 21.64, 22.11, 24.16, 25.40, and 27.23 degrees 2 theta. In some embodiments, Compound 2 Form A is characterized in that it has four or more peaks in its X-ray powder diffraction pattern selected from those at about 7.38, 8.17, 11.98, 12.30, 15.63, 19.21, 20.12, 20.71, 21.64, 22.11, 24.16, 25.40, and 27.23 degrees 2 theta. In some embodiments, Compound 2 Form A is characterized in that it has five or more peaks in its X-ray powder diffraction pattern selected from those at about 7.38, 8.17, 11.98, 12.30, 15.63, 19.21, 20.12, 20.71, 21.64, 22.11, 24.16, 25.40, and 27.23 degrees 2 theta. In some embodiments, Compound 2 Form A is characterized in that it has six or more peaks in its X-ray powder diffraction pattern selected from those at about 7.38, 8.17, 11.98, 12.30, 15.63, 19.21, 20.12, 20.71, 21.64, 22.11, 24.16, 25.40, and 27.23 degrees 2 theta. In some embodiments, Compound 2 Form A is characterized in that it has seven or more peaks in its X-ray powder diffraction pattern selected from those at about 7.38, 8.17, 11.98, 12.30, 15.63, 19.21, 20.12, 20.71, 21.64, 22.11, 24.16, 25.40, and 27.23 degrees 2 theta. In some embodiments, Compound 2 Form A is characterized in that it has eight or more peaks in its X-ray powder diffraction pattern selected from those at about 7.38, 8.17, 11.98, 12.30, 15.63, 19.21, 20.12, 20.71, 21.64, 22.11, 24.16, 25.40, and 27.23 degrees 2 theta. In some embodiments, Compound 2 Form A is characterized in that it has nine or more peaks in its X-ray powder diffraction pattern selected from those at about 7.38, 8.17, 11.98, 12.30, 15.63, 19.21, 20.12, 20.71, 21.64, 22.11, 24.16, 25.40, and 27.23 degrees 2 theta. In some embodiments, Compound 2 Form A is characterized in that it has ten or more peaks in its X-ray powder diffraction pattern selected from those at about 7.38, 8.17, 11.98, 12.30, 15.63, 19.21, 20.12, 20.71, 21.64, 22.11, 24.16, 25.40, and 27.23 degrees 2 theta. In some embodiments, Compound 2 Form A is characterized in that it has eleven or more peaks in its X-ray powder diffraction pattern selected from those at about 7.38, 8.17, 11.98, 12.30, 15.63, 19.21, 20.12, 20.71, 21.64, 22.11, 24.16, 25.40, and 27.23 degrees 2 theta. In some embodiments, Compound 2 Form A is characterized in that it has twelve or more peaks in its X-ray powder diffraction pattern selected from those at about 7.38, 8.17, 11.98, 12.30, 15.63, 19.21, 20.12, 20.71, 21.64, 22.11, 24.16, 25.40, and 27.23 degrees 2 theta. In some embodiments, Compound 2 Form A is characterized in that it has peaks in its X-ray powder diffraction pattern comprising those at about 7.38, 8.17, 11.98, 12.30, 15.63, 19.21, 20.12, 20.71, 21.64, 22.11, 24.16, 25.40, and 27.23 degrees 2 theta. In some embodiments, Compound 2 Form A is characterized in that it has peaks in its X-ray powder diffraction pattern comprising those at about 7.38, 8.17, 11.98, 12.30, 15.63, 19.21, 20.12, 20.71, 21.64, 22.11, 24.16, 25.40, and 27.23 degrees 2 theta, corresponding to d-spacing shown in Table 4 above. As used herein, the term “about”, when used in reference to a degree 2-theta value refers to the stated value±0.2 degree 2-theta.
In certain embodiments, the X-ray powder diffraction pattern of Compound 2 Form A is substantially similar to the XRPD provided in
Methods for preparing Compound 2 Form A are described infra.
3. Compound 3 (Hydrobromic Acid×Compound 1)
In some embodiments, the present disclosure provides a chemical species Compound 3 comprising Compound 1 and hydrobromic acid:
It is contemplated that Compound 3 can exist in a variety of physical forms. For example, Compound 3 can be in solution, suspension, or in solid form. In certain embodiments, Compound 3 is in solid form. When Compound 3 is in solid form, said compound may be amorphous, crystalline, or a mixture thereof.
In one embodiment, a solid form of Compound 3 has a stoichiometry of (Compound 1):(hydrobromic acid) that is about 1:1.
In some embodiments, the present disclosure provides Compound 3 substantially free of impurities. As used herein, the term “substantially free of impurities” means that the compound contains no significant amount of extraneous matter. Such extraneous matter may include excess hydrobromic acid, excess Compound 1, residual solvents, or any other impurities that may result from the preparation of, and/or isolation of, Compound 3. In certain embodiments, at least about 95% by weight of Compound 3 is present. In certain embodiments, at least about 95%, about 96%, about 97%, about 98%, or about 99% by weight of Compound 3 is present. In still other embodiments of the disclosure, at least about 99% by weight of Compound 3 is present.
According to one embodiment, Compound 3 is present in an amount of at least about 97.0, 97.5, 98.0, 98.5, 99.0, 99.5, or 99.8 weight percent where the percentages are based on the total weight of the composition. According to another embodiment, Compound 3 contains no more than about 3.0 area percent HPLC of total organic impurities and, in certain embodiments, no more than about 1.5 area percent HPLC total organic impurities relative to the total area of the HPLC chromatogram. In other embodiments, Compound 3 contains no more than about 1.0 area percent HPLC of any single impurity; no more than about 0.6 area percent HPLC of any single impurity, and, in certain embodiments, no more than about 0.5 area percent HPLC of any single impurity, relative to the total area of the HPLC chromatogram.
The structure depicted for Compound 3 is also meant to include all tautomeric forms of Compound 3. Additionally, structures depicted here are also meant to include compounds that differ only in the presence of one or more isotopically enriched atoms. For example, compounds having the present structure except for the replacement of hydrogen by deuterium or tritium, or the replacement of a carbon by a 13C- or 14C-enriched carbon are within the scope of this disclosure.
In some embodiments, Compound 3 is amorphous. In some embodiments, Compound 3 is amorphous, and is substantially free of crystalline Compound 3. As used herein, the term “substantially free of crystalline Compound 3” means that the compound contains no significant amount of crystalline Compound 3. In some embodiments, at least about 95%, about 96%, about 97%, about 98%, or about 99% by weight of amorphous Compound 3 is present. In some embodiments, at least about 99% by weight of amorphous Compound 3 is present.
In certain embodiments, Compound 3 is a crystalline solid. In other embodiments, Compound 3 is a crystalline solid substantially free of amorphous Compound 3. As used herein, the term “substantially free of amorphous Compound 3” means that the compound contains no significant amount of amorphous Compound 3. In certain embodiments, at least about 95% by weight of crystalline Compound 3 is present. In certain embodiments, at least about 95%, about 96%, about 97%, about 98%, or about 99% by weight of crystalline Compound 3 is present. In still other embodiments of the disclosure, at least about 99% by weight of crystalline Compound 3 is present.
It has been found that Compound 3 can exist in at least one solid form. In some embodiments, the present disclosure provides a solid form of Compound 3 referred to herein as Form A.
Compound 3 Form A
In some embodiments, Compound 3 Form A has at least 1, 2, 3, 4 or 5 X-ray Powder Diffraction (XRPD) peaks selected from the angles (degrees 2 theta±0.2) listed in Table 5 below.
In some embodiments, Compound 3 Form A is characterized by an X-ray powder diffraction (XRPD) pattern having diffractions at angles (degrees 2 theta±0.2) and corresponding d-spacing of:
In some embodiments, Compound 3 Form A is characterized in that it has one or more peaks in its X-ray powder diffraction pattern selected from those at about 8.72, 10.68, 12.14, 13.87, 14.53, 15.99, 16.38, 19.62, 20.13, 20.42, 20.76, 21.01, 22.93, 24.43, 24.98, 25.14, 26.76, and 27.23 degrees 2 theta. In some embodiments, Compound 3 Form A is characterized in that it has two or more peaks in its X-ray powder diffraction pattern selected from those at about 8.72, 10.68, 12.14, 13.87, 14.53, 15.99, 16.38, 19.62, 20.13, 20.42, 20.76, 21.01, 22.93, 24.43, 24.98, 25.14, 26.76, and 27.23 degrees 2 theta. In some embodiments, Compound 3 Form A is characterized in that it has three or more peaks in its X-ray powder diffraction pattern selected from those at about 8.72, 10.68, 12.14, 13.87, 14.53, 15.99, 16.38, 19.62, 20.13, 20.42, 20.76, 21.01, 22.93, 24.43, 24.98, 25.14, 26.76, and 27.23 degrees 2 theta. In some embodiments, Compound 3 Form A is characterized in that it has four or more peaks in its X-ray powder diffraction pattern selected from those at about 8.72, 10.68, 12.14, 13.87, 14.53, 15.99, 16.38, 19.62, 20.13, 20.42, 20.76, 21.01, 22.93, 24.43, 24.98, 25.14, 26.76, and 27.23 degrees 2 theta. In some embodiments, Compound 3 Form A is characterized in that it has five or more peaks in its X-ray powder diffraction pattern selected from those at about 8.72, 10.68, 12.14, 13.87, 14.53, 15.99, 16.38, 19.62, 20.13, 20.42, 20.76, 21.01, 22.93, 24.43, 24.98, 25.14, 26.76, and 27.23 degrees 2 theta. In some embodiments, Compound 3 Form A is characterized in that it has six or more peaks in its X-ray powder diffraction pattern selected from those at about 8.72, 10.68, 12.14, 13.87, 14.53, 15.99, 16.38, 19.62, 20.13, 20.42, 20.76, 21.01, 22.93, 24.43, 24.98, 25.14, 26.76, and 27.23 degrees 2 theta. In some embodiments, Compound 3 Form A is characterized in that it has seven or more peaks in its X-ray powder diffraction pattern selected from those at about 8.72, 10.68, 12.14, 13.87, 14.53, 15.99, 16.38, 19.62, 20.13, 20.42, 20.76, 21.01, 22.93, 24.43, 24.98, 25.14, 26.76, and 27.23 degrees 2 theta. In some embodiments, Compound 3 Form A is characterized in that it has eight or more peaks in its X-ray powder diffraction pattern selected from those at about 8.72, 10.68, 12.14, 13.87, 14.53, 15.99, 16.38, 19.62, 20.13, 20.42, 20.76, 21.01, 22.93, 24.43, 24.98, 25.14, 26.76, and 27.23 degrees 2 theta. In some embodiments, Compound 3 Form A is characterized in that it has nine or more peaks in its X-ray powder diffraction pattern selected from those at about 8.72, 10.68, 12.14, 13.87, 14.53, 15.99, 16.38, 19.62, 20.13, 20.42, 20.76, 21.01, 22.93, 24.43, 24.98, 25.14, 26.76, and 27.23 degrees 2 theta. In some embodiments, Compound 3 Form A is characterized in that it has ten or more peaks in its X-ray powder diffraction pattern selected from those at about 8.72, 10.68, 12.14, 13.87, 14.53, 15.99, 16.38, 19.62, 20.13, 20.42, 20.76, 21.01, 22.93, 24.43, 24.98, 25.14, 26.76, and 27.23 degrees 2 theta. In some embodiments, Compound 3 Form A is characterized in that it has eleven or more peaks in its X-ray powder diffraction pattern selected from those at about 8.72, 10.68, 12.14, 13.87, 14.53, 15.99, 16.38, 19.62, 20.13, 20.42, 20.76, 21.01, 22.93, 24.43, 24.98, 25.14, 26.76, and 27.23 degrees 2 theta. In some embodiments, Compound 3 Form A is characterized in that it has twelve or more peaks in its X-ray powder diffraction pattern selected from those at about 8.72, 10.68, 12.14, 13.87, 14.53, 15.99, 16.38, 19.62, 20.13, 20.42, 20.76, 21.01, 22.93, 24.43, 24.98, 25.14, 26.76, and 27.23 degrees 2 theta. In some embodiments, Compound 3 Form A is characterized in that it has thirteen or more peaks in its X-ray powder diffraction pattern selected from those at about 8.72, 10.68, 12.14, 13.87, 14.53, 15.99, 16.38, 19.62, 20.13, 20.42, 20.76, 21.01, 22.93, 24.43, 24.98, 25.14, 26.76, and 27.23 degrees 2 theta. In some embodiments, Compound 3 Form A is characterized in that it has fourteen or more peaks in its X-ray powder diffraction pattern selected from those at about 8.72, 10.68, 12.14, 13.87, 14.53, 15.99, 16.38, 19.62, 20.13, 20.42, 20.76, 21.01, 22.93, 24.43, 24.98, 25.14, 26.76, and 27.23 degrees 2 theta. In some embodiments, Compound 3 Form A is characterized in that it has fifteen or more peaks in its X-ray powder diffraction pattern selected from those at about 8.72, 10.68, 12.14, 13.87, 14.53, 15.99, 16.38, 19.62, 20.13, 20.42, 20.76, 21.01, 22.93, 24.43, 24.98, 25.14, 26.76, and 27.23 degrees 2 theta. In some embodiments, Compound 3 Form A is characterized in that it has sixteen or more peaks in its X-ray powder diffraction pattern selected from those at about 8.72, 10.68, 12.14, 13.87, 14.53, 15.99, 16.38, 19.62, 20.13, 20.42, 20.76, 21.01, 22.93, 24.43, 24.98, 25.14, 26.76, and 27.23 degrees 2 theta. In some embodiments, Compound 3 Form A is characterized in that it has seventeen or more peaks in its X-ray powder diffraction pattern selected from those at about 8.72, 10.68, 12.14, 13.87, 14.53, 15.99, 16.38, 19.62, 20.13, 20.42, 20.76, 21.01, 22.93, 24.43, 24.98, 25.14, 26.76, and 27.23 degrees 2 theta. In some embodiments, Compound 3 Form A is characterized in that it has peaks in its X-ray powder diffraction pattern comprising those at about 8.72, 10.68, 12.14, 13.87, 14.53, 15.99, 16.38, 19.62, 20.13, 20.42, 20.76, 21.01, 22.93, 24.43, 24.98, 25.14, 26.76, and 27.23 degrees 2 theta. In some embodiments, Compound 3 Form A is characterized in that it has peaks in its X-ray powder diffraction pattern comprising those at about 8.72, 10.68, 12.14, 13.87, 14.53, 15.99, 16.38, 19.62, 20.13, 20.42, 20.76, 21.01, 22.93, 24.43, 24.98, 25.14, 26.76, and 27.23 degrees 2 theta, corresponding to d-spacing shown in Table 6 above. As used herein, the term “about”, when used in reference to a degree 2-theta value refers to the stated value±0.2 degree 2-theta.
In certain embodiments, the X-ray powder diffraction pattern of Compound 3 Form A is substantially similar to the XRPD provided in
Methods for preparing Compound 3 Form A are described infra.
4. Compound 4 (Methanesulfonic Acid×Compound 1)
In some embodiments, the present disclosure provides a chemical species Compound 4 comprising Compound 1 and methanesulfonic acid:
It is contemplated that Compound 4 can exist in a variety of physical forms. For example, Compound 4 can be in solution, suspension, or in solid form. In certain embodiments, Compound 4 is in solid form. When Compound 4 is in solid form, said compound may be amorphous, crystalline, or a mixture thereof.
In some embodiments, a solid form of Compound 4 has a stoichiometry of (Compound 1):(methanesulfonic acid) that is about 1:1.
In some embodiments, the present disclosure provides Compound 4 substantially free of impurities. As used herein, the term “substantially free of impurities” means that the compound contains no significant amount of extraneous matter. Such extraneous matter may include excess methanesulfonic acid, excess Compound 1, residual solvents, or any other impurities that may result from the preparation of, and/or isolation of, Compound 4. In certain embodiments, at least about 95% by weight of Compound 4 is present. In certain embodiments, at least about 95%, about 96%, about 97%, about 98%, or about 99% by weight of Compound 4 is present. In still other embodiments of the disclosure, at least about 99% by weight of Compound 4 is present.
According to one embodiment, Compound 4 is present in an amount of at least about 97.0, 97.5, 98.0, 98.5, 99.0, 99.5, or 99.8 weight percent where the percentages are based on the total weight of the composition. According to another embodiment, Compound 4 contains no more than about 3.0 area percent HPLC of total organic impurities and, in certain embodiments, no more than about 1.5 area percent HPLC total organic impurities relative to the total area of the HPLC chromatogram. In other embodiments, Compound 4 contains no more than about 1.0 area percent HPLC of any single impurity; no more than about 0.6 area percent HPLC of any single impurity, and, in certain embodiments, no more than about 0.5 area percent HPLC of any single impurity, relative to the total area of the HPLC chromatogram.
The structure depicted for Compound 4 is also meant to include all tautomeric forms of Compound 4. Additionally, structures depicted here are also meant to include compounds that differ only in the presence of one or more isotopically enriched atoms. For example, compounds having the present structure except for the replacement of hydrogen by deuterium or tritium, or the replacement of a carbon by a 13C- or 14C-enriched carbon are within the scope of this disclosure.
In some embodiments, Compound 4 is amorphous. In some embodiments, Compound 4 is amorphous, and is substantially free of crystalline Compound 4. As used herein, the term “substantially free of crystalline Compound 4” means that the compound contains no significant amount of crystalline Compound 4. In some embodiments, at least about 95%, about 96%, about 97%, about 98%, or about 99% by weight of amorphous Compound 4 is present. In some embodiments, at least about 99% by weight of amorphous Compound 4 is present.
In certain embodiments, Compound 4 is a crystalline solid. In other embodiments, Compound 4 is a crystalline solid substantially free of amorphous Compound 4. As used herein, the term “substantially free of amorphous Compound 4” means that the compound contains no significant amount of amorphous Compound 4. In certain embodiments, at least about 95% by weight of crystalline Compound 4 is present. In certain embodiments, at least about 95%, about 96%, about 97%, about 98%, or about 99% by weight of crystalline Compound 4 is present. In still other embodiments of the disclosure, at least about 99% by weight of crystalline Compound 4 is present.
It has been found that Compound 4 can exist in at least two polymorphic forms. In some embodiments, the present disclosure provides a polymorphic form of Compound 4 referred to herein as Form A. In some embodiments, the present disclosure provides a polymorphic form of Compound 4 referred to herein as Form B.
Compound 4 Form A
In some embodiments, Compound 4 Form A has at least 1, 2, 3, 4 or 5 X-ray Powder Diffraction (XRPD) peaks selected from the angles (degrees 2 theta±0.2) listed in Table 7 below.
In some embodiments, Compound 4 Form A is characterized by an X-ray powder diffraction (XRPD) pattern having diffractions at angles (degrees 2 theta±0.2) and corresponding d-spacing of:
In some embodiments, Compound 4 Form A is characterized in that it has one or more peaks in its X-ray powder diffraction pattern selected from those at about 8.52, 9.31, 11.89, 14.48, 15.45, 15.89, 18.80, 19.19, 20.14, 20.57, 23.94, 24.60, 25.83, 26.45, and 27.06 degrees 2 theta. In some embodiments, Compound 4 Form A is characterized in that it has two or more peaks in its X-ray powder diffraction pattern selected from those at about 8.52, 9.31, 11.89, 14.48, 15.45, 15.89, 18.80, 19.19, 20.14, 20.57, 23.94, 24.60, 25.83, 26.45, and 27.06 degrees 2 theta. In some embodiments, Compound 4 Form A is characterized in that it has three or more peaks in its X-ray powder diffraction pattern selected from those at about 8.52, 9.31, 11.89, 14.48, 15.45, 15.89, 18.80, 19.19, 20.14, 20.57, 23.94, 24.60, 25.83, 26.45, and 27.06 degrees 2 theta. In some embodiments, Compound 4 Form A is characterized in that it has four or more peaks in its X-ray powder diffraction pattern selected from those at about 8.52, 9.31, 11.89, 14.48, 15.45, 15.89, 18.80, 19.19, 20.14, 20.57, 23.94, 24.60, 25.83, 26.45, and 27.06 degrees 2 theta. In some embodiments, Compound 4 Form A is characterized in that it has five or more peaks in its X-ray powder diffraction pattern selected from those at about 8.52, 9.31, 11.89, 14.48, 15.45, 15.89, 18.80, 19.19, 20.14, 20.57, 23.94, 24.60, 25.83, 26.45, and 27.06 degrees 2 theta. In some embodiments, Compound 4 Form A is characterized in that it has six or more peaks in its X-ray powder diffraction pattern selected from those at about 8.52, 9.31, 11.89, 14.48, 15.45, 15.89, 18.80, 19.19, 20.14, 20.57, 23.94, 24.60, 25.83, 26.45, and 27.06 degrees 2 theta. In some embodiments, Compound 4 Form A is characterized in that it has seven or more peaks in its X-ray powder diffraction pattern selected from those at about 8.52, 9.31, 11.89, 14.48, 15.45, 15.89, 18.80, 19.19, 20.14, 20.57, 23.94, 24.60, 25.83, 26.45, and 27.06 degrees 2 theta. In some embodiments, Compound 4 Form A is characterized in that it has eight or more peaks in its X-ray powder diffraction pattern selected from those at about 8.52, 9.31, 11.89, 14.48, 15.45, 15.89, 18.80, 19.19, 20.14, 20.57, 23.94, 24.60, 25.83, 26.45, and 27.06 degrees 2 theta. In some embodiments, Compound 4 Form A is characterized in that it has nine or more peaks in its X-ray powder diffraction pattern selected from those at about 8.52, 9.31, 11.89, 14.48, 15.45, 15.89, 18.80, 19.19, 20.14, 20.57, 23.94, 24.60, 25.83, 26.45, and 27.06 degrees 2 theta. In some embodiments, Compound 4 Form A is characterized in that it has ten or more peaks in its X-ray powder diffraction pattern selected from those at about 8.52, 9.31, 11.89, 14.48, 15.45, 15.89, 18.80, 19.19, 20.14, 20.57, 23.94, 24.60, 25.83, 26.45, and 27.06 degrees 2 theta. In some embodiments, Compound 4 Form A is characterized in that it has eleven or more peaks in its X-ray powder diffraction pattern selected from those at about 8.52, 9.31, 11.89, 14.48, 15.45, 15.89, 18.80, 19.19, 20.14, 20.57, 23.94, 24.60, 25.83, 26.45, and 27.06 degrees 2 theta. In some embodiments, Compound 4 Form A is characterized in that it has twelve or more peaks in its X-ray powder diffraction pattern selected from those at about 8.52, 9.31, 11.89, 14.48, 15.45, 15.89, 18.80, 19.19, 20.14, 20.57, 23.94, 24.60, 25.83, 26.45, and 27.06 degrees 2 theta. In some embodiments, Compound 4 Form A is characterized in that it has thirteen or more peaks in its X-ray powder diffraction pattern selected from those at about 8.52, 9.31, 11.89, 14.48, 15.45, 15.89, 18.80, 19.19, 20.14, 20.57, 23.94, 24.60, 25.83, 26.45, and 27.06 degrees 2 theta. In some embodiments, Compound 4 Form A is characterized in that it has fourteen or more peaks in its X-ray powder diffraction pattern selected from those at about 8.52, 9.31, 11.89, 14.48, 15.45, 15.89, 18.80, 19.19, 20.14, 20.57, 23.94, 24.60, 25.83, 26.45, and 27.06 degrees 2 theta. In some embodiments, Compound 4 Form A is characterized in that it has peaks in its X-ray powder diffraction pattern comprising those at about 8.52, 9.31, 11.89, 14.48, 15.45, 15.89, 18.80, 19.19, 20.14, 20.57, 23.94, 24.60, 25.83, 26.45, and 27.06 degrees 2 theta. In some embodiments, Compound 4 Form A is characterized in that it has peaks in its X-ray powder diffraction pattern comprising those at about 8.52, 9.31, 11.89, 14.48, 15.45, 15.89, 18.80, 19.19, 20.14, 20.57, 23.94, 24.60, 25.83, 26.45, and 27.06 degrees 2 theta, corresponding to d-spacing shown in Table 8 above. As used herein, the term “about”, when used in reference to a degree 2-theta value refers to the stated value±0.2 degree 2-theta.
In certain embodiments, the X-ray powder diffraction pattern of Compound 4 Form A is substantially similar to the XRPD provided in
Methods for preparing Compound 4 Form A are described infra.
Compound 4 Form B
In some embodiments, Compound 4 Form B has at least 1, 2, 3, 4 or 5 X-ray Powder Diffraction (XRPD) peaks selected from the angles (degrees 2 theta 0.2) listed in Table 9 below.
In some embodiments, Compound 4 Form B is characterized by an X-ray powder diffraction (XRPD) pattern having diffractions at angles (degrees 2 theta±0.2) and corresponding d-spacing of:
In some embodiments, Compound 4 Form B is characterized in that it has one or more peaks in its X-ray powder diffraction pattern selected from those at about 8.53, 9.60, 10.31, 12.16, 14.75, 15.86, 20.07, 20.74, 22.45, 24.56, and 27.07 degrees 2 theta. In some embodiments, Compound 4 Form B is characterized in that it has two or more peaks in its X-ray powder diffraction pattern selected from those at about 8.53, 9.60, 10.31, 12.16, 14.75, 15.86, 20.07, 20.74, 22.45, 24.56, and 27.07 degrees 2 theta. In some embodiments, Compound 4 Form B is characterized in that it has three or more peaks in its X-ray powder diffraction pattern selected from those at about 8.53, 9.60, 10.31, 12.16, 14.75, 15.86, 20.07, 20.74, 22.45, 24.56, and 27.07 degrees 2 theta. In some embodiments, Compound 4 Form B is characterized in that it has four or more peaks in its X-ray powder diffraction pattern selected from those at about 8.53, 9.60, 10.31, 12.16, 14.75, 15.86, 20.07, 20.74, 22.45, 24.56, and 27.07 degrees 2 theta. In some embodiments, Compound 4 Form B is characterized in that it has five or more peaks in its X-ray powder diffraction pattern selected from those at about 8.53, 9.60, 10.31, 12.16, 14.75, 15.86, 20.07, 20.74, 22.45, 24.56, and 27.07 degrees 2 theta. In same embodiments, Compound 4 Form B is characterized in that it has six or more peaks in its X-ray powder diffraction pattern selected from those at about 8.53, 9.60, 10.31, 12.16, 14.75, 15.86, 20.07, 20.74, 22.45, 24.56, and 27.07 degrees 2 theta. In same embodiments, Compound 4 Form B is characterized in that it has seven or more peaks in its X-ray powder diffraction pattern selected from those at about 8.53, 9.60, 10.31, 12.16, 14.75, 15.86, 20.07, 20.74, 22.45, 24.56, and 27.07 degrees 2 theta. In some embodiments, Compound 4 Form B is characterized in that it has eight or more peaks in its X-ray powder diffraction pattern selected from those at about 8.53, 9.60, 10.31, 12.16, 14.75, 15.86, 20.07, 20.74, 22.45, 24.56, and 27.07 degrees 2 theta. In some embodiments, Compound 4 Form B is characterized in that it has nine or more peaks in its X-ray powder diffraction pattern selected from those at about 8.53, 9.60, 10.31, 12.16, 14.75, 15.86, 20.07, 20.74, 22.45, 24.56, and 27.07 degrees 2 theta. In some embodiments, Compound 4 Form B is characterized in that it has ten or more peaks in its X-ray powder diffraction pattern selected from those at about 8.53, 9.60, 10.31, 12.16, 14.75, 15.86, 20.07, 20.74, 22.45, 24.56, and 27.07 degrees 2 theta. In some embodiments, Compound 4 Form B is characterized in that it has peaks in its X-ray powder diffraction pattern comprising those at about 8.53, 9.60, 10.31, 12.16, 14.75, 15.86, 20.07, 20.74, 22.45, 24.56, and 27.07 degrees 2 theta. In some embodiments, Compound 4 Form B is characterized in that it has peaks in its X-ray powder diffraction pattern comprising those at about 8.53, 9.60, 10.31, 12.16, 14.75, 15.86, 20.07, 20.74, 22.45, 24.56, and 27.07 degrees 2 theta, corresponding to d-spacing shown in Table 10 above. As used herein, the term “about”, when used in reference to a degree 2-theta value refers to the stated value±0.2 degree 2-theta.
In certain embodiments, the X-ray powder diffraction pattern of Compound 4 Form B is substantially similar to the XRPD provided in
Methods for preparing Compound 4 Form B are described infra.
5. Compound 5 ((1R)-(−)-10-camphorsulfonic Acid×Compound 1)
In some embodiments, the present disclosure provides a chemical species Compound 5 comprising Compound 1 and (1R)-(−)-10-camphorsulfonic acid:
It is contemplated that Compound 5 can exist in a variety of physical forms. For example, Compound 5 can be in solution, suspension, or in solid form. In certain embodiments, Compound 5 is in solid form. When Compound 5 is in solid form, said compound may be amorphous, crystalline, or a mixture thereof.
In some embodiments, the solid form of Compound 5 has a stoichiometry of (Compound 1):((1R)-(−)-10-camphorsulfonic acid) that is about 1:1.
In some embodiments, the present disclosure provides Compound 5 substantially free of impurities. As used herein, the term “substantially free of impurities” means that the compound contains no significant amount of extraneous matter. Such extraneous matter may include excess (1R)-(−)-10-camphorsulfonic acid, excess Compound 1, residual solvents, or any other impurities that may result from the preparation of, and/or isolation of, Compound 5. In certain embodiments, at least about 95% by weight of Compound 5 is present. In certain embodiments, at least about 95%, about 96%, about 97%, about 98%, or about 99% by weight of Compound 5 is present. In still other embodiments of the disclosure, at least about 99% by weight of Compound 5 is present.
According to one embodiment, Compound 5 is present in an amount of at least about 97.0, 97.5, 98.0, 98.5, 99.0, 99.5, or 99.8 weight percent where the percentages are based on the total weight of the composition. According to another embodiment, Compound 5 contains no more than about 3.0 area percent HPLC of total organic impurities and, in certain embodiments, no more than about 1.5 area percent HPLC total organic impurities relative to the total area of the HPLC chromatogram. In other embodiments, Compound 5 contains no more than about 1.0 area percent HPLC of any single impurity; no more than about 0.6 area percent HPLC of any single impurity, and, in certain embodiments, no more than about 0.5 area percent HPLC of any single impurity, relative to the total area of the HPLC chromatogram.
The structure depicted for Compound 5 is also meant to include all tautomeric forms of Compound 5. Additionally, structures depicted here are also meant to include compounds that differ only in the presence of one or more isotopically enriched atoms. For example, compounds having the present structure except for the replacement of hydrogen by deuterium or tritium, or the replacement of a carbon by a 13C- or 14C-enriched carbon are within the scope of this disclosure.
In some embodiments, Compound 5 is amorphous. In some embodiments, Compound 5 is amorphous, and is substantially free of crystalline Compound 5. As used herein, the term “substantially free of crystalline Compound 5” means that the compound contains no significant amount of crystalline Compound 5. In some embodiments, at least about 95%, about 96%, about 97%, about 98%, or about 99% by weight of amorphous Compound 5 is present. In some embodiments, at least about 99% by weight of amorphous Compound 5 is present.
In certain embodiments, Compound 5 is a crystalline solid. In other embodiments, Compound 5 is a crystalline solid substantially free of amorphous Compound 5. As used herein, the term “substantially free of amorphous Compound 5” means that the compound contains no significant amount of amorphous Compound 5. In certain embodiments, at least about 95% by weight of crystalline Compound 5 is present. In certain embodiments, at least about 95%, about 96%, about 97%, about 98%, or about 99% by weight of crystalline Compound 5 is present. In still other embodiments of the disclosure, at least about 99% by weight of crystalline Compound 5 is present.
It has been found that Compound 5 can exist in at least one polymorphic form. In some embodiments, the present disclosure provides a polymorphic form of Compound 5 referred to herein as Form C.
Compound 5 Form C
In some embodiments, Compound 5 Form C has at least 1, 2, 3, 4 or 5 X-ray Powder Diffraction (XRPD) peaks selected from the angles (degrees 2 theta±0.2) listed in Table 11 below.
In some embodiments, Compound 5 Form C is characterized by an X-ray powder diffraction (XRPD) pattern having diffractions at angles (degrees 2 theta±0.2) and corresponding d-spacing of:
In some embodiments, Compound 5 Form C is characterized in that it has one or more peaks in its X-ray powder diffraction pattern selected from those at about 6.55, 9.01, 12.05, 12.65, 14.08, 22.16, 22.45, and 25.47 degrees 2 theta. In some embodiments, Compound 5 Form C is characterized in that it has two or more peaks in its X-ray powder diffraction pattern selected from those at about 6.55, 9.01, 12.05, 12.65, 14.08, 22.16, 22.45, and 25.47 degrees 2 theta. In some embodiments, Compound 5 Form C is characterized in that it has three or more peaks in its X-ray powder diffraction pattern selected from those at about 6.55, 9.01, 12.05, 12.65, 14.08, 22.16, 22.45, and 25.47 degrees 2 theta. In some embodiments, Compound 5 Form C is characterized in that it has four or more peaks in its X-ray powder diffraction pattern selected from those at about 6.55, 9.01, 12.05, 12.65, 14.08, 22.16, 22.45, and 25.47 degrees 2 theta. In some embodiments, Compound 5 Form C is characterized in that it has five or more peaks in its X-ray powder diffraction pattern selected from those at about 6.55, 9.01, 12.05, 12.65, 14.08, 22.16, 22.45, and 25.47 degrees 2 theta. In some embodiments, Compound 5 Form C is characterized in that it has six or more peaks in its X-ray powder diffraction pattern selected from those at about 6.55, 9.01, 12.05, 12.65, 14.08, 22.16, 22.45, and 25.47 degrees 2 theta. In some embodiments, Compound 5 Form C is characterized in that it has seven or more peaks in its X-ray powder diffraction pattern selected from those at about 6.55, 9.01, 12.05, 12.65, 14.08, 22.16, 22.45, and 25.47 degrees 2 theta. In some embodiments, Compound 5 Form C is characterized in that it has peaks in its X-ray powder diffraction pattern comprising those at about 6.55, 9.01, 12.05, 12.65, 14.08, 22.16, 22.45, and 25.47 degrees 2 theta. In some embodiments, Compound 5 Form C is characterized in that it has peaks in its X-ray powder diffraction pattern comprising those at about 6.55, 9.01, 12.05, 12.65, 14.08, 22.16, 22.45, and 25.47 degrees 2 theta, corresponding to d-spacing shown in Table 12 above. As used herein, the term “about”, when used in reference to a degree 2-theta value refers to the stated value±0.2 degree 2-theta.
In certain embodiments, the X-ray powder diffraction pattern of Compound 5 Form C is substantially similar to the XRPD provided in
Methods for preparing Compound 5 Form C are described infra.
General Methods of Providing the Compounds
Compound 1 is prepared according to the methods described in Example 1.
Acid addition compounds of general formula of Compound A, which formula encompasses, inter alia, Compounds 2 through 5, and/or particular forms thereof, are prepared from Compound 1, according to the general Scheme below.
In this scheme, “Acid” represents, e.g., any of the co-formers described herein. For instance, each of Compounds 2 through 5, and forms thereof, are prepared from Compound 1 by combining Compound 1 with an appropriate acid under suitable conditions to form the product Compound A. Thus, another aspect of the present disclosure provides a method for preparing Compounds 2 through 5, and forms thereof, by combining Compound 1 with an appropriate acid to form the product Compound A.
As described generally above, in some embodiments, the present disclosure provides a method for preparing Compound A:
comprising steps of:
combining Compound 1:
with a suitable co-former (e.g., a suitable acid) and optionally a suitable solvent under conditions suitable for forming Compound A. In some embodiments, the present disclosure provides a solid form of Compound 1 obtained by a process comprising the step of contacting Compound 1 with a suitable acid under conditions and for a time effective to form a solid form (e.g., salt or co-crystal) of Compound 1.
In some embodiments, Compound 1 is treated with a co-former selected from: benzenesulfonic acid, camphorsulfonic acid (e.g., (1R)-(−)-10-camphorsulfonic acid), 1,2-ethanedisulfonic acid, ethansulfonic acid, hydrobromic acid, hydrochloric acid, methanesulfonic acid, phosphoric acid, and sulfuric acid.
In some embodiments, a suitable co-former is benzenesulfonic acid.
In some embodiments, a suitable co-former is (1R)-(−)-10-camphorsulfonic acid.
In some embodiments, a suitable co-former is 1,2-ethanedisulfonic acid.
In some embodiments, a suitable co-former is ethansulfonic acid.
In some embodiments, a suitable co-former is hydrobromic acid.
In some embodiments, a suitable co-former is hydrochloric acid.
In some embodiments, a suitable co-former is methanesulfonic acid.
In some embodiments, a suitable co-former is phosphoric acid.
In some embodiments, a suitable co-former is sulfuric acid.
A suitable solvent may be any solvent system (e.g., one solvent or a mixture of solvents) in which Compound 1 and/or an acid are soluble, or are at least partially soluble.
Examples of suitable solvents useful in the present disclosure include, but are not limited to protic solvents, aprotic solvents, polar aprotic solvent, or mixtures thereof. In certain embodiments, suitable solvents include an ether, an ester, an alcohol, a ketone, or a mixture thereof. In some embodiments, a solvent is one or more organic alcohols. In some embodiments, a solvent is chlorinated. In some embodiments, a solvent is an aromatic solvent.
In certain embodiments, a suitable solvent is tetrahydrofuran (THF), 2,2,2-trifluoroethanol, or acetone wherein said solvent is anhydrous or in combination with water. In some embodiments, a suitable solvent is 80:20 acetone/water. In some embodiments, a suitable solvent is THF. In some embodiments, a suitable solvent is 2,2,2-trifluoroethanol. In some embodiments, a suitable solvent is a combination of said solvents.
In some embodiments, a suitable solvent is acetic acid, cyclopentyl methyl ether (CPME), dimethylacetamide (DMA), dimethylformamide (DMF), dimethylsulfoxide (DMSO), ethyl acetate, hexafluoroisopropanol (HFIPA), isopropanol (IPA), isopropyl ether (IPE), methyl tert-butyl ether (MTBE), N-methyl-2-pyrrolidone (NMP), tert-amyl methyl ether (TAME), tetrahydrofuran (THF), or 2,2,2-trifluoroethanol (TFE), wherein said solvent is anhydrous or in combination with water. In some embodiments, a suitable solvent is acetic acid. In some embodiments, a suitable solvent is CPME. In some embodiments, a suitable solvent is DMA. In some embodiments, a suitable solvent is DMF. In some embodiments, a suitable solvent is DMSO. In some embodiments, a suitable solvent is ethyl acetate. In some embodiments, a suitable solvent is HFIPA. In some embodiments, a suitable solvent is IPA. In some embodiments, a suitable solvent is IPE. In some embodiments, a suitable solvent is MTBE. In some embodiments, a suitable solvent is NMP. In some embodiments, a suitable solvent is TAME. In some embodiments, a suitable solvent is THF. In some embodiments, a suitable solvent is 80:20 THF/water. In some embodiments, a suitable solvent is 99:1 THF/water. In some embodiments, a suitable solvent is 97:3 THF/water. In some embodiments, a suitable solvent is 93:7 THF/water. In some embodiments, a suitable solvent is TFE. In some embodiments, a suitable solvent is a combination of said solvents.
In some embodiments, the present disclosure provides a method for preparing (i) a free base form of Compound 1 or (ii) Compound A, comprising one or more steps of removing a solvent and adding a solvent. In some embodiments, an added solvent is the same as the solvent removed. In some embodiments, an added solvent is different from a solvent removed. Means of solvent removal are known in the synthetic and chemical arts and include, but are not limited to, any of those described herein and in the Exemplification.
In some embodiments, a method for preparing (i) a free base form of Compound 1 or (ii) Compound A comprises one or more steps of heating or cooling a preparation.
In some embodiments, a method for preparing (i) a free base form of Compound 1 or (ii) Compound A comprises one or more steps of agitating or stirring a preparation.
In some embodiments, a method for preparing (i) a free base form of Compound 1 or (ii) Compound A comprises a step of adding a suitable co-former to a solution or slurry of Compound 1.
In some embodiments, a method for preparing (i) a free base form of Compound 1 or (ii) Compound A comprises a step of adding a suitable acid to a solution or slurry of Compound 1.
In some embodiments, a method for preparing (i) a free base form of Compound 1 or (ii) Compound A comprises a step of heating.
In certain embodiments, a free base form of Compound 1 or Compound A precipitates from the mixture. In another embodiment, a free base form of Compound 1 or Compound A crystallizes from the mixture. In other embodiments, a free base form of Compound 1 or Compound A crystallizes from solution following seeding of the solution (i.e., adding crystals of a free base form of Compound 1 or Compound A to the solution).
A free base form of Compound 1 or Compound A can precipitate out of the reaction mixture, or be generated by removal of part or all of the solvent through methods such as evaporation, distillation, filtration (e.g., nanofiltration, ultrafiltration), reverse osmosis, absorption and reaction, by adding a suitable anti-solvent, by cooling or by different combinations of these methods.
As described generally above, a free base form of Compound 1 or Compound A is optionally isolated. It will be appreciated that a free base form of Compound 1 or Compound A may be isolated by any suitable physical means known to one of ordinary skill in the art. In certain embodiments, precipitated solid free base form of Compound 1 or Compound A is separated from the supernatant by filtration. In other embodiments, precipitated solid free base form of Compound 1 or Compound A is separated from the supernatant by decanting the supernatant.
In certain embodiments, a free base form of Compound 1 or Compound A is separated from the supernatant by filtration.
In certain embodiments, an isolated free base form of Compound 1 or Compound A is dried in air. In other embodiments isolated free base form of Compound 1 or Compound A is dried under reduced pressure, optionally at elevated temperature (e.g., a vacuum oven).
Methods of Use
The present disclosure provides uses for compounds and compositions described herein. In some embodiments, provided compounds and compositions are useful in medicine (e.g., as therapy). In some embodiments, provided compounds and compositions are useful in research as, for example, analytical tools and/or control compounds in biological assays.
In some embodiments, the present disclosure provides methods of administering provided compounds or compositions to a subject in need thereof. In some embodiments, the present disclosure provides methods of administering provided compounds or compositions to a subject suffering from or susceptible to a disease, disorder, or condition associated with JAK2.
In some embodiments, provided compounds are useful as JAK2 inhibitors. In some embodiments, provided compounds are useful as Type II JAK2 inhibitors. In some embodiments, the present disclosure provides methods of inhibiting JAK2 in a subject comprising administering a provided compound or composition. In some embodiments, the present disclosure provides methods of inhibiting JAK2 in a biological sample comprising contacting the sample with a provided compound or composition.
JAK (e.g., JAK2) has been implicated in various diseases, disorders, and conditions, such as myeloproliferative neoplasms (Vainchenker, W. et al., F1000Research 2018, 7 (F1000 Faculty Rev): 82), atopic dermatitis (Rodrigues, M. A. and Torres, T. J. Derm. Treat. 2019, 31(1), 33-40) and acute respiratory syndrome, hyperinflammation, and/or cytokine storm syndrome (The Lancet. doi:10.1016/S0140-6736(20)30628-0). Accordingly, in some embodiments, the present disclosure provides methods of treating a disease, disorder or condition associated with JAK2 in a subject in need thereof comprising administering to the subject a provided compound or composition. In some embodiments, a disease, disorder or condition is associated with overexpression of JAK2.
In some embodiments, the present disclosure provides methods of treating cancer, comprising administering a provided compound or composition to a subject in need thereof. In some embodiments, the present disclosure provides methods of treating proliferative diseases, comprising administering a provided compound or composition to a subject in need thereof.
In some embodiments, the present disclosure provides methods of treating a hematological malignancy, comprising administering a provided compound or composition to a subject in need thereof. In some embodiments, a hematological malignancy is leukemia (e.g., chronic lymphocytic leukemia, acute lymphoblastic leukemia, T-cell acute lymphoblastic leukemia, chronic myelogenous leukemia, acute myelogenous leukemia, or acute monocytic leukemia). In some embodiments, a hematological malignancy is lymphoma (e.g., Burkitt's lymphoma, Hodgkin's lymphoma, or non-Hodgkin's lymphoma). In some embodiments, a non-Hodgkin's lymphoma is a B-cell lymphoma. In some embodiments, a non-Hodgkin's lymphoma is a NK/T-cell lymphoma (e.g., cutaneous T-cell lymphoma). In some embodiments, a hematological malignancy is myeloma (e.g., multiple myeloma). In some embodiments, a hematological malignancy is myeloproliferative neoplasm (e.g., polycythemia vera, essential thrombocytopenia, or myelofibrosis). In some embodiments, a hematological malignancy is myelodysplastic syndrome.
In some embodiments, the present disclosure provides methods of treating an inflammatory disease, disorder, or condition (e.g., acute respiratory syndrome, hyperinflammation, and/or cytokine storm syndrome (including those associated with COVID-19) or atopic dermatitis), comprising administering a provided compound or composition to a subject in need thereof.
In some embodiments, a provided compound or composition is administered as part of a combination therapy. As used herein, the term “combination therapy” refers to those situations in which a subject is simultaneously exposed to two or more therapeutic or prophylactic regimens (e.g., two or more therapeutic or prophylactic agents). In some embodiments, the two or more regimens may be administered simultaneously; in some embodiments, such regimens may be administered sequentially (e.g., all “doses” of a first regimen are administered prior to administration of any doses of a second regimen); in some embodiments, such agents are administered in overlapping dosing regimens. In some embodiments, “administration” of combination therapy may involve administration of one or more agent(s) or modality(ies) to a subject receiving the other agent(s) or modality(ies) in the combination. For clarity, combination therapy does not require that individual agents be administered together in a single composition (or even necessarily at the same time), although in some embodiments, two or more agents, or active moieties thereof, may be administered together in a combination composition.
For example, in some embodiments, a provided compound or composition is administered to a subject who is receiving or has received one or more additional therapies (e.g., an anti-cancer therapy and/or therapy to address one or more side effects of such anti-cancer therapy, or otherwise to provide palliative care). Exemplary additional therapies include BCL2 inhibitors (e.g., venetoclax), HDAC inhibitors (e.g., vorinostat), BET inhibitors (e.g., mivebresib), proteasome inhibitors (e.g., bortezomib), LSD1 inhibitors (e.g., IMG-7289), and CXCR2 inhibitors. Useful combinations of a JAK2 inhibitor with BCL2, HDAC, BET, and proteasome inhibitors have been demonstrated in cells derived from cutaneous T-cell lymphoma patients (Yumeen, S., et al., Blood Adv. 2020, 4(10), 2213-2226). A combination of a JAK2 inhibitor with a LSD1 inhibitor demonstrated good efficacy in a mouse model of myeloproliferative neoplasms (Jutzi, J. S., et al., HemaSphere 2018, 2(3), http://dx.doi.org/10.1097/HS9.00000000000054). CXCR2 activity has been shown to modulate signaling pathways involved in tumor growth, angiogenesis, and/or metastasis, including the JAK-STAT3 pathway (Jaffer, T., Ma, D. Transl. Cancer Res. 2016, 5 (Suppl. 4), S616-S628).
Pharmaceutical Compositions
In another aspect, the present disclosure provides pharmaceutical compositions comprising any of the compounds described herein (e.g., any of Compounds 1-5) or any of the compounds described herein (e.g., any of Compounds 1-5) in combination with a pharmaceutically acceptable excipient (e.g., carrier). In some embodiments, the present disclosure provides a pharmaceutical composition for oral administration, comprising a solid form of any of Compounds 1-5.
The pharmaceutical compositions include optical isomers, diastereomers, or pharmaceutically acceptable salts of the compounds disclosed herein.
A “pharmaceutically acceptable carrier,” as used herein refers to pharmaceutical excipients, for example, pharmaceutically, physiologically, acceptable organic or inorganic carrier substances suitable for enteral or parenteral application that do not deleteriously react with the active agent. Suitable pharmaceutically acceptable carriers include water and one or more fillers, disintegrants, lubricants, glidants, anti-adherents, and/or anti-statics, etc. Such preparations can be sterilized and, if desired, mixed with auxiliary agents such as lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, coloring, and/or aromatic substances and the like that do not deleteriously react with the compounds of the disclosure.
Provided pharmaceutical compositions can be in a variety of forms including oral dosage forms, topical creams, topical patches, iontophoresis forms, suppository, nasal spray and/or inhaler, eye drops, intraocular injection forms, depot forms, as well as injectable and infusible solutions. Methods of preparing pharmaceutical compositions are well known in the art.
In some embodiments, provided compounds are formulated in a unit dosage form for ease of administration and uniformity of dosage. The expression “unit dosage form” as used herein refers to a physically discrete unit of an active agent (e.g., a compound described herein) for administration to a subject. Typically, each such unit contains a predetermined quantity of active agent. In some embodiments, a unit dosage form contains an entire single dose of the agent. In some embodiments, more than one unit dosage form is administered to achieve a total single dose. In some embodiments, administration of multiple unit dosage forms is required, or expected to be required, in order to achieve an intended effect. A unit dosage form may be, for example, a liquid pharmaceutical composition containing a predetermined quantity of one or more active agents, a solid pharmaceutical composition (e.g., a tablet, a capsule, or the like) containing a predetermined amount of one or more active agents, a sustained release formulation containing a predetermined quantity of one or more active agents, or a drug delivery device containing a predetermined amount of one or more active agents, etc.
Provided compositions may be administered using any amount and any route of administration effective for treating or lessening the severity of any disease or disorder described herein.
The following numbered embodiments, while non-limiting, are exemplary of certain aspects of the present disclosure:
The examples below are meant to illustrate certain embodiments of the disclosure, and not to limit the scope of the disclosure.
XRPD pattern was collected with a PANalytical X'Pert PRO MPD or PANalytical Empyrean diffractometer using an incident beam of Cu radiation produced using a long, fine-focus source. An elliptically graded multilayer mirror was used to focus Cu Kα X-rays through the specimen and onto the detector. Prior to the analysis, a silicon specimen (NIST SRM 640f) was analyzed to verify the observed position of the Si 111 peak is consistent with the NIST-certified position. A specimen of the sample was sandwiched between 3-μm-thick films and analyzed in transmission geometry. A beam-stop, short antiscatter extension, and antiscatter knife edge were used to minimize the background generated by air. Soller slits for the incident and diffracted beams were used to minimize broadening and asymmetry from axial divergence. Diffraction patterns were collected using a scanning position-sensitive detector (X'Celerator) located 240 mm from the specimen and Data Collector software v. 5.5.
aA PANalytical Empyrean X-ray Powder Diffractometer was used.
bA PANalytical X'Pert PRO MPD X-ray Powder Diffractometer was used.
B. Thermogravimetric (TGA) and Differential Scanning Calorimetry (DSC)
TG analysis was performed using a Mettler-Toledo TGA/DSC3+ analyzer. Temperature and enthalpy adjustments were performed using indium, tin, and zinc, and then verified with indium. The balance was verified with calcium oxalate. The sample was placed in an open aluminum pan. The pan was then inserted into the TG furnace. A weighed aluminum pan configured as the sample pan was placed on the reference platform. The furnace was heated under nitrogen. The sample was analyzed from 25° C. to 350° C. at 10° C./min.
DSC was performed using a Mettler-Toledo DSC3+ differential scanning calorimeter. A tau lag adjustment was performed with indium, tin, and zinc. The temperature and enthalpy were adjusted with octane, phenyl salicylate, indium, tin and zinc. The adjustment was then verified with octane, phenyl salicylate, indium, tin, and zinc. The sample was placed into a hermetically sealed aluminum DSC pan, the weight was accurately recorded, the lid was pierced, and the sample was inserted into the DSC cell. A weighed aluminum pan configured as the sample pan was placed on the reference side of the cell. The pan lid was pierced prior to sample analysis. The sample was analyzed from −30° C. to 250° C. or 350° C. at 10° C./min.
C. Dynamic Vapor Sorption (DVS)
Automated vapor sorption (VS) data were collected on a Surface Measurement System DVS Intrinsic instrument. Samples were not dried prior to analysis. Sorption and desorption data were collected over a range from 5% to 95% RH at 10% RH increments under a nitrogen purge. The equilibrium criterion used for analysis was less than 0.0100% weight change in 5 minutes with a maximum equilibration time of 3 hours. Data were not corrected for the initial moisture content of the samples.
D. Solution NMR
NMR spectra for Compound 1 were recorded on a Bruker 400 MHz Avance III HD instrument with 5 mm PABBO BB/19F-1H/D Z-GRD Z108618 probe, or on an Avance 600 MHz NMR Spectrometer, using DMSO-d6 as a solvent.
NMR spectra for Compounds 2-5 were acquired with an Avance 600 MHz NMR spectrometer. The samples were prepared by dissolving given amount of sample in DMSO-d6 containing TMS.
E. X-Ray Fluorescence (XRF)
Microbeam energy dispersive X-ray fluorescence (μEDXRF) spectra were collected with a Horiba XGT-9000 equipped with a microfocus Rh X-ray source powered at 50 kV and automatically controlled current. A vacuum atmosphere was used during data collection. The silicon-strip detector (SSD) was used in the high-resolution mode, P5.
A monocapillary optic with a nominal focal spot of 1.2 mm was used for analysis of two areas on the sample. The analysis of one of these areas was repeated once. Quantitative analysis of chlorine was completed using fundamental parameters model in the Horiba X-ray Lab software application using a one-point calibration from a measured standard material with known chlorine content. The results were an average from the three spectra collected.
F. Variable Relative Humidity X-Ray Powder Diffraction (VRH-XRPD)
XRPD patterns were collected with a PANalytical X'Pert PRO MPD diffractometer using an incident beam of Cu Kα radiation produced using a long, fine-focus source and a nickel filter. The diffractometer was configured using the symmetric Bragg-Brentano geometry. Data were collected and analyzed using Data Collector software v. 5.5. Prior to the analysis, a silicon specimen (NIST SRM 640f) was analyzed to verify the observed position of the Si 111 peak is consistent with the NIST-certified position. A specimen of the sample was packed in a nickel-coated copper well. Antiscatter slits (SS) were used to minimize the background generated by air. Soller slits for the incident and diffracted beams were used to minimize broadening from axial divergence. Diffraction patterns were collected using a scanning position-sensitive detector (X'Celerator) located 240 mm from the sample and Data Collector software v. 5.5.
An Anton Paar temperature-humidity chamber (THC) was used while collecting in-situ XRPD patterns as a function of humidity. The temperature of the specimen was changed with a Peltier thermoelectric device located directly under the specimen holder and monitored with a platinum-100 resistance sensor located in the specimen holder. The thermoelectric device was powered and controlled by an Anton Paar TCU 50 interfaced with Data Collector. The humidity was generated with an RH-200 manufactured by VTI Inc. and carried by a flow of nitrogen gas. The humidity was monitored by a HygroClip sensor manufactured by Rotronic located next to the specimen inside the THC.
Synthesis of compound 1.1. To a solution of benzyl alcohol (17.05 g, 157.69 mmol, 1.0 equiv) in THF (250 mL), was added sodium hydride (12.61 g, 315.38 mmol, 2 equiv) at 0° C. and stirred for 1 h. Compound 2-chloro-4-nitropyridine (25 g, 157.69 mmol, 1.0 equiv) was added and the reaction mixture was stirred at 0° C. for 2 h. The reaction mixture was transferred into ice, stirred, and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (CombiFlash®, 10% ethyl acetate in hexane) to afford 1.1. (20 g, 58%). MS (ES): m/z 220.13 [M+H]+.
Synthesis of compound 1.2. A solution of 1.1 (20 g, 91.05 mmol, 1.0 equiv) in THF (200 mL) was degassed by bubbling through a stream of argon for 10 min. Under argon atmosphere 2-dicyclohexylphosphino-2′,4′,6′-triisopropylbiphenyl (4.34 g, 9.105 mmol, 0.1 equiv) and tris(dibenzylideneacetone)dipalladium(0) (4.17 g, 4.55 mmol, 0.05 equiv) were added, and degassed for 5 min. To this mixture was added lithium bis(trimethylsilyl)amide solution (1 M in THF, 182 mL, 182.1 mmol, 2.0 equiv) and the reaction mixture was stirred at 65° C. for 1 h. It was cooled to room temperature, transferred into ice-water and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (CombiFlash®, 3% methanol in DCM) to afford 1.2 (11.2 g, 61%). MS (ES): m/z 201.2 [M+H]+.
Synthesis of compound 1.3. To a solution of 1.2 (11.2 g, 55.93 mmol, 1.0 equiv) and pyridine (6.3 mL, 78.30 mmol, 1.4 equiv) in DCM (110 mL) was added acetic anhydride (6.34 mL, 67.11 mmol, 1.2 equiv) at room temperature and stirred for 1 h. The reaction mixture was transferred into ice, stirred, and extracted with DCM. The combined organic layers were washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (CombiFlash®, 1% methanol in DCM) to afford 1.3 (6.1 g, 45%). MS (ES): m/z 243.21 [M+H]+.
Synthesis of compound 1.4. A mixture of compound 1.3 (6.1 g, 25.18 mmol, 1.0 equiv) and 10%/o palladium on carbon (2 g) in methanol (60 mL) was stirred under hydrogen (1 atm) for 2 h. It was filtered through a pad of Celite® and rinsed with methanol. The filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (CombiFlash®, 5% methanol in DCM) to afford 1.4 (3.3 g, 86%). MS (ES): m/z 153.2 [M+H]+.
Synthesis of compound 1.5. To a solution of 5-(trifluoromethyl)pyridin-2(1H)-one (5.0 g, 30.66 mmol, 1.0 equiv) in conc. sulfuric acid (25 mL) was added fuming nitric acid (8 mL) at 0° C. The reaction mixture was stirred at 65° C. for 6 h. It was pour over crushed ice, stirred and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (CombiFlash®, 2.5% methanol in DCM) to afford 1.5 (2.0 g, 31%). MS (ES): m/z 209.10 [M+H]+.
Synthesis of compound 1.6. To a mixture of 1.5 (1.0 g, 4.81 mmol, 1.0 equiv) and potassium carbonate (1.3 g, 9.62 mmol, 2.0 equiv) in DMF (15 mL) was stirred for 15 min before the addition of methyl iodide (1.0 g, 7.21 mmol, 1.5 equiv). The reaction mixture was stirred at 80° C. for 2 h. The reaction mixture was transferred into ice-water and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (CombiFlash®, 40% ethyl acetate in hexane) to afford 1.6 (0.57 g, 53%). MS (ES): m/z 223.12 [M+H]+.
Synthesis of compound 1.7. A mixture of compound 1.6 (0.57 g, 2.57 mmol, 1.0 equiv) and 10% palladium on carbon (0.3 g) in methanol (18 mL) was stirred under hydrogen (1 atm) for 1 h. It was filtered through a pad of Celite® and rinsed with methanol. The filtrate was concentrated under reduced pressure to obtain 1.7 (0.34 g, 68.96%). MS (ES): m/z 193.14 [M+H]+. It was used without purification.
Synthesis of compound 1.8. To a solution of 3,5-difluoropyridin-2-amine (10 g, 76.87 mmol, 1.0 equiv) in THF (200 mL), was added n-butyl lithium (2.5 M in hexane, 61.4 mL, 153.7 mmol, 2.0 equiv) at −78° C. and stirred for 40 min. Hexachloroethane (36.3 g, 153.7 mmol, 2.0 equiv) was added and the reaction mixture was stirred at −78° C. for 30 min. After completion of reaction, a saturated aqueous ammonium chloride solution was added carefully and stirred. The mixture was allowed to warm to room temperature and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (CombiFlash®, 12% ethyl acetate in hexane) to afford 1.8 (8.0 g, 63%). 1H NMR (DMSO-d6, 400 MHz): δ 7.98-7.94 (m, 1H), 6.48 (bs, 2H).
Synthesis of compound 1.9. Concentrated sulfuric acid (3 mL) was added dropwise to potassium persulfate (2.05 g, 7.6 mmol, 2.5 equiv) at room temperature and stirred for 15 min. To the mixture was added 1.8 (0.5 g, 3.04 mmol, 1.0 equiv) in portions to maintain the temperature between 30-40° C. After the addition, the reaction mixture was stirred at room temperature for 3 h. It was poured over crushed ice, stirred, basified with saturated sodium bicarbonate, and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (CombiFlash®, 2-3% ethyl acetate in hexane) to afford 1.9 (0.970 g, 16.41%). 1H NMR (DMSO-d6, 400 MHz): δ 8.78 (s, 1H).
Synthesis of compound 1.10. To a solution of 1.9 (0.970 g, 4.99 mmol, 1.0 equiv) in acetonitrile (10 mL) was added aqueous methylamine solution (40%, 0.8 mL, 9.98 mmol, 2.0 equiv) dropwise at 0° C. The reaction mixture was stirred at room temperature for 20 min. It was transferred into ice-water and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (CombiFlash®, 10% ethyl acetate in hexane) to afford 1.10 (0.930 g, 91%). 1H NMR (DMSO-d6, 400 MHz). S 7.98 (s, 1H), 7.05 (bs, 1H), 2.79 (d, 3H).
Synthesis of compound 1.11. To a solution of 1.10 (0.930 g, 4.52 mmol, 1.0 equiv) in DMF (10 mL) was added 1.4 (0.895 g, 5.88 mmol, 1.3 equiv) followed by sodium carbonate (0.958 g, 9.04 mmol, 2.0 equiv). The reaction mixture was stirred at 50° C. for 6 h. It was cooled to room temperature, poured into ice-water. The precipitated solids were collected by filtration, washed with water and dried under vacuum to obtain 1.11 (0.850 g, 56%). MS (ES): m/z 338.7 [M+H]+.
Synthesis of compound 1.12. A mixture of compound 1.11 (0.850 g, 2.52 mmol, 1.0 equiv), iron powder (0.705 g, 12.6 mmol, 5.0 equiv) and ammonium chloride (0.673 g, 12.6 mmol, 5.0 equiv) in ethanol-water (8:2, 10 mL) was stirred at 80° C. for 2 h. It was cooled to room temperature, filtered through a pad of Celite® and rinsed with ethanol. The filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (CombiFlash®, 2.4% methanol in DCM) to afford 1.12 (0.710 g, 92%). MS (ES): m/z 308.5 [M+H]+.
Synthesis of compound 1.13. To a solution of 1.12 (0.150 g, 0.487 mmol, 1.0 equiv) in THF (2 mL) was added 1,1′-thiocarbonyldiimidazole (0.433 g, 2.43 mmol, 5.0 equiv). The reaction mixture was stirred at 80° C. for 1 h. It was cooled to room temperature and poured into ice-water. The precipitated solids were collected by filtration and triturated with hexane to obtain 1.13 (0.110 g, 65%). MS (ES): m/z: 350.7 [M+H]+.
Synthesis of compound 1.14. To a solution of 1.13 (0.110 g, 0.314 mmol, 1.0 equiv) in acetic acid (5 mL) was added aqueous hydrobromic acid (0.037 g, 0.471 mmol, 1.5 equiv) at 0° C. followed by bromine (0.200 g, 1.25 mmol, 4.0 equiv). The reaction mixture was stirred for 10 min. It was transferred into a saturated aqueous sodium bicarbonate solution, stirred, and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (CombiFlash®, 2.5% methanol in DCM) to afford 1.14 (0.063 g, 51%). MS (ES): m/z 397.6 [M+H]+.
Synthesis of compound 1.15 A mixture of 1.14 (0.220 g, 0.554 mmol, 1.0 equiv), 1.7 (0.127 g, 0.665 mmol, 1.2 equiv) and cesium carbonate (0.450 g, 1.385 mmol, 2.5 equiv) in 1,4-dioxane (12 mL) was degassed by bubbling through a stream of argon for 10 min. Under argon atmosphere 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (0.064 g, 0.110 mmol, 0.2 equiv) and tris(dibenzylideneacetone)dipalladium(0) (0.051 g, 0.055 mmol, 0.1 equiv) were added, and degassed for 5 min. The reaction mixture was stirred at 110° C. for 2 h. It was cooled to room temperature, transferred into water and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (CombiFlash®, 2.3% methanol in DCM) to afford 1.15 (0.050 g, 26%). MS (ES): m/z: 508.2 [M]+.
Synthesis of Compound 1. A mixture of 1.15 (0.077 g, 0.151 mmol, 1.0 equiv), zinc dust (0.0019 g, 0.030 mmol, 0.2 equiv) and zinc cyanide (0.088 g, 0.755 mmol, 5.0 equiv) in dimethylacetamide (5 mL) was degassed by bubbling through a stream of Celite® for 10 min. Under argon atmosphere were added 1,1′-ferrocenediyl-bis(diphenylphosphine) (0.025 g, 0.045 mmol, 0.3 equiv) and tris(dibenzylideneacetone)dipalladium(0)(0.020 g, 0.022 mmol, 0.15 equiv), and degassed for 5 min. The reaction mixture was stirred at 170° C. in a microwave reactor for 2 h. It was cooled to room temperature, transferred into water and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (CombiFlash®, 2.5% methanol in DCM) to afford Compound 1 (0.025 g, 33%). MS (ES): m/z: 499.0 [M]+, LCMS purity: 99.34%, HPLC purity: 96.76%, 1H NMR (DMSO-d6, 400 MHz): δ 10.67 (s, 1H), 9.06 (s, 1H), 8.65 (s, 1H), 8.32 (s, 1H), 8.25-8.23 (d, J=5.6 Hz, 1H), 8.19 (s, 1H), 7.75 (s, 1H), 6.76-6.75 (m, 1H), 3.96 (s, 3H), 3.66 (s, 3H), 2.06 (s, 3H).
Compound 1 was prepared generally as described in Example 1. A lot of Compound 1 (Lot I) prepared as described in Example 9 was characterized as described below and denoted Compound 1 Form 1.
Hygroscopicity of Compound 1 Form 1 was analyzed by dynamic vapor sorption (DVS) from 5% to 95% relative humidity (
Solubility Study
Aliquots of various solvents were added to measured amounts of Compound 1 Form 1 with agitation at ambient temperature until complete dissolution was achieved, as judged by visual observation. Compound 1 Form 1 obtained from the synthetic procedure described in Example 1 was found to show limited solubility in most of the organic solvents assessed. See Table 15 below, where A is 5-20 mg/mL; B is 1-4.9 mg/mL; and C is <1 mg/mL.
aSolubilities were calculated based on the total solvent used to give a solution; actual solubilities may be greater because of the volume of the solvent portions used or a slow rate of dissolution. If dissolution did not occur as determined by visual assessment, the value was reported as
In an effort to find salts of Compound 1, a salt/co-crystal screen was conducted under different conditions with various salt/co-crystal co-formers and solvent systems.
Compound obtained from the synthetic procedure described in Example 1 was used as the starting material for salt and cocrystal experiments.
For each condition, about 50-100 mg of Compound 1 was used. The results are summarized in Table 16, below:
amol Compound 1/mol conformer for each experiment was 1:1
1H NMR
1H NMR
1H NMR
1H NMR
1H NMR
aTemperatures (° C.) reported were transition maxima unless otherwise stated. Temperatures were rounded to the nearest tenth of a degree.
bWeight loss (%) at a certain temperature; weight changes (%) were rounded to 1 decimal place; temperatures were rounded to the nearest degree.
Approximate Aqueous Solubility of Selected Solid Forms
Aliquots of various solvents were added to measured amounts of provided compounds with agitation at ambient temperature until complete dissolution was achieved, as judged by visual observation. If dissolution occurred after the addition of the first aliquot, values were reported as “>”. Results are shown in Table 18, where A is <2 mg/mL; B is <1 mg/mL.
Compound 2 Form A
Compound 1 (93.0 mg) was slurried in THF (2 mL). Concentrated HCl (16.0 μL) was added to the slurry. The slurry was stirred at ambient temperature for 4 days. Solids were isolated by filtration to provide Compound 2 Form A.
X-ray fluorescence was used to determine the approximate stoichiometry of Cl− in Compound 2 Form A. This was determined to be approximately 0.83 mol Cl−/mol Compound 1.
DVS was also obtained for Compound 2 Form A, displaying a weight gain of only 0.95%, or 0.3 mol/mol H2O, up to 95% RH and a weight loss of 1.01% upon desorption to 5% RH (
Compound 3 Form A
Compound 1 (83.8 mg) was slurried in THF (2 mL). Concentrated HBr (19.5 μL) was added to the slurry. The slurry was stirred at ambient temperature for 4 days. Solids were isolated by filtration to provide Compound 3 Form A.
Compound 4 Form A
Compound 1 (81.0 mg) was slurried in THF (2 mL). Methanesulfonic acid (11.0 μL) was added to the slurry. The slurry was stirred at ambient temperature for 4 days. Solids were isolated by filtration to provide Compound 4 Form A.
Compound 4 Form B
Compound 4 Form A material was placed in a 45° C. vacuum oven in a loosely capped vial for 2 days. The vial was capped and cooled to ambient temperature over desiccant to provide Compound 4 Form B.
Compound 5 Form C
(1R)-(−)-10-camphorsulfonic acid (39.2 mg) was dissolved in THF (2 mL) with sonication. The coformer solution was added to Compound 1 (77.7 mg). The slurry was stirred at ambient temperature for 4 days. Solids were isolated by filtration and further dried in a vacuum oven at ambient temperature for 5 days to provide Compound 5 Form C.
JAK2 Binding Assay
JAK2 (JH1domain-catalytic, Y1007F,Y1008F) kinase was expressed as N-terminal fusion to the DNA binding domain of NFkB in transiently transfected HEK293 cells and subsequently tagged with DNA for qPCR detection. Streptavidin-coated magnetic beads were treated with biotinylated small molecule ligands for 30 minutes at room temperature to generate affinity resins for kinase assays. The liganded beads were blocked with excess biotin and washed with blocking buffer (SeaBlock (Pierce), 1% BSA, 0.05% Tween 20, 1 mmol/L DTT) to remove unbound ligand and to reduce nonspecific phage binding. Binding reactions were assembled by combining kinases, liganded affinity beads, and test compounds in 1× binding buffer (1×PBS, 0.05% Tween 20, 0.1% BSA, 1 mmol/L DTT). Test compound was prepared as 111× stocks in 100% DMSO and directly diluted into the assay wells. All reactions were performed in polypropylene 384-well plates in a final volume of 0.02 mL. The assay plates were incubated at room temperature with shaking for 1 hour and the affinity beads were washed with wash buffer (1×PBS, 0.05% Tween 20). The beads were then re-suspended in elution buffer (1×PBS, 0.05% Tween 20, 0.5 μmol/L non-biotinylated affinity ligand) and incubated at room temperature with shaking for 30 minutes. The kinase concentration in the eluate was measured by qPCR. Compound 1 as prepared by Example 1 was found to have a Kd<10 nM.
JAK Family Selectivity Assays
Provided compounds are evaluated for selectivity by comparing their JAK2 binding affinity (Kd) in the above JAK2 Binding Assay with their binding affinity (Kd) for one or more other kinases. Binding affinity for other kinases is determined as follows: Kinase-tagged T7 phage strains are prepared in an E. coli host derived from the BL21 strain. E. coli are grown to log-phase and infected with T7 phage and incubated with shaking at 32° C. until lysis. The lysates are centrifuged and filtered to remove cell debris. The remaining kinases are produced in HEK-293 cells and subsequently tagged with DNA for qPCR detection. Streptavidin-coated magnetic beads are treated with biotinylated small molecule ligands for 30 minutes at room temperature to generate affinity resins for kinase assays. The liganded beads are blocked with excess biotin and washed with blocking buffer (SeaBlock (Pierce), 1% BSA, 0.05% Tween 20, 1 mM DTT) to remove unbound ligand and to reduce non-specific binding. Binding reactions are assembled by combining kinases, liganded affinity beads, and test compounds in 1× binding buffer (20% SeaBlock, 0.17×PBS, 0.05% Tween 20, 6 mM DTT). Test compounds are prepared as 111× stocks in 100% DMSO. Kds are determined using an 11-point 3-fold compound dilution series with three DMSO control points. All compounds for Kd measurements are distributed by acoustic transfer (non-contact dispensing) in 100/6 DMSO. The compounds are then diluted directly into the assays such that the final concentration of DMSO is 0.9%. All reactions are performed in polypropylene 384-well plate. Each has a final volume of 0.02 ml. The assay plates are incubated at room temperature with shaking for 1 hour and the affinity beads are washed with wash buffer (1×PBS, 0.05% Tween 20). The beads are then re-suspended in elution buffer (1×PBS, 0.05% Tween 20, 0.5 μM non-biotinylated affinity ligand) and incubated at room temperature with shaking for 30 minutes. The kinase concentration in the eluates is measured by qPCR. Compounds that exhibit a better binding affinity for JAK2 compared to one or more other kinases are considered to be JAK2-selective compounds. In some embodiments, provided compounds may be JAK2-selective over one or more of the following kinases: JAK1, JAK3, and Tyk2.
SET2-pSTAT5 Cellular Assay
This assay measures inhibition of JAK2-mediated pSTAT5 signaling in constitutively active essential thrombocytopenia cells carrying the V617F mutation. Cells are harvested from a flask into cell culture medium, and the number of cells is counted. The cells are diluted with culture medium and 100 μL of cell suspension (50000/well) is added into each well of a 96-well cell culture plate. A solution of test compound is added to the assay plate. The plates are covered with a lid and placed in a 37° C. 5% CO2 incubator for 4 hours. After 4 hours, the cells are spun, and the cell pellets are re-suspended with 100 μL cold PBS. Then, the cells are spun again at 4° C. and 4000 rpm for 5 min. PBS is aspirated, and 25 μL lysis buffer (with protease and phosphatase inhibitor cocktail) is added to each cell pellet. The cell lysate is shaken at 4° C. for 20 min to fully lyse the cells. The cell lysate is spun at 4° C. and 4000 rpm for 15 min, and then the supernatant is transferred into a new plate and stored at −80° C. Meso-scale discovery (MSD) is used to analyze plates as follows: a standard MSD plate is coated with capture antibody in PBS (40 μL/well) and is incubated at 4° C. overnight with shaking. The MSD plate is washed three times with 150 μL/well of 1×MSD Wash Buffer (Tris-buffered saline with 0.1% Tween® 20 detergent, TBST). The MSD plates are then blocked with 150 μL of blocking buffer (5% BSA in TBST) and shaken for 1 h at room temperature and 600 rpm. The MSD plate is washed three times with 150 μL/well of 1×MSD Wash Buffer (TBST). Sample lysates are then added to MSD plates (25 μL/well) and shaken for 1 h at room temperature and 600 rpm. The MSD plate is washed three times with 150 μL/well of 1×MSD Wash Buffer (TBST). Detection antibody (prepared in Antibody Detection buffer, 1% BSA in 1×TBST) is then added to the MSD plates, and they are shaken for 1 h at room temperature and 600 rpm. The MSD plate is washed three times with 150 μL/well of 1×MSD Wash Buffer (TBST). A secondary detection antibody (prepared in Antibody Detection buffer, 1% BSA in 1×TBST) is then added to the MSD plates, and they are shaken for 1 h at room temperature and 600 rpm. The MSD plate is washed three times with 150 μL/well of 1×MSD Wash Buffer (TBST). MSD reading buffer (1×) is added to the plates (150 μL/well), and they are diluted from 4× with water. The plates are imaged using an MSD imaging instrument according to the manufacturer's instructions.
Caco2 Permeability Assay
Preparation of Caco-2 Cells: 50 μL and 25 mL of cell culture medium are added to each well of a Transwell® insert and reservoir, respectively. Then, the HTS Transwell® plates are incubated at 37° C., 5% CO2 for 1 hour before cell seeding. Caco-2 cell cells are diluted to 6.86×105 cells/mL with culture medium, and 50 μL of cell suspension are dispensed into the filter well of the 96-well HTS Transwell® plate. Cells are cultivated for 14-18 days in a cell culture incubator at 37° C., 5% CO2, 95% relative humidity. Cell culture medium is replaced every other day, beginning no later than 24 hours after initial plating.
Preparation of Stock Solutions: 10 mM stock solutions of test compounds are prepared in DMSO. The stock solutions of positive controls are prepared in DMSO at the concentration of 10 mM. Digoxin and propranolol are used as control compounds in this assay.
Assessment of Cell Monolayer Integrity: Medium is removed from the reservoir and each Transwell® insert and is replaced with prewarmed fresh culture medium. Transepithelial electrical resistance (TEER) across the monolayer is measured using Millicell Epithelial Volt-Ohm measuring system (Millipore, USA). The Plate is returned to the incubator once the measurement is done. The TEER value is calculated according to the following equation: TEER measurement (ohms)×Area of membrane (cm2)=TEER value (ohm·cm2). A TEER value greater than 230 ohm·cm2 indicates a well-qualified Caco-2 monolayer.
Assay Procedure: The Caco-2 plate is removed from the incubator and washed twice with pre-warmed HBSS (10 mM HEPES, pH 7.4), and then incubated at 37° C. for 30 minutes. The stock solutions of control compounds are diluted in DMSO to get 1 mM solutions and then diluted with HBSS (10 mM HEPES, pH 7.4) to get 5 μM working solutions. The stock solutions of the test compounds are diluted in DMSO to get 1 mM solutions and then diluted with HBSS (10 mM HEPES and 4% BSA, pH 7.4) to get 5 μM working solutions. The final concentration of DMSO in the incubation system is 0.5%. To determine the rate of drug transport in the apical to basolateral direction. 75 μL of 5 μM working solutions of test compounds are added to the Transwell® insert (apical compartment) and the wells in the receiver plate (basolateral compartment) are filled with 235 μL of HBSS (10 mM HEPES and 4% BSA, pH 7.4). To determine the rate of drug transport in the basolateral to apical direction, 235 μL of 5 μM working solutions of test compounds are added to the receiver plate wells (basolateral compartment) and then the Transwell® inserts (apical compartment) are filled with 75 μL of HBSS (10 mM HEPES and 4% BSA, pH 7.4). Time 0 samples are prepared by transferring 50 μL of 5 μM working solution to wells of the 96-deepwell plate, followed by the addition of 200 μL cold methanol containing appropriate internal standards (IS). The plates are incubated at 37° C. for 2 hours. At the end of the incubation, 50 μL samples from donor sides (apical compartment for Ap→Bl flux, and basolateral compartment for Bl→Ap) and receiver sides (basolateral compartment for Ap→Bl flux, and apical compartment for Bl→Ap) are transferred to wells of a new 96-well plate, followed by the addition of 4 volume of cold acetonitrile or methanol containing appropriate internal standards (IS). Samples are vortexed for 5 minutes and then centrifuged at 3,220 g for 40 minutes. An aliquot of 100 μL of the supernatant is mixed with an appropriate volume of ultra-pure water before LC-MS/MS analysis. To determine the Lucifer Yellow leakage after 2 hour transport period, stock solution of Lucifer yellow is prepared in ultra-pure water and diluted with HBSS (10 mM HEPES, pH 7.4) to reach the final concentration of 100 μM. 100 μL of the Lucifer yellow solution is added to each Transwell® insert (apical compartment), followed by filling the wells in the receiver plate (basolateral compartment) with 300 μL of HBSS (10 mM HEPES, pH 7.4). The plates are incubated at 37° C. for 30 minutes. 80 μL samples are removed directly from the apical and basolateral wells (using the basolateral access holes) and transferred to wells of new 96 wells plates. The Lucifer Yellow fluorescence (to monitor monolayer integrity) signal is measured in a fluorescence plate reader at 485 nM excitation and 530 nM emission.
Cytotoxicity Assay
HEK293T cells are harvested from flask into cell culture medium, and then the cells are counted. The cells are diluted with culture medium to the desired density, and 40 μL of cell suspension is added into each well of a 384-well cell culture plate. The plates are covered with a lid and spun at room temperature at 1,000 RPM for 1 minute and then transferred into 37° C. 5% CO2 incubator overnight. Test compounds are dissolved at 10 mM DMSO stock solution. 45 μL of stock solution is then transferred to a 384 PP-plate. A 3-fold, 10-point dilution is performed via transferring 15 μL compound into 30 μL DMSO by using TECAN (EVO200) liquid handler. The plates are spun at room temperature at 1,000 RPM for 1 minute and shaken on a plate shaker for 2 minutes. 40 nL of diluted compound is transferred from compound source plate into the cell plate by using liquid handler Echo550. After compound treatment for 48 hours, CTG detection is performed for compound treatment plates: the plates are removed from incubators and equilibrated at room temperature for 15 minutes. 30 μL of CellTiter-Glo reagent is added into each well to be detected. The plates are then placed at room temperature for 30 min followed by reading on EnVision. Inhibition activity is calculated with the following formula: % Inhibition=100× (LumHC−LumSample)/(LumHC−LumLC), wherein HC is reading obtained from cells treated with 0.1% DMSO only and LC is reading from cells treated with 10 μL staurosporine. IC50 values are calculated using XLFit (equation 201).
Hepatocyte Stability Assay
10 mM stock solutions of test compound and positive control are prepared in DMSO. Stock solutions are diluted to 100 μM by combining 198 μL of 50% acetonitrile/50% water and 2 μL of 10 mM stock solution. Verapamil is used as positive control in the assay. Vials of cryopreserved hepatocytes are thawed in a 37° C. water bath with gently shaking. The contents are poured into the 50 mL thawing medium conical tube. Vials are centrifuged at 100 g for 10 minutes at room temperature. Thawing medium is aspirated and hepatocytes are re-suspended with serum-free incubation medium to yield ˜1.5×106 cells/mL. Cell viability and density are counted using a Trypan Blue exclusion, and then cells are diluted with serum-free incubation medium to a working cell density of 0.5×106 viable cells/mL. A portion of the hepatocytes at 0.5×106 viable cells/mL are boiled for 5 min prior to adding to the plate as negative control to eliminate the enzymatic activity so that little or no substrate turnover should be observed. Aliquots of 198 μL hepatocytes are dispensed into each well of a 96-well non-coated plate. The plate is placed in the incubator for approximately 10 minutes. Aliquots of 2 μL of the 100 μM test compound and 2 μL positive control are added into respective wells of a non-coated 96-well plate to start the reaction. The final concentration of test compound is 1 μM. This assay is performed in duplicate. The plate is incubated in the incubator for the designed time points. 25 μL of contents are transferred and mixed with 6 volumes (150 μL) of cold acetonitrile with internal standard (100 nM alprazolam, 200 nM labetalol, 200 nM caffeine and 200 nM diclofenac) to terminate the reaction at time points of 0, 15, 30, 60, 90 and 120 minutes. Samples are centrifuged for 25 minutes at 3,220 g and aliquots of 150 μL of the supernatants are used for LC-MS/MS analysis.
Kinetic Solubility Assay
Stock solutions of test compounds are prepared in DMSO at the concentration of 10 mM, and a stock solution of control compound is prepared in DMSO at the concentration of 30 mM. Diclofenac is used as positive control in the assay. 30 μL stock solution of each compound is placed into their a 96-well rack, followed by adding 970 μL of PBS at pH 4.0 and pH 7.4 into each vial of the cap-less solubility sample plate. This study is performed in duplicate. One stir stick is added to each vial and then vials are sealed using a molded PTDE/SIL 96-Well Plate Cover. The solubility sample plate is transferred to the Thermomixer comfort plate shaker and incubated at RT for 2 hours with shaking at 1100 rpm. After 2 hours incubation, stir sticks are removed using a big magnet and all samples from the solubility sample plate are transferred into the filter plate. All the samples are filtered by vacuum manifold. The filtered samples are diluted with methanol. Samples are analyzed by LC-MS/MS and quantified against a standard of known concentration in DMSO using LC coupled with Mass spectral peak identification and quantitation. The solubility values of the test compounds are calculated as follows, wherein INJ VOL is injection volume, DF is dilution factor, and STD is standard:
Plasma Protein Binding Assay
Working solutions of test compounds and control compound are prepared in DMSO at the concentration of 200 μM, and then the working solutions are spiked into plasma. The final concentration of compound is 1 μM. The final concentration of DMSO is 0.5%. Ketoconazole is used as positive control in the assay. Dialysis membranes are soaked in ultrapure water for 60 minutes to separate strips, then in 20% ethanol for 20 minutes, finally in dialysis buffer for 20 minutes. The dialysis set up is assembled according to the manufacturer's instruction. Each Cell is with 150 μL of plasma sample and dialyzed against equal volume of dialysis buffer (PBS). The assay is performed in duplicate. The dialysis plate is sealed and incubated in an incubator at 37° C. with 5% CO2 at 100 rpm for 6 hours. At the end of incubation, 50 μL of samples from both buffer and plasma chambers are transferred to wells of a 96-well plate. 50 μL of plasma is added to each buffer samples and an equal volume of PBS is supplemented to the collected plasma sample. 400 μL of precipitation buffer acetonitrile containing internal standards (IS, 100 nM alprazolam, 200 nM labetalol, 200 nM imipramine and 2 μM ketoplofen) is added to precipitate protein and release compounds. Samples are vortexed for 2 minutes and centrifuged for 30 minutes at 3,220 g. Aliquot of 50 μL of the supernatant is diluted by 150 μL acetonitrile containing internal standards: ultra-pure H2O=1:1, and the mixture is used for LC-MS/MS analysis.
Three lots of Compound 1 were prepared and used for salt and polymorph screening (e.g., as described in the Examples herein).
Lot I
Lot I was prepared generally according to Example 1, with the last step as follows. To a solution of 1.15 (12.5 g, 24.6 mmol, 1.0 equiv) in dimethylacetamide (60 mL) were added zinc dust (0.368 g, 5.67 mmol, 0.23 equiv), zinc cyanide (1.69 g, 14.5 mmol, 0.59 equiv), 1,1′-ferrocenediyl-bis(diphenylphosphine) (3.4 g, 6.15 mmol, 0.25 equiv), and tris(dibenzylideneacetone)dipalladium(0) (2.8 g, 3.07 mmol, 0.125 equiv). The mixture was degassed for 10 min. The reaction mixture was stirred in a sealed tube at 205-210° C. for 4-5 h. After completion of reaction, the reaction mixture was transferred into ice-cold water and extracted with dichloromethane. The organic layers were combined, washed with brine solution, dried over sodium sulfate, and concentrated under reduced pressure. The crude material was purified by column chromatography using 2.0% methanol in dichloromethane as eluent to obtain Compound 1 (5 g, 40.76% yield).
Based on XRPD analysis, Lot I was a mixture of hydrate Form A with a minor amount of anhydrous Form B (
Additional characterization of Lot I is described in Example 2 above.
Lot II
Lot II was prepared generally according to Example 1, with the last step as follows: To a solution of 1.15 (23 g, 45.36 mmol, 1.0 equiv) in N-methyl-2-pyrrolidone (115 mL) was added zinc dust (0.678 g, 10.4 mmol, 0.23 equiv), zinc cyanide (3.13 g, 26.7 mmol, 0.59 equiv), 1,1′-ferrocenediyl-bis(diphenylphosphine) (6.28 g, 11.3 mmol, 0.25 equiv) and tris(dibenzylideneacetone)dipalladium(0) (5.18 g, 5.67 mmol, 0.125 equiv). The mixture was degassed for 10 min. The reaction mixture was stirred in a sealed tube at 140° C. for 4-5 h. After completion of reaction, the reaction mixture transferred into ice-cold water and extracted with dichloromethane. The organic layers were combined, washed with brine solution, dried over sodium sulfate, and concentrated under reduced pressure. The crude material was purified by column chromatography using 2.0% methanol in dichloromethane as eluent to obtain Compound 1 (10 g, 44.30% yield).
Based on XRPD analysis, Lot 11 was a mixture of Form B and Form O with a minor amount of Form A (
DVS analysis of Lot II was performed (
Kinetic solubility of Compound 1 Lot II was visually estimated at ambient temperature (Table 22). Aliquots of various solvents were added to weighed samples of Compound 1 Lot II with agitation at ambient temperature until complete dissolution was achieved, as judged by visual observation. If dissolution occurred after the addition of the first aliquot, values were reported as “>”. If dissolution did not occur, values were reported as “<”.
At ambient temperature, limited solubility values (1-20 mg/mL) were observed for AcOH, DMF, DMSO, 50:50 MeOH/DCM, 50:50 MeOH/CHCl3, NMP, TFE, and 50:50 TFE/H2O. In THF, initially sample did not appear to completely dissolve at a concentration of 1 mg/mL. However, solids appeared to be almost completely dissolved when left at ambient temperature overnight indicating a solubility of at least 1 mg/mL. The only solvent that displayed a solubility of greater than 20 mg/mL was HFIPA (84 mg/mL). See Table 22, where A is 5-20 mg/mL; B is 1-4.9 mg/mL; and C is <1 mg/mL.
aSolvent ratios are v/v.
bSolubilities are calculated based on the total solvent used to give a solution. Actual solubilities may be greater because of the volume of solvent portions used or a slow rate of dissolution.
cSolution was almost completely clear after 24 h.
Lot III
Lot III was prepared using a different synthetic route than that described in Example 1. The last step was performed as follows:
Synthesis of Compound 1. To solution of 9.1 (15 g, 32.87 mmol, 1.0 equiv) in tetrahydrofuran (350 mL) and N,N-dimethylformamide (150 mL) was added triethylamine (13.7 mL, 98.61 mmol, 3.0 equiv), cooled to 0° C., followed by addition of acetyl chloride (3.51 mL, 49.30 mmol, 1.5 equiv), and stirred at room temperature for 1 h. After completion of reaction, the reaction mixture was transferred into water and extracted with ethyl acetate. The organic layers were combined, washed with brine solution, dried over sodium sulfate and concentrated under reduced pressure. The residue was taken up in methanol (200 mL), and potassium carbonate (13.6 g, 98.61 mmol, 3.0 equiv) was added. The reaction mixture was stirred at room temperature for 1 h. The reaction mixture was filtered and washed with 20% methanol in dichloromethane. The filtrate was concentrated under reduced pressure. The crude material was purified by column chromatography using 3.5% methanol in dichloromethane as eluent to give Compound 1 (10 g, 61.04% yield). MS (ES): m/z: 499.2 [M+H]+, 1H NMR (DMSO-d6, 400 MHz): δ 10.66 (s, 1H), 9.04 (s, 1H), 8.66 (s, 1H), 8.32 (s, 1H), 8.26-8.24 (d, J=5.6 Hz, 1H), 8.19 (s, 1H), 7.76 (s, 1H), 6.77-6.76 (m, 1H), 3.97 (s, 3H), 3.67 (s, 3H), 2.07 (s, 3H).
Based on XRPD analysis, Lot III was a mixture of Form O with a minor amount of Form B (
Compound 1 Lots I and II were used for stable form and polymorph screening experiments. Sixteen slurry experiments were done at ambient temperature and 50° C. to target a stable form. The polymorph landscape was evaluated primarily using kinetic techniques such as vapor stressing, evaporation, and cooling. Generated solids were observed by polarized light microscopy (PLM) and/or analyzed by X-ray powder diffraction (XRPD). In some instances, solids were analyzed wet to increase the likelihood of identifying labile hydrated or solvated forms. To investigate the physical stability of these solvated/hydrated materials, samples were placed under vacuum at ambient and elevated temperature (Table 25). Water activity slurries and relative humidity stressing were also utilized to further evaluate the propensity of Compound 1 to form hydrates. Fifteen forms were identified from these studies. Most identified forms were solvates, evidencing Compound 1's propensity toward polymorphism and solvation. Polymorph screening experiments were typically performed on a scale of about 50 mg of Compound 1.
The following techniques were used:
Fast evaporation: Solutions of Compound 1 were prepared in dry HFIPA and dry TFE. Solutions were filtered with 0.2 μm PTFE syringe filters and left open at ambient conditions until there was no apparent solvent. Dry solids were analyzed by XRPD.
Drying experiments: Damp and solvated Compound 1 materials were placed in vacuum ovens set to ambient temperature or 80° C. for 1 day. Dried solids were analyzed by XRPD.
Relative humidify jar experiments: Solid Compound 1 was placed in relative humidity jars containing saturated solutions of various salts to maintain a desired relative humidity level at 25° C. One sample of Compound 1 was placed in a jar containing P205 in an effort to maintain 0% RH.
Slow cooling: A solution of Compound 1 was prepared in THC at 55° C. The solution was filtered, hot, with a 0.2 μm nylon filter into a wart vial. The vial was capped and returned to the heat block with the heat turned off to slowly cool to ambient temperature. Clear solution was decanted and solids were analyzed by XRPD.
Slurrying experiments: Saturated solutions of Compound 1 were prepared in various solvents and aqueous solvent mixtures. Mixtures were stirred at elevated and ambient temperatures for the given length of time. Solids were collected by the stated technique.
The results of these experiments are summarized in Table 23, Table 24, Table 25, and Table 26.
aSolvent ratios are v/v.
bTemperatures and times are approximate.
cSample 1 in Table 25.
dSample 3 in Table 25.
eSample 4 in Table 25.
fSample 5 in Table 25.
aSolvent ratios are v/v.
bTemperatures and times are approximate.
aSample 2.
1H NMR
1H NMR
1H NMR
1H NMR
1H NMR
1H NMR
aWeight changes (%) in TGA are rounded to 1 decimal place; temperatures are rounded to nearest degree. Temperatures in DSC are rounded to 1 decimal place.
bSamples were under vacuum in same oven as each other, allowing solvent to swap between isostructural solvates.
An exemplary procedure for preparing Compound 1 Form A is as follows: Compound 1 Lot II (459.1 mg) was slurried in THF (4 mL). Concentrated HCl (154 μL, 2 equiv.) was added to the slurry. The off-white slurry rapidly changed to a yellow slurry. The slurry was stirred at ambient temperature for 1 day. Solids were collected by vacuum filtration and briefly dried under vacuum. The yellow material, assumed to be an HCl salt, was collected by vacuum filtration. The material (543.2 mg) was then suspended in H2O (5 mL) and stirred at ambient temperature for 2 days. Pale yellow solids were collected by vacuum filtration but appeared to still contain some HCl salt by XRPD. Solids were re-slurried in H2O (1 mL) at ambient temperature for additional 3 days. The off-white solids were collected by vacuum filtration and dried on filter until solids were no longer visibly damp.
Solution 1H NMR for Form A was consistent with the chemical structure and contained no apparent organic solvent.
Form B was observed in Compound 1 Lots I, II, and III. Additionally, Form B was prepared by slurrying Compound 1 (approx. 50 mg) in tert-amyl methyl ether (TAME) at 50° C. for 7 days. The solids were isolated by filtration and analyzed. An XRPD spectrum of the sample contained a few additional minor peaks, and 1H NMR was consistent with the chemical structure of Compound 1. A negligible amount of TAME was also present in the sample.
Thermal characterization by TGA and DSC was also obtained (
Form C was prepared by slurring Compound 1 (approx. 50 mg) in acetic acid at ambient temperature for 10 days. The solids were isolated by filtration and analyzed.
XRPD analysis indicated a unit cell capable of containing up to 3 acetic acid molecules (
Thermal characterization by TGA provided a thermogram with a two-step weight loss (
Form C was assigned as a tri-acetic acid cocrystal.
Form D was prepared by slurrying Compound 1 (approx. 50 mg) in DMA at ambient temperature for 10 days. The solids were isolated by filtration and analyzed.
XRPD analysis of the slightly damp material indicated a unit cell consistent with a di-DMA solvate (
Before further characterization was completed, the damp solids were dried in a vacuum oven with other damp materials, including Form F produced in NMP. Proton NMR spectroscopy data was consistent with chemical structure of Compound 1 and showed ˜1.7 mol/mol DMA. In addition, a small amount of NMP appeared to be present (0.2 mol/mol NMP). This was likely due to a solvent exchange that occurred during vacuum drying.
The TGA thermogram displayed a 25.5% weight loss over 101° C. to 186° C. (
Form E was prepared by slurrying Compound 1 (approx. 50 mg) in DMSO at ambient temperature for 10 days. The solids were isolated by filtration and analyzed.
XRPD analysis of the damp solids indicated a unit cell capable of containing up to 3 DMSO molecules (
The sample was then dried in an ambient temperature vacuum oven. After 1 day, a new XRPD pattern was observed and designated Form H (
Form F was prepared by slurrying Compound 1 (approx. 50 mg) in NMP at ambient temperature for 10 days. The solids were isolated by filtration and analyzed.
XRPD analysis of the slightly damp material indicated a unit cell consistent with a di-NMP solvate of Compound 1 (
Before further characterization was conducted, the damp solids were dried in a vacuum oven with other damp materials, including Form D. Proton NMR spectroscopy was consistent with chemical structure of Compound 1 and contained ˜1.7 mol/mol NMP. In addition, a small amount of DMA appeared to be present (˜0.2 mol/mol DMA). This was likely due to a solvent exchange that occurred during vacuum drying.
Thermal characterization by TGA displayed a 27.5% weight loss over 104° C. to 233° C., which is consistent with a loss of ˜1.9 mol/mol NMP (
Form G was prepared by slurrying Compound 1 (approx. 50 mg) in DMF at ambient temperature for 10 days. The solids were isolated by filtration and analyzed.
XRPD analysis of the slightly damp material indicated a unit cell capable of containing up to 2 molecules of DMF (
Form J and Form K were prepared by fast evaporation from hexafluoroisopropanol (HFIPA) and trifluoroethanol (TFE), respectively: A solution of Compound 1 was prepared in dry HFIPA or dry TFE. The solution was filtered with a 0.2 μm PTFE syringe filter and left open at ambient conditions until there was no apparent solvent. Dry solids were analyzed by XRPD.
Form L was prepared by slurrying Compound 1 (approx. 50 mg) in THF/H2O (99:1) at ambient temperature for 11 days. The solids were isolated by centrifugation and decantation, then analyzed.
XRPD analysis indicated a unit cell capable of containing up to 2 molecules of THF (
Form M was prepared by slurrying Compound 1 (approx. 50 mg) in THF/H2O (97:3) at ambient temperature for 11 days. The solids were isolated by centrifugation and decantation, then analyzed.
XRPD analysis indicated a unit cell capable of containing 2-3 molecules of THE (
An exemplary procedure for preparing Compound 1 Form N is as follows: Compound 1 Lot II (61.0 mg) was slurried in dry cyclopentyl methyl ether (CPME) (2 mL) at 50° C. for 7 days. Pale yellow solids were collected by positive pressure filtration on a 0.2 μm nylon filter. The solids were stored in a clean vial over Drierite until XRPD analysis was performed.
Solution 1H NMR of Form N was consistent with the chemical structure of Compound 1 and contained less than ˜0.1 mol/mol CPME.
The TGA thermogram displayed a 0.1% weight loss over 50° C. to 120° C. and a 0.2% weight loss over 209° C. to 252° C. (
Form N was assigned as an anhydrous form.
Form P was prepared by slurrying Compound 1 (approx. 50 mg) in ethyl acetate at ambient temperature for 3 days. The solids were isolated by filtration and analyzed.
XRPD analysis indicated a unit cell capable of containing 1-2 ethyl acetate molecules (
VRH-XRPD analysis was conducted to help determine water activity boundary for the solid-state conversion between hydrated Form A and anhydrous Form B. This method was utilized due the observed high tendency of Compound 1 to form solvates, which precluded the use of solvent-mediated approach.
Overall, two VRH-XRPD experiments were conducted to qualitatively evaluate RH conditions leading to predominance of Form A over Form B and vice versa. The kinetic component was not assessed.
Experiment 1
The first VRH-XRPD experiment was conducted with a goal of observing dehydration of hydrated Form A. An initial XRPD scan was, therefore, acquired on Form A equilibrated in-situ at ambient RH for 45 minutes, which at the time of the analysis was ˜30%. The XRPD pattern from this scan was consistent with Form A (
The RH level was increased to ˜85% RH over 2.5 hours and after that, incrementally decreased while holding at each RH level for 1-2 hours. XRPD patterns were collected throughout the course of the experiment, each with a 10 minute scan.
Only Form A and Form B were observed in the experiment. The XRPD patterns were consistently Form A throughout the increase and decrease of the RH until the RH was lowered to approximately 21% RH, at which point a small amount of Form B became visible (
Experiment 2
The focus of the second VRH-XRPD experiment was to observe transformation of anhydrous Form B. For this purpose, the starting Form A was converted to Form B in-situ by an overnight hold under nitrogen stream (˜0% RH) (
The RH was then incrementally increased with long holds at each step (15% up to ˜60%). XRPD patterns were collected throughout the course of the experiment, each with a 10 minute scan. The XRPD patterns remained Form B until the RH reached approximately 60% RH, where Form A became the primary phase with some Form B remaining (
A schematic presentation of both VRH-XRPD experiments is provided in
The plotted VRH-XRPD data were compared with water uptakes seen for Compound 1 Lot I during its DVS analysis (
Overall, VRH-XRPD and DVS data were in good agreement, indicating that anhydrous Form B likely exists below 20% RH but may be kinetically stable at up to 40-60% RH. Hydrated Form A will expect to begin dehydration at 20% RH and fully convert to anhydrous Form B at zero RH.
While we have described a number of embodiments of this disclosure, it is apparent that our basic examples may be altered to provide other embodiments that utilize the compounds and methods of this disclosure. Therefore, it will be appreciated that the scope of this disclosure is to be defined by the appended claims rather than by the specific embodiments that have been represented by way of example.
This application claims priority to and benefit of U.S. Application No. 63/277,419, filed Nov. 9, 2021, the entire contents of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
5270148 | Morigaki et al. | Dec 1993 | A |
5512590 | George et al. | Apr 1996 | A |
5616537 | Yokota et al. | Apr 1997 | A |
5702877 | Odenwalder et al. | Dec 1997 | A |
5814633 | Muller et al. | Sep 1998 | A |
5852046 | Lang et al. | Dec 1998 | A |
5994629 | Bojsen et al. | Nov 1999 | A |
6329383 | Hedgecock et al. | Dec 2001 | B1 |
6346531 | Luengo et al. | Feb 2002 | B1 |
6444816 | Das et al. | Sep 2002 | B1 |
6552192 | Hanus et al. | Apr 2003 | B1 |
6566372 | Zhi et al. | May 2003 | B1 |
6630470 | Luengo et al. | Oct 2003 | B1 |
6743800 | Peyman et al. | Jun 2004 | B1 |
6747016 | Peyman et al. | Jun 2004 | B1 |
7256196 | Sabat et al. | Aug 2007 | B1 |
7531553 | Di Pietro et al. | May 2009 | B2 |
8114874 | Zou et al. | Feb 2012 | B2 |
8293923 | Guckian et al. | Oct 2012 | B2 |
8614330 | Amiri et al. | Dec 2013 | B2 |
8846697 | Carson et al. | Sep 2014 | B2 |
9145438 | Chesworth et al. | Sep 2015 | B2 |
9200020 | De Jersey et al. | Dec 2015 | B2 |
9284299 | Ji et al. | Mar 2016 | B2 |
10766888 | Biddle et al. | Sep 2020 | B1 |
11691963 | Masse et al. | Jul 2023 | B2 |
20010056090 | Aquila et al. | Dec 2001 | A1 |
20020010159 | Weigele et al. | Jan 2002 | A1 |
20020052368 | Marlowe et al. | May 2002 | A1 |
20020058677 | Marlowe et al. | May 2002 | A1 |
20020068721 | Weigele et al. | Jun 2002 | A1 |
20020094994 | Bourzat et al. | Jul 2002 | A1 |
20020120144 | Akama et al. | Aug 2002 | A1 |
20020165261 | Borisy et al. | Nov 2002 | A1 |
20020173506 | Clark et al. | Nov 2002 | A1 |
20030109714 | Wishart et al. | Jun 2003 | A1 |
20030187261 | Havlicek et al. | Oct 2003 | A1 |
20030199564 | Fenton et al. | Oct 2003 | A1 |
20040006117 | Blume et al. | Jan 2004 | A1 |
20040034224 | Hammarstrom et al. | Feb 2004 | A1 |
20040077633 | Watson et al. | Apr 2004 | A1 |
20040082583 | Cheung et al. | Apr 2004 | A1 |
20040122237 | Amiri et al. | Jun 2004 | A1 |
20040171630 | Kim et al. | Sep 2004 | A1 |
20040198725 | Sun et al. | Oct 2004 | A1 |
20050049263 | Kasibhatla et al. | Mar 2005 | A1 |
20050101647 | Oda et al. | May 2005 | A1 |
20050137234 | Bressi et al. | Jun 2005 | A1 |
20050192287 | Costales et al. | Sep 2005 | A1 |
20050209176 | Meutermans et al. | Sep 2005 | A1 |
20050239821 | Neyts et al. | Oct 2005 | A1 |
20050272765 | Feng et al. | Dec 2005 | A1 |
20050282802 | Kostik et al. | Dec 2005 | A1 |
20060042026 | Glenn et al. | Mar 2006 | A1 |
20060052331 | Koch et al. | Mar 2006 | A1 |
20060111362 | Kira et al. | May 2006 | A1 |
20060116383 | Bloxham et al. | Jun 2006 | A1 |
20060148830 | Terakado et al. | Jul 2006 | A1 |
20060154977 | Morand et al. | Jul 2006 | A1 |
20060160872 | Norman et al. | Jul 2006 | A1 |
20070032493 | Foley et al. | Feb 2007 | A1 |
20070043043 | Chen et al. | Feb 2007 | A1 |
20070049622 | Dimitroff et al. | Mar 2007 | A1 |
20070093544 | Parmee et al. | Apr 2007 | A1 |
20070105930 | Parmee et al. | May 2007 | A1 |
20070112048 | Bavari et al. | May 2007 | A1 |
20070173527 | Bressi et al. | Jul 2007 | A1 |
20070197450 | Fushimi et al. | Aug 2007 | A1 |
20070219235 | Mjalli et al. | Sep 2007 | A1 |
20070249637 | Collins et al. | Oct 2007 | A1 |
20070275984 | Imogai et al. | Nov 2007 | A1 |
20080008682 | Chong et al. | Jan 2008 | A1 |
20080009488 | Anand et al. | Jan 2008 | A1 |
20080032936 | Gai et al. | Feb 2008 | A1 |
20080058297 | Ono et al. | Mar 2008 | A1 |
20080096903 | Chen et al. | Apr 2008 | A1 |
20080132501 | Sun et al. | Jun 2008 | A1 |
20080161254 | Green et al. | Jul 2008 | A1 |
20080194803 | Sinclair et al. | Aug 2008 | A1 |
20080221148 | Ibrahim et al. | Sep 2008 | A1 |
20080284322 | Hosokawa et al. | Nov 2008 | A1 |
20090047249 | Graupe et al. | Feb 2009 | A1 |
20090118200 | Bergman et al. | May 2009 | A1 |
20090140637 | Hosokawa et al. | Jun 2009 | A1 |
20090176778 | Schmitz et al. | Jul 2009 | A1 |
20090232844 | Sutton et al. | Sep 2009 | A1 |
20090233946 | Krasinski et al. | Sep 2009 | A1 |
20090278115 | Hosokawa et al. | Nov 2009 | A1 |
20100010217 | Valiante et al. | Jan 2010 | A1 |
20100029709 | Menet et al. | Feb 2010 | A1 |
20100093747 | Goodhew | Apr 2010 | A1 |
20100197688 | Nantermet et al. | Aug 2010 | A1 |
20100204265 | Baskaran et al. | Aug 2010 | A1 |
20100210598 | Carson et al. | Aug 2010 | A1 |
20100216810 | Okaniwa et al. | Aug 2010 | A1 |
20100249119 | Hirose et al. | Sep 2010 | A1 |
20100256188 | Pfau et al. | Oct 2010 | A1 |
20100261679 | Sutton et al. | Oct 2010 | A1 |
20100267714 | Jorgensen et al. | Oct 2010 | A1 |
20110021518 | Magnuson et al. | Jan 2011 | A1 |
20110039895 | Chai et al. | Feb 2011 | A1 |
20110059962 | Alekshun et al. | Mar 2011 | A1 |
20110105498 | Pettus et al. | May 2011 | A1 |
20110117073 | Singh et al. | May 2011 | A1 |
20110172186 | Behnke et al. | Jul 2011 | A1 |
20110201605 | Baumann et al. | Aug 2011 | A1 |
20110237620 | Okaniwa | Sep 2011 | A1 |
20110263598 | Sampson et al. | Oct 2011 | A1 |
20110281865 | Muthuppalaniappan et al. | Nov 2011 | A1 |
20110312935 | Pfau et al. | Dec 2011 | A1 |
20120028969 | Barnes et al. | Feb 2012 | A1 |
20120115902 | Pfau et al. | May 2012 | A1 |
20120122930 | Pfau et al. | May 2012 | A1 |
20120172351 | Negoro et al. | Jul 2012 | A1 |
20120202287 | Adams et al. | Aug 2012 | A1 |
20120208839 | Priepke et al. | Aug 2012 | A1 |
20120214786 | Priepke et al. | Aug 2012 | A1 |
20120258967 | Qiao et al. | Oct 2012 | A1 |
20130059851 | Garraway et al. | Mar 2013 | A1 |
20130079342 | Dransfield et al. | Mar 2013 | A1 |
20130084346 | Wolkenberg et al. | Apr 2013 | A1 |
20130090327 | Hata et al. | Apr 2013 | A1 |
20130096136 | Hata et al. | Apr 2013 | A1 |
20130136782 | Blackwell et al. | May 2013 | A1 |
20130149717 | Krause et al. | Jun 2013 | A1 |
20130165446 | Fujita et al. | Jun 2013 | A1 |
20130184240 | Tonogaki et al. | Jul 2013 | A1 |
20130184248 | Grauert et al. | Jul 2013 | A1 |
20130190320 | Xu et al. | Jul 2013 | A1 |
20130224195 | Costales et al. | Aug 2013 | A1 |
20130225596 | Kai et al. | Aug 2013 | A1 |
20130261125 | Shipps, Jr. et al. | Oct 2013 | A1 |
20130310333 | Chesworth et al. | Nov 2013 | A1 |
20130345261 | Waters et al. | Dec 2013 | A1 |
20140011763 | Lakshman | Jan 2014 | A1 |
20140031339 | Abeywardane et al. | Jan 2014 | A1 |
20140155379 | Ho et al. | Jun 2014 | A1 |
20140194420 | Kojima et al. | Jul 2014 | A1 |
20140303102 | Choe et al. | Oct 2014 | A1 |
20140303360 | Schroeder et al. | Oct 2014 | A1 |
20140364386 | Choe et al. | Dec 2014 | A1 |
20150018291 | Choe et al. | Jan 2015 | A1 |
20150057309 | Vakkalanka et al. | Feb 2015 | A1 |
20150126436 | Phillips et al. | May 2015 | A1 |
20150133490 | Burkholder et al. | May 2015 | A1 |
20150133500 | Tafesse et al. | May 2015 | A1 |
20150152065 | Brookings et al. | Jun 2015 | A1 |
20150197497 | Abeywickrama et al. | Jul 2015 | A1 |
20150216168 | Frackenpohl et al. | Aug 2015 | A1 |
20150243903 | Zeng et al. | Aug 2015 | A1 |
20150249221 | Zeng et al. | Sep 2015 | A1 |
20160024072 | Kai et al. | Jan 2016 | A1 |
20160046619 | Flynn et al. | Feb 2016 | A1 |
20160052922 | Chesworth et al. | Feb 2016 | A1 |
20160096804 | Shuttleworth et al. | Apr 2016 | A1 |
20160168165 | Koehler et al. | Jun 2016 | A1 |
20160176825 | Gray et al. | Jun 2016 | A1 |
20160229837 | Xi et al. | Aug 2016 | A1 |
20160257641 | Kobayashi et al. | Sep 2016 | A1 |
20160297795 | Heer et al. | Oct 2016 | A1 |
20160304511 | Jackson et al. | Oct 2016 | A1 |
20160304513 | Deligny et al. | Oct 2016 | A1 |
20170114078 | McGowan et al. | Apr 2017 | A1 |
20170121349 | Kim et al. | May 2017 | A1 |
20170129883 | Jackson et al. | May 2017 | A1 |
20170158688 | Jackson et al. | Jun 2017 | A1 |
20170222157 | Jatsch et al. | Aug 2017 | A1 |
20170333398 | Kojima et al. | Nov 2017 | A1 |
20180030453 | Zakharenko et al. | Feb 2018 | A1 |
20180072688 | Qian et al. | Mar 2018 | A1 |
20180079727 | Ohyabu et al. | Mar 2018 | A1 |
20180086725 | Kumar et al. | Mar 2018 | A1 |
20180153877 | Azam | Jun 2018 | A1 |
20180273511 | Long | Sep 2018 | A1 |
20190002442 | Zhao et al. | Jan 2019 | A1 |
20190022074 | Hadari et al. | Jan 2019 | A1 |
20190038603 | Jakobsson | Feb 2019 | A1 |
20190119217 | Long et al. | Apr 2019 | A1 |
20190134042 | Miao et al. | May 2019 | A1 |
20190135834 | Tamura et al. | May 2019 | A1 |
20190183866 | Tamura et al. | Jun 2019 | A1 |
20190382377 | Li et al. | Dec 2019 | A1 |
20190388426 | Nguyen et al. | Dec 2019 | A1 |
20200039933 | Gaisina et al. | Feb 2020 | A1 |
20200039961 | Campbell et al. | Feb 2020 | A1 |
20200039998 | Campbell et al. | Feb 2020 | A1 |
20200054635 | Campbell et al. | Feb 2020 | A1 |
20200062758 | Liu et al. | Feb 2020 | A1 |
20200101091 | Peyrottes et al. | Apr 2020 | A1 |
20200113901 | Campbell et al. | Apr 2020 | A1 |
20200113907 | Hagiwara et al. | Apr 2020 | A1 |
20200237717 | Jensen et al. | Jul 2020 | A1 |
20200268753 | Nguyen et al. | Aug 2020 | A1 |
20200274072 | Kugler | Aug 2020 | A1 |
20200317642 | Campbell et al. | Oct 2020 | A1 |
20210008046 | Bravo et al. | Jan 2021 | A1 |
20220127260 | Gray et al. | Apr 2022 | A1 |
20220127284 | Gray et al. | Apr 2022 | A1 |
20220411403 | Masse et al. | Dec 2022 | A1 |
20230099203 | Masse et al. | Mar 2023 | A1 |
20230167110 | Masse et al. | Jun 2023 | A1 |
20230265075 | Masse | Aug 2023 | A1 |
Number | Date | Country |
---|---|---|
1148043 | Apr 1997 | CN |
101239980 | Aug 2008 | CN |
107383014 | Nov 2017 | CN |
108689942 | Oct 2018 | CN |
110092798 | Aug 2019 | CN |
639573 | Feb 1995 | EP |
3059225 | Aug 2016 | EP |
3279187 | Feb 2018 | EP |
3450435 | Mar 2019 | EP |
H11-283746 | Oct 1999 | JP |
2000299186 | Oct 2000 | JP |
2004067629 | Mar 2004 | JP |
2005289921 | Oct 2005 | JP |
2009149589 | Jul 2009 | JP |
2016132649 | Jul 2016 | JP |
10-2019-0064508 | Jun 2019 | KR |
WO-9305163 | Mar 1993 | WO |
WO-9711065 | Mar 1997 | WO |
WO-9926932 | Jun 1999 | WO |
WO-2001044259 | Jun 2001 | WO |
WO-2002076960 | Oct 2002 | WO |
WO-2003082272 | Oct 2003 | WO |
WO-2004006849 | Jan 2004 | WO |
WO-2004085425 | Oct 2004 | WO |
WO-2005032548 | Apr 2005 | WO |
WO-2005035526 | Apr 2005 | WO |
WO-2005037273 | Apr 2005 | WO |
WO-2006027365 | Mar 2006 | WO |
WO-2006128129 | Nov 2006 | WO |
WO-2006130469 | Dec 2006 | WO |
WO-2007091950 | Aug 2007 | WO |
WO-2007121484 | Oct 2007 | WO |
WO-2008016666 | Feb 2008 | WO |
WO-2008124145 | Oct 2008 | WO |
WO-2008144062 | Nov 2008 | WO |
WO-2008150015 | Dec 2008 | WO |
WO-2009011775 | Jan 2009 | WO |
WO-2009017954 | Feb 2009 | WO |
WO-2009034386 | Mar 2009 | WO |
WO-2009050228 | Apr 2009 | WO |
WO-2009155565 | Dec 2009 | WO |
WO-2010002492 | Jan 2010 | WO |
WO-2010141796 | Dec 2010 | WO |
WO-2010144909 | Dec 2010 | WO |
WO-2011063908 | Jun 2011 | WO |
WO-2011127833 | Oct 2011 | WO |
WO-2012016133 | Feb 2012 | WO |
WO-2013024078 | Feb 2013 | WO |
WO-2014069426 | May 2014 | WO |
WO-2014072435 | May 2014 | WO |
WO-2014175330 | Oct 2014 | WO |
WO-2015008861 | Jan 2015 | WO |
WO-2016014576 | Jan 2016 | WO |
WO-2016119700 | Aug 2016 | WO |
WO-2017143014 | Aug 2017 | WO |
WO-2017175068 | Oct 2017 | WO |
WO-2018039557 | Mar 2018 | WO |
WO-2018064498 | Apr 2018 | WO |
WO-2018066545 | Apr 2018 | WO |
WO-2018191146 | Oct 2018 | WO |
WO-2018200786 | Nov 2018 | WO |
WO-2018203099 | Nov 2018 | WO |
WO-2018204765 | Nov 2018 | WO |
WO-2019000683 | Jan 2019 | WO |
WO-2019018119 | Jan 2019 | WO |
WO-2019038683 | Feb 2019 | WO |
WO-2019079596 | Apr 2019 | WO |
WO-2019079607 | Apr 2019 | WO |
WO-2019088159 | May 2019 | WO |
WO-2019217838 | Nov 2019 | WO |
WO-2020014599 | Jan 2020 | WO |
WO-2020081450 | Apr 2020 | WO |
WO-2020089455 | May 2020 | WO |
WO-2020093905 | May 2020 | WO |
WO-2020097396 | May 2020 | WO |
WO-2020097398 | May 2020 | WO |
WO-2020097400 | May 2020 | WO |
WO-2020118045 | Jun 2020 | WO |
WO-2020165907 | Aug 2020 | WO |
WO-2020176597 | Sep 2020 | WO |
WO-2020180768 | Sep 2020 | WO |
WO-2020181050 | Sep 2020 | WO |
WO-2020210481 | Oct 2020 | WO |
WO-2020243457 | Dec 2020 | WO |
WO-2021067682 | Apr 2021 | WO |
WO-2021091575 | May 2021 | WO |
WO-2021113557 | Jun 2021 | WO |
WO-2021226261 | Nov 2021 | WO |
WO-2022140527 | Jun 2022 | WO |
WO-2023086319 | May 2023 | WO |
WO-2023086320 | May 2023 | WO |
Entry |
---|
Aitipamula et al., Polymorphs, Salts, and Cocrystals: What's in a Name? Crystal Growth & Design, 2012, 12, 2147-2152. |
Berge et al., Pharmaceutical Salts. Journal of Pharmaceutical Sciences, 1977, 66, 1-19. |
U.S. Appl. No. 17/559,051, Ajax Therapeutics, Inc. |
U.S. Appl. No. 17/982,663, Masse et al. |
Aaronson, D. S. and Horvath, C. M., A Road Map for Those Who Don't Know JAK-STAT, Science, 296(5573):1653-1655 (2002). |
Akhtar, W. et al., Therapeutic evolution of benzimidazole derivatives in the last quinquennial period, European Journal of Medicinal Chemistry, 126:705-753 (2017). |
Andraos, R. et al., Modulation of activation-loop phosphorylation by JAK inhibitors is binding mode dependent, Cancer Discovery, 2(6):512-523 (2012). |
Bundgard, Design of Prodrugs, Amsterdam, New York, Oxford, Elsevier, pp. 7-9, 21-24 (1985). |
Choi, H.G. et al., Development of ‘DFG-out’ inhibitors of gatekeeper mutant kinases, Bioorganic & Medicinal Chemistry Letters, 22:5297-5302 (2012). |
Clark, J. et al., Discovery and Development of Janus Kinase (JAK) Inhibitors for Inflammatory Diseases, Journal of Medicinal Chemistry, J. Med. Chem., 57:5023-5038 (2014). |
Dymock et al., Inhibitors of JAK2 and JAK3: an update on the patent literature 2010-2012, Expert Opin Ther Pat., 23(4):449-501 (2013). |
Elf, S. et al., Mutant calreticulin requires both its mutant C-terminus and the thrombopoietin receptor for oncogenic transformation, Science Discovery, 6(4):368-381 (2016). |
Extended European Search Report for Application No. EP19882411.2, mailed Jun. 21, 2022. |
Extended European Search Report for EP 19882880.8 mailed Jul. 11, 2022. |
Extended European Search Report for EP19881035.0 mailed Jun. 29, 2022. |
Harrison, C. et al., JAK Inhibition with Ruxolitinib versus Best Available Therapy for Myelofibrosis, The New England Journal of Medicine, 366(9):787-798 (2012). |
International Search Report for PCT/US2019/060358, mailed on Mar. 3, 2020. |
International Search Report for PCT/US2019/060360, mailed on Mar. 3, 2020. |
International Search Report for PCT/US2019/060363, mailed on Mar. 9, 2020. |
International Search Report for PCT/US2020/053922, mailed on Mar. 8, 2021. |
International Search Report for PCT/US2021/030926, 7 pages (Sep. 8, 2021). |
International Search Report for PCT/US2021/064830, 4 pages (Mar. 25, 2022). |
Jaffer, T. and Ma, D., The emerging role of chemokine receptor CXCR2 in cancer progression, Transl. Cancer Res., 5(Suppl 4):S616-S628 (2016). |
Jutzi, J. et al., LSD1 Inhibition Prolongs Survival in Mouse Models of MPN by Selectivity Targeting the Disease Clone, HemaSphere, 2:3, 13 pages (2018). |
Koppikar, P. et al., Heterodimeric JAK-STAT Activation as a Mechanism of Persistence to JAK2 Inhibitor Therapy, Nature, 489(7414):155-159 (2012). |
Leroy, E. et al., Rethinking JAK2 inhibition: towards novel strategies of more specific and versatile janus kinase inhibition, Leukemia, 31(5):1023-1038 (2017). |
Levine, R. L., JAK-mutant Myeloproliferative Neoplasms, Current Topics in Microbiology and Immunology, 355:119-133 (2011). |
Li, et al., AutoT&T v.2: An Efficient and Versatile Tool for Lead Structure Generation and Optimization, J. Chem. Inf. Model, 56(2):435-453 (2016). |
Meyer, S. and Levine, R., Molecular Pathways: Molecular Basis for Sensitivity and Resistance to JAK Kinase Inhibitors, Clin. Cancer Res., 20(8):2051-2059 (2014). |
O'Hare, T. et al., AP24534, a Pan-BCR-ABL Inhibitor for Chronic Myeloid Leukemia, Potently Inhibits the T315I Mutant and Overcomes Mutation-Based Resistance, Cancer Cell, 16(5):401-412 (2009). |
Okaniwa, et al., Design and synthesis of novel DFG-out RAF/vascular endothelial growth factor receptor 2 (VEGF2) inhibitors. 1. Exploration of [5,6]-fused bicyclic scaffolds, J Med Chem., 55(7):3452-78 (2012). |
O'Shea, J. et al., Janus kinase Inhibitors in autoimmune diseases, Ann Rheum. Dis., 72, 11 pages (2013). |
Pandey, A. et al., Cloning of a receptor subunit required for signaling by thymic stromal lymphopoietin, Nature Immunology, 1(1):59-64 (2000). |
Ramurthy, S. et al., Design and Synthesis of Orally Bioavailable Benzimidazoles as Raf Kinase Inhibitors, J. Med. Chem., 51:7049-7052 (2008). |
Ramurthy, S. et al., Supporting Information Design and Synthesis of Benzimidazoles Amides as Raf Kinase Inibitors, Novartis Institutes of Biomedical Research, 38 pages (2018). |
Roberts, K. G. et al., Targetable Kinase-Activating Lesions in Ph-like Acute Lymphoblastic Leukemia, New England Journal of Medicine, 371(11):1005-1015 (2014). |
Rodrigues, M.A. and Torres, T., JAK/STAT inhibitors for the treatment of atopic dermatitis, Journal of Dermatological Treatment, 31(1):33-40 (2020). |
Rui, L. et al., Cooperative Epigenetic Modulation by Cancer Amplicon Genes, Cancer Cell., 18(6):590-605 (2010). |
Rzymski, T. et al., SEL120-34A is a novel CDK8 inhibitor active in AML cells with high levels of serine phosphorylation of STAT1 and STAT5 transactivation domains, Oncotarget, 8(20):33779-33795 (2017). |
Shiels, M. S. et al., Cancer Burden in the HIV-Infected Population in the United States, J Natl Cancer Inst., 103(9):753-762 (2011). |
Smith, A. et al., Imidazo[1,2-a]pyridin-6-yl-benzamide analogs as potent RAF inhibitors, Bioorg Med Chem Lett., 27(23):5221-5224 (2017). |
Subramanian, S. et al., Design and Synthesis of Orally Bioavailable Benzimidazole Reverse Amides as Pan RAF Kinase Inhibitors, ACS Med. Chem. Lett., 5:989-992 (2014). |
Vainchenker, W. et al., JAK inhibitors for the treatment of myeloproliferative neoplasms and other disorders, F1000 Research, 7(F1000 Faculty Rev), 19 pages (last updated Jan. 17, 2018). |
Verstovsek, S. et al., A Double-Blind Placebo-Controlled Trial of Ruxolitinib for Myelofibrosis, N Engl J Med., 366(9):799-807 (2012). |
Williams et al., Discovery of RAF265: A Potent mut-B-RAF Inhibitor for the Treatment of Metastatic Melanoma, ACS Med. Chem Lett., 6(9):961-965 (2015). |
Wu, S. et al., Activity of the Type II JAK2 Inhibitor CHZ868 in B Cell Acute Lymphoblastic Leukemia, Cancer Cell, 28:29-41 (2015). |
Yuanyuan, W. et al., Design, synthesis, biological evaluation and molecular modeling of novel 1H-pyrazolo [3,4-d] pyrimidine derivatives as BRAFV600Eand VEGFR-2 dual inhibitors, European Journal of Medicinal Chemistry, 155:210-228 (2018). |
Yumeen, S. et al., JAK inhibition synergistically potentiates BCL2, BET, HDAC, and proteasome inhibition in advanced CTCL, Blood Advances, 4(10):2213-2226 (2020). |
Zhao, et al., Exploration of type II binding mode: A privileged approach for kinase inhibitor focused drug discovery?, ACS Chem Biol., 9(6):1230-41 (2014). |
International Search Report for PCT/US2022/049223, 3 pages (mailed Feb. 9, 2023). |
Number | Date | Country | |
---|---|---|---|
20230146125 A1 | May 2023 | US |
Number | Date | Country | |
---|---|---|---|
63277419 | Nov 2021 | US |