Formulations for voltage switchable dielectric materials having a stepped voltage response and methods for making the same

Information

  • Patent Grant
  • 8163595
  • Patent Number
    8,163,595
  • Date Filed
    Tuesday, November 23, 2010
    14 years ago
  • Date Issued
    Tuesday, April 24, 2012
    12 years ago
Abstract
Formulations for voltage switchable dielectric materials include two or more different types of semiconductive materials uniformly dispersed within a dielectric matrix material. The semiconductive materials are selected to have different bandgap energies in order to provide the voltage switchable dielectric material with a stepped voltage response. The semiconductive materials may comprise inorganic particles, organic particles, or an organic material that is soluble in, or miscible with, the dielectric matrix material. Formulations optionally can also include electrically conductive materials. At least one of the conductive or semiconductive materials in a formulation can comprise particles characterized by an aspect ratio of at least 3 or greater.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates generally to the field of electronic devices and more particularly to over-voltage protection.


2. Related Art


Semiconductor devices comprising a semiconductor die or chip are easily affected or destroyed by over-voltage events. Examples of over-voltage events include electrostatic discharge (ESD), line transients, and lightening strikes. Electrostatic discharge commonly occurs when a person carrying a static charge touches a semiconductor device. Line transients include power surges on AC power lines, and can also be caused by events such as closing a switch or starting a motor.


Voltage switchable dielectric materials, also known as nonlinear resistance materials, are materials that normally behave as dielectric materials, but upon application of a sufficient voltage, known as a switch voltage, will rapidly become electrically conductive. The ability of voltage switchable dielectric materials to switch between non-conductive and conductive states makes these materials well suited for over-voltage protection applications. One requirement for most applications, however, is that the voltage switchable dielectric material cannot appreciably leak current below the normal operating voltage of the device in which the voltage switchable dielectric material is employed.


A common method for manufacturing voltage switchable dielectric materials is to fill a polymer with a high level of metal particles to very near the percolation threshold, typically more than 40% by volume. Unfortunately, voltage switchable dielectric materials manufactured in this way can begin to leak current at normal operating voltages. Also, manufacturing such voltage switchable dielectric materials can be problematic. The metal particles must be uniformly dispersed throughout the polymer and small concentration variations can significantly diminish the properties or produce unacceptable variations in electrical properties. While uniformity can be improved with long mixing times, long mixing times are undesirable for numerous reasons including the cost.


SUMMARY OF THE INVENTION

The present invention provides formulations for voltage switchable dielectric materials that provide stepped responses to different levels of over-voltages. An exemplary voltage switchable dielectric material of the invention comprises a dielectric matrix material and three semiconductive materials disposed within the matrix material. Each of the three semiconductive materials is characterized by a different bandgap energy. Any of the semiconductive materials can comprise, for example, inorganic particles, organic particles, or a solvent soluble organic material. In some embodiments, one of the semiconductive materials has a bandgap energy in the range of about 2 eV to 3 eV. In some of these embodiments, a second semiconductive material has a bandgap energy less than 2 eV, and a third semiconductive material has a bandgap energy greater than 3 eV. In some embodiments, the voltage switchable dielectric material further comprising an electrically conductive material disposed within the matrix material.


Another exemplary voltage switchable dielectric material of the invention comprises a dielectric matrix material and two semiconductive materials characterized by different bandgap energies. One of the semiconductive materials comprises particles characterized by an aspect ratio of at least 3:1.


Still another exemplary voltage switchable dielectric material of the invention comprises a dielectric matrix material and two semiconductive materials characterized by different bandgap energies. In these embodiments, the voltage switchable dielectric material further comprises particles of an electrically conductive material disposed within the matrix material and characterized by an aspect ratio of at least 3:1. In some of these embodiments, one of the semiconductive materials also comprises particles characterized by an aspect ratio of at least 3:1. The voltage switchable dielectric material can have a volume percentage of conductive particles is less than about 35, in some instances.


The present invention also provides methods for fabricating voltage switchable dielectric materials, as well as voltage switchable dielectric materials made by these methods. An exemplary method comprises adding first, second, and third semiconductive materials to a resin, mixing the resin until the first, second, and third semiconductive materials are uniformly dispersed in the resin, and curing the resin. Here, each of the first, second, and third semiconductive materials is characterized by a different bandgap energy. At least one of the first, second, or third semiconductive materials can comprise a solvent soluble organic material. In some embodiments, mixing is performed with a rotor-stator mixer and/or includes sonication. The method can further comprise adding a solvent to the resin during mixing. Curing the resin, in some instances, includes exposing the resin to a plurality of curing periods, where each successive curing period is at a higher temperature than the previous curing period.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a cross-sectional view of voltage switchable dielectric material according to an exemplary embodiment of the invention.



FIG. 2 is a plot of current as a function of voltage applied to an exemplary embodiment of a voltage switchable dielectric material.



FIG. 3 is a flow-chart representation of a method for making a voltage switchable dielectric material according to an exemplary embodiment of the invention.



FIG. 4 is cross-section of an exemplary voltage switchable dielectric material applied to a gap between two electrodes according to an exemplary embodiment of the invention.



FIG. 5 is cross-section of two electrodes disposed on a layer of a voltage switchable dielectric material according to an exemplary embodiment of the invention.





DETAILED DESCRIPTION OF THE INVENTION

The present invention provides formulations for voltage switchable dielectric materials. The formulations are characterized by two or more different types of semiconductive materials distributed within a dielectric matrix material. The semiconductive materials are selected to have different bandgap energies in order to provide the resulting voltage switchable dielectric material with a stepped response to different levels of over-voltages. The semiconductive materials can take the form of particles, but are not limited thereto. Alternatively, a semiconductive material can be soluble in, or miscible with, the dielectric matrix material. Formulations optionally can also include electrically conductive and/or insulating materials. In some embodiments, at least one of the conductive or semiconductive materials comprises particles characterized by an aspect ratio of at least 3 or greater. Such high aspect ratio particles allow for an overall reduction of the volume percentage of conductive particles relative to prior art formulations. Benefits that can be derived from these formulations include a lower leakage current at normal operating voltages, as well as generally improved properties for electronics applications such as capacitance, dielectric constant, crack resistance, and coefficient of thermal expansion.



FIG. 1 schematically illustrates a formulation for a voltage switchable dielectric material 100 according to an exemplary embodiment of the invention. In FIG. 1, a matrix material 110 is filled with particles 120 of a conductive material, particles 130, 140, 150 of three semiconductive materials having different bandgap energies, and particles 160 of an insulating material. It will be understood that even though FIG. 1 shows a formulation including five different types of particles 120, 130, 140, 150, 160, formulations of the invention may omit the conductive particles 120 and/or the insulating particles 150. Other embodiments only include particles 130, 140 of two semiconductive materials having different bandgap energies, rather than all three particles 130, 140, and 150. It will be appreciated that the shapes, sizes, and numbers of the particles 120, 130, 140, 150, 160 are merely illustrative and not meant to be representative of any particular formulation.


Further, while FIG. 1 illustrates particles 130, 140, 150 of semiconductive materials, it will be understood that one or more of the particles 130, 140, 150 can be replaced with an organic semiconductive material that is at least partially soluble in, or miscible with, the matrix material 110. Such semiconductive materials may not present as discrete particles within the matrix material 110, in some embodiments, but are shown as particles for the purposes of illustration only.


The particles 120, 130, 140, 150, 160 are uniformly dispersed throughout the matrix material 110 in the embodiment illustrated by FIG. 1 such that some particles 120, 130, 140, 150 are completely insulated by the matrix material 110, while other particles 120, 130, 140, 150 are in contact with one another. Thus, a typical conductive path of least resistance through the voltage switchable dielectric material 100 will pass through some of each of the particles 120, 130, 140, 150.


Some suitable dielectric materials for the matrix material 110 are organic polymers. Examples of such suitable organic polymers include silicone polymer, phenolic resin, epoxy, polyurethane, poly(meth) acrylate, polyamide, polyester, polycarbonate, polyacrylamides, polyimide, polyethylene, polypropylene, polyphenylene oxide, polysulphone, ceramer (a solgel/polymer composite), and polyphenylene sulfone. One particular epoxy that works well is EPON Resin 828, an undiluted clear difunctional bisphenol A/epichlorohydrin derived liquid epoxy resin that can be hardened with an appropriate curing agent. Some dielectric inorganic polymers are also suitable for the matrix material 110 such as siloxane, and polyphosphazines.


In some embodiments, the particles 120 of the conductive material comprise a metal. Suitable metals include copper, aluminum, nickel, silver, gold, titanium, stainless steel, chromium, and alloys thereof. Other suitable materials for the conductive particles 120 include TiC, TiN, and TiB2. A suitable particle size for the particles 120 of the conductive material is on the order of 2 microns (μ). While the particles 120 of the conductive material shown in FIG. 1 are shown as slightly elongated, (i.e, having an aspect ratio greater than 1), it will be understood that the particles 120 of the conductive material are not limited to a slightly elongated shape. In various embodiments, the particles 120 of the conductive material can comprise a shape ranging from spherical to highly elongated, or can even include a distribution of shapes.


The particles 130, 140, 150 of the semiconductive materials are particles of materials having bandgap energies within the range of approximately 1 eV to 6 eV, though this range should not be viewed as strictly limiting. The bandgap energy is the energy required to excite an electron out of the valence band and into the conduction band. Examples of suitable semiconducting materials include Si, NiO, SiC, ZnO, BN, C (either in the form of diamond, nanotubes, or fullerenes), ZnS, Bi2O3, Fe2O3, CeO2, TiO2, AlN, and compounds of indium diselenide. In particular, TiO2 can be undoped or doped, for example with WO3, where doping in this instance refers to a surface coating. While the particles 130, 140, 150 of the semiconductive materials shown in FIG. 1 as slightly elongated, (i.e, have an aspect ratio greater than 1), it will again be understood that the particles 130, 140, 150 of the semiconductive materials also are not limited to a slightly elongated shape. In various embodiments, any of the particles 130, 140, 150 of the semiconductive materials can be a shape ranging from spherical to highly elongated, or can even include a distribution of shapes.


In some embodiments, the particles 120 of the conductive material comprise high aspect ratio particles such as electrically conductive carbon nanotubes, both single walled and multi-walled, fullerenes, metal nanorods, or metal nanowires. Examples of materials that form nanorods and/or nanowires include boron nitride, antimony tin oxide, titanium dioxide, silver, copper, tin, and gold.


In other embodiments, one or more of the particles 130, 140, 150 of the semiconductive materials comprise high aspect ratio particles. Examples include semiconductive carbon nanotubes, semiconductive nanorods, and semiconductive nanowires. In still other embodiments, both the conductive particles 120 and at least one of the particles 130, 140, 150 of the semiconductive materials comprise high aspect ratio particles. Any of the particles 120, 130, 140, 150 can have an aspect ratio of at least 3:1. In some embodiments, one or more of the particles 120, 130, 140, 150 have an aspect ratio of at least 10:1, 100:1, or 1000:1.


Nanoscale particles, characterized by a smallest dimension no greater than 500 nm, can also be employed for any of the particles 120, 130, 140, 150. In various embodiments, at least some of the particles 120, 130, 140, 150 have a smallest dimension less than 100 nm or 50 nm. In some instances, at least some of the particles 120, 130, 140, 150 are characterized by a diameter of about 20 nm.


In still further embodiments, any of the particles 130, 140, 150 of the semiconductive materials can comprise an organic material. Incorporating organic materials within the matrix material 110 can result in a voltage switchable dielectric material 100 with superior properties compared with a voltage switchable dielectric material 100 that only includes inorganic materials. Such properties include the coefficients of thermal expansion and thermal conductivity, the dielectric constant, the fracture toughness, compression strength, and the ability to adhere to metals.


Examples of organic semiconductors include forms of carbon such as electrically semiconducting carbon nanotubes and fullerenes (e.g., C60 and C70). Fullerenes and nanotubes can be modified, in some embodiments, to be functionalized to include a covalently bonded chemical group or moiety. Other examples of organic semiconductors include poly-3-hexylthiophene, polythiophene, polyacteylene, poly(3,4-ethylenedioxythiophene), poly(styrenesulfonate), pentacene, (8-hydroxyquinolinolato) aluminum (III), and N,N′-di-[(naphthalenyl)-N,N′diphenyl]-1,1′-biphenyl-4,4′-diamine [NPD]. Additionally, organic semiconductors can be derived from the monomers, oligomers, and polymers of thiophene, analine, phenylene, vinylene, fluorene, naphthalene, pyrrole, acetylene, carbazole, pyrrolidone, cyano materials, anthracene, pentacene, rubrene, perylene, and oxadizole. Some of these organic materials are considered to be photo-active organic materials, such as polythiophene.


In general terms, the present invention provides for a wide range of formulations that include the above described conductive, semiconductive and insulating materials. For example, the volume percentage of the matrix material 110 can vary from about 5 to about 99% and can include 0 to about 70% by volume of a conductive material, and about 0.01 to about 95% by volume of semiconductive materials. Within these broad ranges, any or all of the conductive and semiconductive materials can comprise particles with aspect ratio of at least 3. Also within these broad ranges, any or all of the semiconductive materials can comprise organic materials.


In some embodiments, the matrix material 110 comprises about 20% to about 80% by volume, conductive material comprise about 10% to about 50% by volume, and the semiconductive materials comprise 0% to about 70% by volume. These embodiments can include a volume percentage of conductive and/or semiconductive particles with aspect ratios of at least 3 in the range of about 0.01% to about 40%. These embodiments can further include a volume percentage of semiconductive organic materials in the range of about 0.01% to about 40%.


As noted above, the particles 130, 140, 150 of the semiconductive materials are characterized by different bandgap energies to provide the voltage switchable dielectric material 100 with a stepped response to over-voltages. FIG. 2 illustrates the stepped response for a formulation with two particles 130, 140 of the semiconductive materials. In FIG. 2, the voltage applied to the voltage switchable dielectric material 100 is plotted against the current that the voltage switchable dielectric material 100 will conduct. It will be understood that the electrical conductance of the voltage switchable dielectric material 100 could have been plotted in place of the current in FIG. 2 and would have resulted in the same illustration.


In the illustrated example, an over-voltage event having a peak voltage above a first threshold (V1) will be sufficient to cause the particles 130 of the semiconductive material with the lowest bandgap to conduct but will not be sufficient to cause the particles 140 of the semiconductive material with the higher bandgap to conduct, unless the peak voltage also exceeds a second threshold (V2). The concept can be readily extended to formulations with three or more types of particles 130, 140, 150 of the semiconductive materials, each characterized by a different bandgap energy. The difference in the bandgap energies of the various semiconductive materials will determine the voltage difference from one threshold to the next. In some embodiments that include three semiconductive materials, the material with the lowest bandgap energy has a bandgap energy less than 2 eV, the material with the highest bandgap energy has a bandgap energy greater than 3 eV, and the remaining material has a bandgap energy in the range of about 2 eV to 3 eV.


The present invention also provides methods for making voltage switchable dielectric materials. FIG. 3 is a flowchart representation of an exemplary method 300 for making a voltage switchable dielectric material. In a Step 310 various materials are added to a resin such as EPON Resin 828 with a silane coupling agent. The various materials can include the conductive, semiconductive, and insulating materials described above. The semiconductive materials can comprise either inorganic particles, organic particles, or organic materials dissolved in a solvent. For instance, poly-3-hexylthiophene can be dissolved in toluene. The conductive and the semiconductive materials can optionally comprise high aspect ratio particles.


In Step 310, the various materials can be added sequentially, all together, or in various combinations. In some embodiments, high aspect ratio particles are added first, followed by the remaining materials. Step 310 can also include adding a solvent to the resin, such as NMP (N-methyl-2 pyrrolidone). Step 310 can also comprise adding curing and/or catalyst agents to the resin. A suitable curing agent is a 15% by weight solution of Dyhard T03 dissolved in NMP.


The quantity of conductive and/or semiconductive particles added to the resin in Step 310 will depend, at least in part, on their aspect ratios. The greater the aspect ratio, the lower the necessary quantity. For example, carbon nanotubes having aspect ratios in excess of 1000 may be added in a quantity that will result in a weight percentage of carbon nanotubes in the final composition of between about 0.01% and about 10%. In some instances, the quantity of carbon nanotubes that is added to the resin is such that the weight percentage of carbon nanotubes in the final composition is about 1%. Particles with lower aspect ratios can be added in a quantity that will result in a weight percentage in the final composition of greater than 10%. For example, particles with an aspect ratio of about 10 can be added in a quantity sufficient to provide the final formulation with about 25 weight percent or more of such particles.


Next, in a Step 320, the resin is mixed for a period on the order of minutes to hours (e.g., 8 hours) to produce a uniform mixture within which the particles having an aspect ratio of at least 3 are uniformly dispersed within the resin. Mixing can include, for example, sonication and rotor-stator mixing. Additional solvent can also be added during the mixing.


Following mixing, the mixture is applied to a desired location and the resin is cured in a Step 330. The mixture can be applied, for example, by screen printing or by wire wound rod coating. A suitable wire for the wire wound rod coating process is a #50 wire. An exemplary curing process exposes the mixture to a plurality of curing periods, wherein each successive curing period is at a higher temperature than the previous curing period. One such suitable curing process employs, in succession, a 10 minute curing period at 75° C., a 10 minute curing period at 125° C., a 45 minute curing period at 175° C., and a 30 minute curing period at 187° C.


In the Step 330, the desired location can be, for example, on or within a printed circuit board, a semiconductor package, a semiconductor device, a radio frequency identification (RFID) tag, a light emitting diode (LED), a display backplane, a discreet surge suppressing device, or an intermediate component produced during the fabrication of any of these.



FIG. 4 illustrates an exemplary application in which a voltage switchable dielectric material 400 is disposed in a gap 410 between an electrode 420 in electrical communication to ground and an electrode 430 that is biased relative to ground. Such an arrangement can be used to protect just about any circuit or device against over-voltage events. The voltage switchable dielectric material 400 can be formed in the gap 410 by applying and curing a uniform mixture, as described above with respect to FIGS. 2 and 3, within the gap 410.


Another arrangement is shown in FIG. 5 where electrodes 500, 510 are disposed on a layer 520 of voltage switchable dielectric material on a substrate 530. Here, the layer 520 of the voltage switchable dielectric material can be formed on the substrate 530 by applying and curing a uniform mixture, as described above with respect to FIG. 3, on the substrate 530. The electrodes 500, 510 can then be fabricated on the layer 520 by conventional means. For example, a seed layer can be deposited on the layer 520, a mask patterned over the seed layer, and the electrodes 500, 510 formed by electroplating. Alternately, the seed layer can be omitted from the prior method. After the mask has been patterned, the layer 520 of the voltage switchable dielectric material can be made conductive by applying a suitable voltage thereto. Once conductive, the electrodes 500, 510 can then be plated directly onto the layer 520. Methods for electroplating directly onto voltage switchable dielectric materials are described in more detail in U.S. Pat. No. 6,797,145 entitled “Current Carrying Structure using Voltage Switchable Dielectric Material.”


In the foregoing specification, the invention is described with reference to specific embodiments thereof, but those skilled in the art will recognize that the invention is not limited thereto. Various features and aspects of the above-described invention may be used individually or jointly. Further, the invention can be utilized in any number of environments and applications beyond those described herein without departing from the broader spirit and scope of the specification. The specification and drawings are, accordingly, to be regarded as illustrative rather than restrictive. It will be recognized that the terms “comprising,” “including,” and “having,” as used herein, are specifically intended to be read as open-ended terms of art.

Claims
  • 1. A method for fabricating a voltage switchable dielectric material comprising: adding first, second, and third semiconductive materials to a resin, each of the first, second, and third semiconductive materials being characterized by a different bandgap energy;mixing the resin until the first, second, and third semiconductive materials are uniformly dispersed in the resin; andcuring the resin, wherein curing includes exposing the resin to a plurality of curing periods, wherein at least one of the curing periods is at a higher temperature than the immediately preceding curing period.
  • 2. The method of claim 1 wherein mixing includes sonication.
  • 3. The method of claim 1 wherein mixing is performed with a rotor-stator mixer.
  • 4. The method of claim 1 further comprising adding a solvent to the resin during mixing.
  • 5. The method of claim 1 wherein the solvent comprises N-methyl-2 pyrrolidone.
  • 6. The method of claim 1 further comprising adding a conductive material to the resin before mixing the resin.
  • 7. The method of claim 1 wherein at least one of the first, second, or third semiconductive materials comprises a solvent soluble organic material.
  • 8. A method for fabricating a voltage switchable dielectric material comprising: adding first, second, and third semiconductive materials to a resin, each of the first, second, and third semiconductive materials being characterized by a different bandgap energy;mixing the resin until the first, second, and third semiconductive materials are uniformly dispersed in the resin, and adding a solvent to the resin during mixing; andcuring the resin.
  • 9. The method of claim 8 wherein mixing includes sonication.
  • 10. The method of claim 8 wherein mixing is performed with a rotor-stator mixer.
  • 11. The method of claim 8 wherein curing the resin includes exposing the resin to a plurality of curing periods, wherein at least one of the curing periods is at a higher temperature than the immediately preceding curing period.
  • 12. The method of claim 8 wherein the solvent comprises N-methyl-2 pyrrolidone.
  • 13. The method of claim 8 further comprising adding a conductive material to the resin before mixing the resin.
  • 14. The method of claim 8 wherein at least one of the first, second, or third semiconductive materials comprises a solvent soluble organic material.
  • 15. A method for fabricating a voltage switchable dielectric material comprising: adding first, second, and third semiconductive materials to a resin, each of the first, second, and third semiconductive materials being characterized by a different bandgap energy, wherein at least one of the first, second, or third semiconductive materials comprises a solvent soluble organic material;mixing the resin until the first, second, and third semiconductive materials are uniformly dispersed in the resin; andcuring the resin.
  • 16. The method of claim 15, wherein the soluble organic semiconductor material is at least one of carbon, carbon nanotubes, and carbon fullerenes.
  • 17. The method of claim 15, wherein the soluble organic semiconductor material is a covalently bonded chemical group or moiety of a nanotube.
  • 18. The method of claim 15, wherein the soluble organic semiconductor material is at least one of poly-3-hexylthiophene, polythiophene, polyacteylene, poly(3,4-ethylenedioxythiophene), poly(styrenesulfonate), pentacene, (8-hydroxyquinolinolato) aluminum (III), or N,N′-di-[(naphthalenyl)-N,N′diphenyl]-1,1′-biphenyl-4,4′-diamine (NPD).
  • 19. The method of claim 15, wherein the soluble organic semiconductor material is derived from at least one of a monomer, oligomer, or polymer of thiophene, analine, phenylene, vinylene, fluorene, naphthalene, pyrrole, acetylene, carbazole, pyrrolidone, cyano materials, anthracene, pentacene, rubrene, perylene, or oxadizole.
  • 20. The method of claim 15, wherein the soluble organic semiconductor material is a photo-active organic material.
  • 21. The method of claim 15, wherein the soluble organic semiconductor material is polythiophene.
  • 22. The method of claim 15 wherein mixing includes sonication.
  • 23. The method of claim 15 wherein mixing is performed with a rotor-stator mixer.
  • 24. The method of claim 15 wherein curing includes exposing the resin to a plurality of curing periods, wherein at least one of the curing periods is at a higher temperature than the immediately preceding curing period.
  • 25. The method of claim 15 further comprising adding a solvent to the resin during the mixing process.
  • 26. The method of claim 15 wherein the solvent comprises N-methyl-2 pyrrolidone.
  • 27. The method of claim 15 further comprising adding a conductive material to the resin before mixing the resin.
  • 28. An electronic device comprising a voltage switchable dielectric (VSD) material, the VSD material comprising: a resin;a first, a second, and a third semiconductive material, each of the first, second, and third semiconductive materials being characterized by a different bandgap energy; whereinat least one of the first, second, or third semiconductive materials comprises a solvent soluble organic material;the first, second, and third semiconductive materials are dispersed in the resin; andthe VSD material is cured.
  • 29. The electronic device of claim 28, wherein the electronic device is at least one of a printed circuit board, a semiconductor package, a radio frequency identification (RFID) tag, a light emitting diode (LED), a display backplane, or a discrete surge suppressing device.
  • 30. The electronic device of claim 28, wherein the soluble organic semiconductor material is at least one of carbon, carbon nanotubes, and carbon fullerenes.
  • 31. The electronic device of claim 28, wherein the soluble organic semiconductor material is a covalently bonded chemical group or moiety of a nanotube.
  • 32. The electronic device of claim 28, wherein the soluble organic semiconductor material is at least one of poly-3-hexylthiophene, polythiophene, polyacteylene, poly(3,4-ethylenedioxythiophene), poly(styrenesulfonate), pentacene, (8-hydroxyquinolinolato) aluminum (III), or N,N′-di-[(naphthalenyl)-N,N′diphenyl]-1,1′-biphenyl-4,4′-diamine (NPD).
  • 33. The electronic device of claim 28, wherein the soluble organic semiconductor material is derived from at least one of a monomer, oligomer, or polymer of thiophene, analine, phenylene, vinylene, fluorene, naphthalene, pyrrole, acetylene, carbazole, pyrrolidone, cyano materials, anthracene, pentacene, rubrene, perylene, or oxadizole.
  • 34. The electronic device of claim 28, wherein the soluble organic semiconductor material is a photo-active organic material.
  • 35. The electronic device of claim 28, wherein the soluble organic semiconductor material is polythiophene.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation and claims the priority benefit of U.S. patent application Ser. No. 11/903,820, entitled “Formulations for Voltage Switchable Dielectric Material having a Stepped Voltage Response and Methods for Making the Same,” filed Sep. 24, 2007, now U.S. Pat. No. 7,872,251 which claims the benefit of U.S. Provisional Application No. 60/826,747 entitled “Voltage Switchable Device and Dielectric Material with Stepped Bandgap Containing Particles”, filed on Sep. 24, 2006. This application is related to U.S. application Ser. No. 11/829,948 entitled “Voltage Switchable Dielectric Material having High Aspect Ratio Particles,” filed Jul. 29, 2007, and U.S. application Ser. No. 11/829,946 entitled “Voltage Switchable Dielectric Material having Conductive or Semi-Conductive Organic Material,” filed Jul. 29, 2007. Each of the above referenced applications is incorporated by reference herein.

US Referenced Citations (247)
Number Name Date Kind
3347724 Schneble, Jr. et al. Oct 1967 A
3685026 Wakabayashi et al. Aug 1972 A
3685028 Wakabayashi et al. Aug 1972 A
3723635 Smith Mar 1973 A
3808576 Castonguay et al. Apr 1974 A
3926916 Mastrangelo Dec 1975 A
3977957 Kosowsky et al. Aug 1976 A
4113899 Henry et al. Sep 1978 A
4133735 Afromowitz et al. Jan 1979 A
4252692 Taylor et al. Feb 1981 A
4269672 Inoue May 1981 A
4331948 Malinaric et al. May 1982 A
4359414 Mastrangelo Nov 1982 A
4405432 Kosowsky Sep 1983 A
4439809 Weight et al. Mar 1984 A
4506285 Einzinger et al. Mar 1985 A
4591411 Reimann May 1986 A
4642160 Burgess Feb 1987 A
4702860 Kinderov et al. Oct 1987 A
4714952 Takekawa et al. Dec 1987 A
4726877 Fryd et al. Feb 1988 A
4726991 Hyatt et al. Feb 1988 A
4799128 Chen Jan 1989 A
4888574 Rice et al. Dec 1989 A
4892776 Rice Jan 1990 A
4918033 Bartha et al. Apr 1990 A
4928199 Diaz et al. May 1990 A
4935584 Boggs Jun 1990 A
4977357 Shrier Dec 1990 A
4992333 Hyatt Feb 1991 A
4996945 Dix, Jr. Mar 1991 A
5068634 Shrier Nov 1991 A
5092032 Murakami Mar 1992 A
5095626 Kitamura et al. Mar 1992 A
5099380 Childers et al. Mar 1992 A
5142263 Childers et al. Aug 1992 A
5148355 Lowe et al. Sep 1992 A
5167778 Kaneko et al. Dec 1992 A
5183698 Stephenson et al. Feb 1993 A
5189387 Childers et al. Feb 1993 A
5246388 Collins et al. Sep 1993 A
5248517 Shrier et al. Sep 1993 A
5252195 Kobayashi et al. Oct 1993 A
5260848 Childers Nov 1993 A
5262754 Collins Nov 1993 A
5278535 Xu et al. Jan 1994 A
5282312 DiStefano et al. Feb 1994 A
5294374 Martinez et al. Mar 1994 A
5295297 Kitamura et al. Mar 1994 A
5300208 Angelopoulos et al. Apr 1994 A
5317801 Tanaka et al. Jun 1994 A
5340641 Xu Aug 1994 A
5347258 Howard et al. Sep 1994 A
5354712 Ho et al. Oct 1994 A
5367764 DiStefano et al. Nov 1994 A
5378858 Bruckner et al. Jan 1995 A
5380679 Kano Jan 1995 A
5393597 Childers et al. Feb 1995 A
5403208 Felcman et al. Apr 1995 A
5404637 Kawakami Apr 1995 A
5413694 Dixon et al. May 1995 A
5416662 Kurasawa et al. May 1995 A
5440075 Kawakita et al. Aug 1995 A
5444593 Allina Aug 1995 A
5476471 Shifrin et al. Dec 1995 A
5481795 Hatakeyama et al. Jan 1996 A
5483407 Anastasio et al. Jan 1996 A
5487218 Bhatt et al. Jan 1996 A
5493146 Pramanik et al. Feb 1996 A
5501350 Yoshida et al. Mar 1996 A
5502889 Casson et al. Apr 1996 A
5510629 Karpovich et al. Apr 1996 A
5550400 Takagi et al. Aug 1996 A
5557136 Gordon et al. Sep 1996 A
5654564 Mohsen Aug 1997 A
5669381 Hyatt Sep 1997 A
5685070 Alpaugh et al. Nov 1997 A
5708298 Masayuki et al. Jan 1998 A
5714794 Tsuyama et al. Feb 1998 A
5734188 Murata et al. Mar 1998 A
5744759 Ameen et al. Apr 1998 A
5781395 Hyatt Jul 1998 A
5802714 Kobayashi et al. Sep 1998 A
5807509 Shrier et al. Sep 1998 A
5808351 Nathan et al. Sep 1998 A
5834160 Ferry et al. Nov 1998 A
5834824 Shepherd et al. Nov 1998 A
5834893 Bulovic et al. Nov 1998 A
5848467 Khandros et al. Dec 1998 A
5856910 Yurchenco et al. Jan 1999 A
5865934 Yamamoto et al. Feb 1999 A
5869869 Hively Feb 1999 A
5874902 Heinrich et al. Feb 1999 A
5906042 Lan et al. May 1999 A
5910685 Watanabe et al. Jun 1999 A
5926951 Khandros et al. Jul 1999 A
5940683 Holm et al. Aug 1999 A
5946555 Crumly et al. Aug 1999 A
5955762 Hively Sep 1999 A
5956612 Elliott et al. Sep 1999 A
5962815 Lan et al. Oct 1999 A
5970321 Hively Oct 1999 A
5972192 Dubin et al. Oct 1999 A
5977489 Crotzer et al. Nov 1999 A
6013358 Winnett et al. Jan 2000 A
6023028 Neuhalfen Feb 2000 A
6064094 Intrater et al. May 2000 A
6108184 Minervini et al. Aug 2000 A
6114672 Iwasaki Sep 2000 A
6130459 Intrater Oct 2000 A
6160695 Winnett et al. Dec 2000 A
6172590 Shrier et al. Jan 2001 B1
6184280 Shibuta Feb 2001 B1
6191928 Rector et al. Feb 2001 B1
6198392 Hahn et al. Mar 2001 B1
6211554 Whitney et al. Apr 2001 B1
6239687 Shrier et al. May 2001 B1
6251513 Rector et al. Jun 2001 B1
6310752 Shrier et al. Oct 2001 B1
6316734 Yang Nov 2001 B1
6340789 Petritsch et al. Jan 2002 B1
6351011 Whitney et al. Feb 2002 B1
6373719 Behling et al. Apr 2002 B1
6407411 Wojnarowski Jun 2002 B1
6433394 Intrater Aug 2002 B1
6448900 Chen Sep 2002 B1
6455916 Robinson Sep 2002 B1
6468593 Iazawa Oct 2002 B1
6512458 Kobayashi et al. Jan 2003 B1
6534422 Ichikawa et al. Mar 2003 B1
6542065 Shrier et al. Apr 2003 B2
6549114 Whitney et al. Apr 2003 B2
6570765 Behling et al. May 2003 B2
6593597 Sheu Jul 2003 B2
6621172 Nakayama et al. Sep 2003 B2
6628498 Whitney et al. Sep 2003 B2
6642297 Hyatt et al. Nov 2003 B1
6657532 Shrier et al. Dec 2003 B1
6677183 Sakaguchi et al. Jan 2004 B2
6693508 Whitney et al. Feb 2004 B2
6709944 Durocher et al. Mar 2004 B1
6741217 Toncich et al. May 2004 B2
6797145 Kosowsky Sep 2004 B2
6882051 Majumdar et al. Apr 2005 B2
6903175 Gore et al. Jun 2005 B2
6911676 Yoo Jun 2005 B2
6916872 Yadav et al. Jul 2005 B2
6981319 Shrier Jan 2006 B2
7034652 Whitney et al. Apr 2006 B2
7049926 Shrier et al. May 2006 B2
7053468 Lee May 2006 B2
7064353 Bhat Jun 2006 B2
7067840 Klauk Jun 2006 B2
7132697 Weimer et al. Nov 2006 B2
7132922 Harris et al. Nov 2006 B2
7141184 Chacko et al. Nov 2006 B2
7173288 Lee et al. Feb 2007 B2
7183891 Harris et al. Feb 2007 B2
7202770 Harris et al. Apr 2007 B2
7205613 Fjelstad et al. Apr 2007 B2
7218492 Shrier May 2007 B2
7279724 Collins et al. Oct 2007 B2
7320762 Greuter et al. Jan 2008 B2
7341824 Sexton Mar 2008 B2
7417194 Shrier Aug 2008 B2
7446030 Kosowsky Nov 2008 B2
7488625 Knall Feb 2009 B2
7492504 Chopra et al. Feb 2009 B2
7528467 Lee May 2009 B2
7535462 Spath et al. May 2009 B2
7585434 Morita Sep 2009 B2
7593203 Dudnikov, Jr. et al. Sep 2009 B2
7609141 Harris et al. Oct 2009 B2
7692270 Subramanyam et al. Apr 2010 B2
7872251 Kosowsky et al. Jan 2011 B2
7923844 Kosowsky Apr 2011 B2
20020004258 Nakayama et al. Jan 2002 A1
20020050912 Shrier et al. May 2002 A1
20020061363 Halas et al. May 2002 A1
20030010960 Greuter et al. Jan 2003 A1
20030025587 Whitney et al. Feb 2003 A1
20030071245 Harris, IV Apr 2003 A1
20030079910 Kosowsky May 2003 A1
20030151029 Hsu Aug 2003 A1
20030218851 Harris et al. Nov 2003 A1
20040000725 Lee Jan 2004 A1
20040062041 Cross et al. Apr 2004 A1
20040063839 Kawate et al. Apr 2004 A1
20040095658 Buretea et al. May 2004 A1
20040154828 Moller et al. Aug 2004 A1
20040160300 Shrier Aug 2004 A1
20040201941 Harris et al. Oct 2004 A1
20040211942 Clark et al. Oct 2004 A1
20040241894 Nagai et al. Dec 2004 A1
20040262583 Lee Dec 2004 A1
20050026334 Knall Feb 2005 A1
20050039949 Kosowsky Feb 2005 A1
20050057867 Harris et al. Mar 2005 A1
20050083163 Shrier Apr 2005 A1
20050106098 Tsang et al. May 2005 A1
20050121653 Chacko Jun 2005 A1
20050175938 Casper et al. Aug 2005 A1
20050184387 Collins et al. Aug 2005 A1
20050218380 Gramespacher et al. Oct 2005 A1
20050255631 Bureau et al. Nov 2005 A1
20050274455 Extrand Dec 2005 A1
20050274956 Bhat Dec 2005 A1
20050275070 Hollingsworth Dec 2005 A1
20060060880 Lee et al. Mar 2006 A1
20060069199 Charati et al. Mar 2006 A1
20060142455 Agarwal Jun 2006 A1
20060152334 Maercklein et al. Jul 2006 A1
20060166474 Vereecken et al. Jul 2006 A1
20060167139 Nelson et al. Jul 2006 A1
20060181826 Dudnikov, Jr. et al. Aug 2006 A1
20060181827 Dudnikov, Jr. et al. Aug 2006 A1
20060193093 Bertin Aug 2006 A1
20060199390 Dudnikov, Jr. et al. Sep 2006 A1
20060211837 Ko et al. Sep 2006 A1
20060214156 Pan et al. Sep 2006 A1
20060234127 Kim Oct 2006 A1
20060291127 Kim et al. Dec 2006 A1
20070114640 Kosowsky May 2007 A1
20070116976 Tan et al. May 2007 A1
20070123625 Dorade et al. May 2007 A1
20070139848 Harris et al. Jun 2007 A1
20070146941 Harris et al. Jun 2007 A1
20070208243 Gabriel et al. Sep 2007 A1
20070241458 Ding et al. Oct 2007 A1
20080045770 Sigmund et al. Feb 2008 A1
20080047930 Blanchet et al. Feb 2008 A1
20080073114 Kosowsky et al. Mar 2008 A1
20080144355 Boeve et al. Jun 2008 A1
20080278873 Leduc et al. Nov 2008 A1
20090044970 Kosowsky Feb 2009 A1
20090309074 Chen et al. Dec 2009 A1
20090310265 Fukuoka et al. Dec 2009 A1
20100038119 Kosowsky Feb 2010 A1
20100038121 Kosowsky Feb 2010 A1
20100040896 Kosowsky Feb 2010 A1
20100044079 Kosowsky Feb 2010 A1
20100044080 Kosowsky et al. Feb 2010 A1
20100047535 Kosowsky et al. Feb 2010 A1
20100187006 Kosowsky et al. Jul 2010 A1
20100243302 Kosowsky et al. Sep 2010 A1
20100270588 Kosowsky et al. Oct 2010 A1
20110061230 Kosowsky Mar 2011 A1
Foreign Referenced Citations (29)
Number Date Country
663491 Dec 1987 CH
3040784 May 1982 DE
10115333 Jan 2002 DE
102004049053 May 2005 DE
102006047377 Apr 2008 DE
0790758 Aug 1997 EP
0930623 Jul 1999 EP
1003229 May 2000 EP
1245586 Oct 2002 EP
1542240 Jun 2005 EP
1580809 Sep 2005 EP
1990834 Nov 2008 EP
56091464 Jul 1981 JP
63 195275 Aug 1988 JP
2000062076 Feb 2000 JP
WO9806859 Jul 1989 WO
WO9602922 Feb 1996 WO
WO9602924 Feb 1996 WO
WO9726665 Jul 1997 WO
WO9823018 May 1998 WO
WO9924992 May 1999 WO
WO02103085 Dec 2002 WO
WO2005100426 Oct 2005 WO
WO2006130366 Dec 2006 WO
WO2007062170 May 2007 WO
WO2007062171 May 2007 WO
WO2008016858 Feb 2008 WO
WO2008016859 Feb 2008 WO
WO2008153584 Dec 2008 WO
Related Publications (1)
Number Date Country
20110062388 A1 Mar 2011 US
Provisional Applications (1)
Number Date Country
60826747 Sep 2006 US
Continuations (1)
Number Date Country
Parent 11903820 Sep 2007 US
Child 12953309 US