Formulations of deoxycholic acid and salts thereof

Information

  • Patent Grant
  • 10071105
  • Patent Number
    10,071,105
  • Date Filed
    Friday, July 14, 2017
    7 years ago
  • Date Issued
    Tuesday, September 11, 2018
    6 years ago
Abstract
The present application is directed to an aqueous pharmaceutical formulation comprising less than about 5% w/v sodium deoxycholate maintained at a pH sufficient to substantially inhibit precipitation of the sodium deoxycholate. Also disclosed herein, are methods for inhibiting precipitation of sodium deoxycholate in an aqueous solution comprising less than about 5% w/v of sodium deoxycholate, said method comprising maintaining pH of the solution of from at least about 8.0 to about 8.5.
Description
FIELD

The present invention relates to pharmaceutical formulations of acid in water wherein the formulation is maintained at a pH such that precipitation of sodium deoxycholate is substantially inhibited.


BACKGROUND

Rapid removal of body fat is an age-old ideal, and many substances have been claimed to accomplish such results, although few have shown results. “Mesotherapy,” or the use of injectables for the removal of fat, is not widely accepted among medical practitioners due to safety and efficacy concerns, although homeopathic and cosmetic claims have been made since the 1950's. Mesotherapy was originally conceived in Europe as a method of utilizing cutaneous injections containing a mixture of compounds for the treatment of local medical and cosmetic conditions. Although mesotherapy was traditionally employed for pain relief, its cosmetic applications, particularly fat and cellulite removal, have recently received attention in the United States. One such reported treatment for localized fat reduction, which was popularized in Brazil and uses injections of phosphatidylcholine, has been erroneously considered synonymous with mesotherapy. Despite its attraction as a purported “fat-dissolving” injection, the safety and efficacy of these cosmetic treatments remain ambiguous to most patients and physicians (see, Rotunda, A. M. and M. Kolodney, Dermatologic Surgery “Mesotherapy and Phosphatidylcholine Injections: Historical Clarification and Review”, 2006, 32: 465-480).


Recently published literature reports that the bile acid deoxycholic acid has fat removing properties when injected into fatty deposits in vivo (See, WO 2005/117900 and WO 2005/112942, US2005/0261258; US2005/0267080; US2006/127468; and US2006/0154906). Deoxycholate injected into fat tissue has the effects of: 1) degrading fat cells via a cytolytic mechanism; and 2) causing skin tightening. Both of these effects are required to mediate the desired aesthetic corrections (i.e., body contouring). The effects of deoxycholate into fat are spatially contained because deoxycholate injected into fat is rapidly inactivated by exposure to protein, e.g. albumin, and then rapidly returns to the intestinal contents. As a result of this attenuation effect that confers clinical safety, fat removal therapies typically require 4-6 sessions. This localized fat removal without the need for surgery is beneficial not only for therapeutic treatment relating to pathological localized fat deposits (e.g., dyslipidemias incident to medical intervention in the treatment of HIV), but also for cosmetic fat removal without the attendant risk inherent in surgery (e.g., liposuction) (see, Rotunda et al., Dermatol. Surgery “Detergent effects of sodium deoxycholate are a major feature of an injectable phosphatidylcholine formulation used for localized fat dissolution”, 2004, 30: 1001-1008; and Rotunda et al., J. Am. Acad. Dermatol. “Lipomas treated with subcutaneous deoxycholate injections”, 2005: 973-978).


All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.


SUMMARY

It has been found that aqueous solutions of sodium deoxycholate at low (i.e., <5% w/v) concentrations of sodium deoxycholate can be stabilized by adjusting the pH of the solution. The present invention is directed to an aqueous pharmaceutical formulation comprising less than about 5% w/v sodium deoxycholate wherein the formulation is maintained at a pH sufficient to substantially inhibit precipitation of the sodium deoxycholate.


Also disclosed herein, are methods for inhibiting precipitation of sodium deoxycholate in an aqueous solution comprising less than about 5% w/v of sodium deoxycholate, said method comprising maintaining pH of the solution from about 8.0 to about 8.5.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A, 1B, 1C, 1D, 1E and 1F show the variability in pH over a two week period of formulations containing 5, 50, 100 and 160 mg/mL (0.5, 5, 10 and 16% w/v) sodium deoxycholate at 4° C. (FIGS. 1A, 1B and 1C) and 25° C. (FIGS. 1D, 1E and 1F).



FIGS. 2A, 2B, 2C and 2D show that solubility is independent of lot to lot variability in pH. FIG. 2A is a comparison of the 5 mg (0.5% w/v) samples tested in FIGS. 1A, 1B, 1C, 1D, 1E and 1F. FIG. 2B is a comparison of the 50 mg (5% w/v) samples tested in FIGS. 1A, 1B, 1C, 1D, 1E and 1F. FIG. 2C is a comparison of the 100 mg (10% w/v) samples tested in FIGS. 1A, 1B, 1C, 1D, 1E and 1F. FIG. 2D is a comparison of the 160 mg (16% w/v) samples tested in FIGS. 1A, 1B, 1C, 1D, 1E and 1F.



FIG. 3 shows a reverse phase HPLC chromatogram for a 20 mg/mL (2% w/v) aqueous formulation of sodium deoxycholate (0.9% NaCl and 0.9% benzyl alcohol in 10 mM phosphate buffer at a pH of 8.0) after being incubated for 2 months at 4° C.



FIG. 4 shows the effect of temperature (4° C., 25° C. and 37° C.) on the purity of various sodium deoxycholate formulations of over a two month period.



FIG. 5 shows the effect of agitation on the purity of various sodium deoxycholate formulations of over a four hour period.



FIG. 6 shows the effect of UV exposure on the purity of various sodium deoxycholate formulations of over a 24 hour period.



FIG. 7 shows the effect of five freeze-thaw cycles on the purity of various sodium deoxycholate formulations.





DETAILED DESCRIPTION

As used herein, certain terms have the following defined meanings.


All numerical designations, e.g., pH, temperature, time, concentration, and molecular weight, including ranges, are approximations which are varied (+) or (−) by increments of 0.1. It is to be understood, although not always explicitly stated that all numerical designations are preceded by the term “about”. The term “about” also includes the exact value “X” in addition to minor increments of “X” such as “X+0.1” or “X−0.1.” It also is to be understood, although not always explicitly stated, that the reagents described herein are merely exemplary and that equivalents of such are known in the art.


As used herein, the term “comprising” is intended to mean that the compositions and methods include the recited elements, but do not exclude others. “Consisting essentially of” when used to define compositions and methods, shall mean excluding other elements of any essential significance to the combination when used for the intended purpose. Thus, a composition consisting essentially of the elements as defined herein would not exclude trace contaminants from the isolation and purification method and pharmaceutically acceptable carriers, such as phosphate buffered saline, preservatives, and the like. “Consisting of” shall mean excluding more than trace elements of other ingredients and substantial method steps for administering the compositions of this invention. Embodiments defined by each of these transition terms are within the scope of this invention.


As used herein, the term “sodium deoxycholate” refers to sodium (4R)-4-((3R,5R,10S,12S,13R,17R)-3,12-dihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoate as shown below. Other stereoisomers are within the scope of the invention.




embedded image


Sodium deoxycholate or sodium (4R)-4-((3R,5R,10S,12S,13R,17R)-3,12-dihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoate can be prepared according to the methods disclosed in U.S. Patent Publication No. 2008/0318870A1 entitled “Synthetic Bile Acid Composition, Method And Preparation” filed on Feb. 21, 2008, which is hereby incorporated by reference in its entirety.


As used herein, the term “aqueous pharmaceutical formulation” refers to a formulation of sodium deoxycholate in water suitable for administration to a patient.


As used herein, the term “buffer” refers to an aqueous solution comprising a mixture of a weak acid and its conjugate base or a weak base and its conjugate acid. A buffer has the property that the pH of the solution changes very little when a small amount of acid or base is added to it. Buffer solutions are used as a means of keeping pH at a nearly constant value in a wide variety of chemical applications. Examples of suitable buffers include phosphate buffers and those known in the literature (see, for example, Troy, D. B., ed. (2005) Remington: The Science and Practice of Pharmacy, 21st ed., Lippincott Williams & Wilkins).


As used herein, the term “base” refers to various typically water-soluble compounds, molecules or ions that in solution have a pH greater than 7. Such compounds, molecules or ions are able to take up a proton from an acid or are able to give up an unshared pair of electrons to an acid. Examples of suitable bases include metal carbonates and bicarbonates, for example sodium carbonate, calcium carbonate, magnesium carbonate, zinc carbonate, sodium bicarbonate and the like; and metal hydroxides, for example sodium hydroxide, potassium hydroxide, and the like, such as those known in the literature (see, for example, Troy, D. B., ed. (2005) Remington: The Science and Practice of Pharmacy, 21st ed., Lippincott Williams & Wilkins).


As used herein, the term “metal carbonates” refers to the metal salt of CO32−. For example, sodium carbonate, calcium carbonate, magnesium carbonate, zinc carbonate, and the like.


As used herein, the term “metal bicarbonates” refers to the metal salt of HCO3. For example, sodium bicarbonate, and the like.


As used herein, the term “metal hydroxides” refers to the metal salt of OH. For example, sodium hydroxide, potassium hydroxide, and the like.


As used herein, the terms “sterile water” or “water for injection” refer to a sterile, nonpyrogenic preparation of water for injection which contains no bacteriostat, antimicrobial agent or added buffer. In general, the osmolar concentration of additives totals at least 112 mOsmol/liter (two-fifths of the normal osmolarity of the extracellular fluid −280 mOsmol/liter).


As used herein, the term “benzyl alcohol” refers to the compound




embedded image


As used herein, the term “precipitation” refers to the formation of a solid in a solution. As used herein, the term “solution” refers to a substantially homogeneous mixture comprising two or more substances dissolved in a solvent.


As used herein, the term “substantially inhibit precipitation” means to inhibit most or all visible precipitation or maintain homogeneity. This may be done over a desired period of time.


As used herein, the term “relative standard deviation for homogeneity” or “HE” refers to the value obtained by dividing the standard deviation of the homogeneity by the absolute value of the mean. An HE less than 10 indicates very good homogeneity.


Formulations

Knowledge about the chemical and physical stability of a drug formulation in the desired media for delivery is valuable. In the longer term, the stability of the formulation will dictate the shelf life of the marketed product. It is preferable that the active ingredient in a pharmaceutical formulation be at the required concentration when administered to a patient.


Current methods for the administration of sodium deoxycholate to a patient include the administration of a low concentration (i.e., <5% w/v) of an aqueous solution of sodium deoxycholate, as it has been shown that the low concentration is beneficial for the effective and safe removal of fat deposits in the body. However, it has been observed that a precipitate forms at both relatively low (i.e., <5% w/v) and high (i.e., >16% w/v) concentrations of sodium deoxycholate in aqueous media. This precipitation results in a limited shelf life of aqueous solutions of sodium deoxycholate, even at cold temperatures (3-5° C.). This instability of aqueous solutions of sodium deoxycholate can be circumvented by the preparation of an aqueous solution of sodium deoxycholate at a concentration of about 5% to about 16% w/v, and having the practitioner dilute the pharmaceutical composition of sodium deoxycholate just prior to use. Whereas this dilution method is effective to allow for both storage stability and effective patient dosing, it is not ideal as a method for routine use.


It has been found that aqueous solutions of sodium deoxycholate at low (i.e., <5% w/v) concentrations of sodium deoxycholate can be stabilized adjusting the pH of the solution. The present application is directed to an aqueous pharmaceutical formulation comprising less than about 5% w/v sodium deoxycholate wherein the formulation is maintained at a pH sufficient to substantially inhibit precipitation of the sodium deoxycholate. In some embodiments, the pharmaceutical formulation, comprising less than about 5% w/v sodium deoxycholate in water, or alternatively, less than about 4.5%, or alternatively, less than about 4%, or alternatively, less than about 3.5%, or alternatively, less than about 3%, or alternatively, less than about 2.5%, or alternatively, less than about 2%, or alternatively, less than about 1.5%, or alternatively, less than about 1%, or alternatively, less than about 0.75%, or alternatively, less than about 0.5%, or alternatively, less than about 0.1% w/v sodium deoxycholate in water.


Sodium deoxycholate or sodium (4R)-4-((3R,5R,10S,12S,13R,17R)-3,12-dihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoate can be prepared according to the methods disclosed in U.S. Patent Publication No. 2008/0318870A1 entitled “Synthetic Bile Acid Composition, Method And Preparation” filed on Feb. 21, 2008, which is hereby incorporated by reference in its entirety.


In one embodiment, the pharmaceutical formulations disclosed herein are suitable for injection into a human. The method of injection can be any type of injection, such as subcutaneous injection, as well as other forms of injection. Therefore, in some embodiments, the aqueous formulation is sterile. The aqueous formulation can be prepared using sterile water or water for injection (WFI).


In one aspect of the present invention, the precipitation of sodium deoxycholate is substantially inhibited for a period of at least about six months. In another aspect, the precipitation of sodium deoxycholate is substantially inhibited for a period of at least about one year. In yet another aspect, the precipitation of sodium deoxycholate is substantially inhibited for a period of at least about two years.


It is contemplated that when stored at various temperatures, for example at ambient or cold temperatures, the formulation can have an increased shelf life. In certain embodiments, the formulation is stored at a temperature of from about 17° C. to about 27° C. In some embodiments, the temperature of the formulation is increased to a temperature of about 25° C. to about 37° C. In other embodiments, the formulation is stored at a temperature of from about 2° C. to about 8° C.


In certain embodiments, the pH of the formulation ranges from about 8.0 to about 8.5. In one embodiment, the pH of the formulation is about 8.0, or alternatively, about 8.1, or alternatively, about 8.2, or alternatively, about 8.3, or alternatively, about 8.4, or alternatively, about 8.5.


In one embodiment, the pH is established by the use of a base. It is contemplated that any base can be used to increase the pH of the formulation provided that it does not react with the sodium deoxycholate and will not cause harm to the patient. In some embodiments, the base is selected from the group consisting of metal carbonates, metal bicarbonates, metal hydroxides, or a mixture thereof. Examples of bases include, but are not limited to, a base selected from the group consisting of sodium carbonate, calcium carbonate, magnesium carbonate, zinc carbonate, sodium bicarbonate, sodium hydroxide and potassium hydroxide or a mixture thereof. In one embodiment, the base is sodium hydroxide.


In certain cases, the pH of the formulation may be maintained with the use of a buffer. Various buffers are known in the art and it is contemplated that any buffer having buffering capacity at the desired pH can be used in the formulations disclosed herein. In one embodiment, the buffer is a phosphate buffer. The amount of phosphate in the formulation can be determined to provide a desired pH and salt concentration. In one embodiment, the formulation comprises about 10 mM phosphate.


In some embodiments, the formulation comprises at least one excipient to aid in achieving a formulation with desired properties, such as increased solubility, preservability or to provide an isotonic solution. Such excipients are known in the art. In one embodiment, the formulation comprises about 1% sodium chloride. In another embodiment, the formulation comprises about 1% benzyl alcohol. In some embodiments, the formulation comprises about 1% benzyl alcohol and about 1% sodium chloride. In some embodiments, the formulation comprises about 0.9% benzyl alcohol and about 0.9% sodium chloride.


The formulations disclosed herein comprise less than about 5% w/v sodium deoxycholate in water maintained at a pH sufficient to substantially inhibit precipitation of the sodium deoxycholate. The amount of precipitation or homogeneity of the formulation can be measured using various methods. For example, it can be measured quantitatively using light scattering by illuminating the formulation with a spectrophotometer. Or alternatively, the homogeneity can be measured qualitatively by observing the visual clarity of the solution with the eye. In some embodiments, the formulation has a relative standard deviation for homogeneity of less than about 5%. Alternatively, the formulation has a relative standard deviation for homogeneity of less than about 4%, or alternatively, about 3%, or alternatively, about 2%, or alternatively, about 1%.


The use of prodrugs of sodium deoxycholate in the formulations disclosed herein are also contemplated. A prodrug is an active or inactive compound that is modified chemically through in vivo physiological action, such as hydrolysis, metabolism and the like, into a compound of the embodiments following administration of the prodrug to a patient. For example, one may prepare an ester of the present deoxycholic acid at either or both of the hydroxyl groups thereon or of suitable derivatives thereof, so that the release of the deoxycholic acid or derivatives thereof is triggered by the disruption of the cell membrane, and release of esterase. With the release of esterase, the ester protecting group is cleaved so that the deoxycholic acid active form or derivatives thereof is present at the desired location in situ. For a general discussion of prodrugs involving esters see Svensson and Tunek Drug Metabolism Reviews 165 (1988) and Bundgaard Design of Prodrugs, Elsevier (1985).


In some embodiments, the solutions herein do not include lipids, phospholipids, or phosphatidylcholine. In some embodiments, the solutions herein include up to 5% w/w, w/v, or v/v lipids, specifically phospholipids, or more specifically phosphatidylcholine.


In some embodiments, the aqueous pharmaceutical formulation of the invention can further comprise a second therapeutic agent selected from the group consisting of: anti-microbial agents, vasoconstrictors, anti-thrombotic agents, anti-coagulation agents, suds-depressants, anti-inflammatory agents, analgesics, dispersion agents, anti-dispersion agents, penetration enhancers, steroids, tranquilizers, muscle relaxants, and anti-diarrhea agents. In some embodiments, a solution is in a container that contains up to 500 mL of solution. Such container can be a syringe or syringe-loadable container.


In some embodiments, the formulations further comprise a molecule known to cause fat to die by an orthogonal mechanism. Such molecules include neuropeptide Y (NPY) antagonists including, but not limited to, NPY receptor antagonists, such as BIBP-3226 (Amgen), MO-3304 (Boehringer Ingleheim), BMS-192548 and AR-H040922 (Bristol-Myers Squibb), LY-357897 (Eli Lilly), 1229U91 and GW4380145 (GlaxoSmithKline), JNJ-5207787 (Johnson & Johnson), Lu-AA-44608 (Lundbeck), MK-0557 (Merck NPY), NGD-95-1 (Neurgogen), NLX-E201 (Neurologix), CGP-71683 (Novartis), PD-160170 (Pfizer), SR-120819A, BIIE0246, and S.A.0204 (Sanofi Aventis), S-2367 (Shiongli), dihydropyridine and dihydropyridine derivatives that are NPY receptor antagonists, bicyclic compounds that are NPY receptor antagonists, carbazole NPY receptor antagonists, and tricyclic compounds that are NPY receptor antagonists (See, e.g., WO 2006/133160 and U.S. Pat. No. 6,313,128). Also contemplated are fat selective pro-apoptotic peptides such as the CKGGRAKDC peptide that homes to white fat vasculature (See, Kolonin M. G. et al., Nat. Med., 2004, 10(6): 625-32).


Another aspect of the invention relates to mixing adipo-ablative bile acids, such as, deoxycholic acid (DCA) with agents that kill fat cells. In one aspect, this invention contemplates a means to enhance the aesthetic effects of deoxycholate injections by mixing into the deoxycholate injectate a molecule that causes fat to die by an orthogonal mechanism. Examples of such candidate molecules include, but are not limited to, neuropeptide Y (NPY) antagonists and fat selective pro-apoptotic peptides. Since both fat cell killing and skin tightening may be required to mediate the desired effects, the effects of an agent with fat killing ability and potent skin tightening effects (such as deoxycholate) can be enhanced via the addition of a molecule with potent fat cell killing effects. Additionally, molecules that require access to the vasculature to kill (such as certain pro-apoptotic peptides that bind to proteins expressed on the luminal side of capillaries) can gain access to these proteins because deoxycholate may cause vascular leakage. Thus, such agents can be synergistic with deoxycholate potentially creating a more potent means to mediate body contouring in fewer therapeutic sessions.


Examples of NPY antagonists include, but are not limited to, NPY receptor antagonists, such as BIBP-3226 (Amgen), BIBO-3304 (Boehringer Ingleheim), BMS-192548 and AR-H040922 (Bristol-Myers Squibb), LY-357897 (Eli Lilly), 1229U91 and GW4380145 (GlaxoSmithKline), JNJ-5207787 (Johnson & Johnson), Lu-AA-44608 (Lundbeck), MK-0557 (Merck NPY), NGD-95-1 (Neurgogen), NLX-E201 (Neurologix), CGP-71683 (Novartis), PD-160170 (Pfizer), SR-120819A, BIIE0246, and S.A.0204 (Sanofi Aventis), S-2367 (Shiongli), dihydropyridine and dihydropyridine derivatives that are NPY receptor antagonists, bicyclic compounds that are NPY receptor antagonists, carbazole NPY receptor antagonists, and tricyclic compounds that are NPY receptor antagonists. See, e.g., WO 2006/133160 and U.S. Pat. No. 6,313,128 (incorporated herein by reference in its entirety including figures).


Exemplary fat selective pro-apoptotic peptides includes, but is not limited to, CKGGRAKDC peptide that homes to white fat vasculature. See, Kolonin M. G. et al., Nat. Med. June 10(6):625-32 (2004).


Sodium deoxycholate or sodium (4R)-4-((3R,5R,10S,12S,13R,17R)-3,12-dihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoate can be prepared according to the methods disclosed in U.S. Patent Publication No. 2008/0318870A1 entitled “Synthetic Bile Acid Composition, Method And Preparation” filed on Feb. 21, 2008, which is hereby incorporated by reference in its entirety. It will be appreciated that where typical or preferred process conditions (i.e., reaction temperatures, times, mole ratios of reactants, solvents, pressures, etc.) are given, other process conditions can also be used unless otherwise stated. Optimum reaction conditions may vary with the particular reactants or solvent used, but such conditions can be determined by one skilled in the art by routine optimization procedures.


Methods

Disclosed herein is a method for inhibiting precipitation of sodium deoxycholate in an aqueous solution comprising less than about 5% w/v of sodium deoxycholate, said method comprising maintaining pH of the solution from at least about 8.0 to about 8.5.


In one aspect of the present invention, methods disclosed herein substantially inhibit the precipitation of sodium deoxycholate in solution over a period of at least about six months. In another aspect, the precipitation of sodium deoxycholate is substantially inhibited for a period of at least about one year. In yet another aspect, the precipitation of sodium deoxycholate is substantially inhibited for a period of at least about two years.


It has been found that the pH of the solution can inhibit the precipitation of sodium deoxycholate at concentrations of less than about 5% w/v in water allow the sodium deoxycholate to be maintained in solution. In one embodiment, the pH is established by the use of a base. It is contemplated that any base can be used to increase the pH of the formulation provided that it does not react with the sodium deoxycholate. In some embodiments, the base is selected from the group consisting of metal carbonates, metal bicarbonates, and metal hydroxides, or a mixture thereof. Examples of bases include, but are not limited to, a base selected from the group consisting of sodium carbonate, calcium carbonate, magnesium carbonate, zinc carbonate, sodium bicarbonate, sodium hydroxide and potassium hydroxide or a mixture thereof. In one embodiment, the base is sodium hydroxide.


In certain embodiments, the pH ranges from about 8.0 to about 8.5. In one embodiment, the pH of the formulation is about 8.0, or alternatively, about 8.1, or alternatively, about 8.2, or alternatively, about 8.3, or alternatively, about 8.4, or alternatively, about 8.5. In one embodiment, the pH of the aqueous solution is about 8.3.


In certain cases, the pH of the formulation may need to be maintained with the use of a buffer. Various buffers are know in the art and it is contemplated that any buffer having buffering capacity at the desired pH can be used in the formulations disclosed herein. In one embodiment, the buffer is a phosphate buffer. The amount of phosphate required to provide a desired pH and salt concentration can be calculated using methods well known in the art. In one embodiment, the formulation comprises about 10 mM phosphate.


In one embodiment, the methods disclosed herein provide formulations which are suitable for injection into a human. The method of injection can be any type of injection, such as subcutaneous injection, as well as other forms of injection. Therefore, in some embodiments, the aqueous solution comprises sterile water or water for injection (WFI).


In one aspect, it may be that one or more excipients are used to maintain the solubility, or increase the preservability of sodium deoxycholate present in the formulation. In one embodiment, the method comprises adding about 1% benzyl alcohol. In some embodiments, the formulation also comprises at least one excipient to aid in achieving an isotonic solution. Such excipients are known in the art. In one embodiment, the method comprises adding about 1% sodium chloride. In some embodiments, the method comprises adding both 1% benzyl alcohol and 1% sodium chloride. In some embodiments, the method comprises adding both 0.9% benzyl alcohol and 0.9% sodium chloride. Using the methods disclosed herein, an aqueous solution comprising less than about 5% w/v sodium deoxycholate is maintained at a pH sufficient to substantially inhibit precipitation of the sodium deoxycholate. The amount of precipitation or homogeneity of the formulation can be measured using various methods. For example, it can be measured quantitatively by measuring the light scattering via illumination by a spectrophotometer. Or alternatively, the homogeneity can be measured qualitatively by simply observing the visual clarity of the solution with the eye. In some embodiments, the method provides a pharmaceutical formulation having a relative standard deviation for homogeneity of less than about 5%. Alternatively, the relative standard deviation for homogeneity of less than about 4%, or alternatively, about 3%, or alternatively, about 2%, or alternatively, about 1%.


The storage temperature can assist in maintaining the solubility of the sodium deoxycholate of the formulation. In certain embodiments, the storage temperature is from about 17° C. to about 27° C. In some embodiments, the storage temperature is about 25° C. to about 37° C. In other embodiments, the storage temperature is from about 2° C. to about 8° C.


It is contemplated that the sodium deoxycholate concentration can vary from about 0.05% w/v to about 5% w/v without effecting solubility in the formulation. In certain embodiments, the formulation comprises a sodium deoxycholate concentration of about 0.05% w/v. Alternatively, the formulation comprises a sodium deoxycholate concentration of about 0.07% w/v, or alternatively, about 0.1% w/v, or alternatively, about 0.3% w/v, or alternatively, about 0.5% w/v, or alternatively, about 0.7% w/v, or alternatively, about 1% w/v, or alternatively, about 2% w/v, or alternatively, about 3% w/v, or alternatively, about 4% w/v, or alternatively, about 5% w/v.


EXAMPLES

In the examples and elsewhere in the specification, abbreviations have the following meanings:

    • A500=Absorbance at 500 Nanometers
    • cc=Cubic centimeter
    • cm=Centimeter
    • F/T=Freeze/Thaw
    • HPLC=High-Performance Liquid Chromatography
    • hr.=Hour
    • mg=Milligram
    • mL=Milliliter
    • mm=Millimeter
    • mM=Millimolar
    • nm=Nanometer
    • t=Time
    • UV=Ultraviolet
    • v/v=Volume/Volume
    • w/v=Weight/Volume (g/mL)
    • w/w=Weight/Weight
    • WFI=Water for Injection


The invention is further understood by reference to the following examples, which are intended to be purely exemplary of the invention. The present invention is not limited in scope by the exemplified embodiments, which are intended as illustrations of single aspects of the invention only. Any methods that are functionally equivalent are within the scope of the invention. Various modifications of the invention in addition to those described herein will become apparent to those skilled in the art from the foregoing description. Although several embodiments of the invention are described herein in detail, it will be understood by those skilled in the art that variations may be made thereto without departing from the spirit of the invention or the scope of the appended claims. Such modifications fall within the scope of the appended claims.


Example 1
Changes in pH and Visual Observations

This example demonstrates that aqueous formulations containing less than 5% w/v sodium deoxycholate forms a precipitate at various temperatures which cannot be brought back into solution. Solubility was best in aqueous formulations containing 5% w/v.


The stability of three lots of sodium deoxycholate dissolved in 0.9% benzyl alcohol and water for injection (WFI) was examined for changes in pH and visual observations, such as the formation of precipitate. Each lot was formulated at four concentrations: 5, 50, 100 and 160 mg/mL (0.5, 5, 10 and 16% w/v, respectively) dissolved in 0.9% benzyl alcohol and WFI. Table 1 provides a summary of the variables that were tested in this example.









TABLE 1







Experimental Variables












Sodium
%




Deoxycholate
Weight/



Sample (Lot)
Concentration
Volume



Number
(mg/mL)
(% w/v)















1A
5
0.5



1B
50
5



1C
100
10



1D
160
16



2A
5
0.5



2B
50
5



2C
100
10



2D
160
16



3A
5
0.5



3B
50
5



3C
100
10



3D
160
16



4
0
0










The solutions were prepared as follows. Two samples for each condition were filled at 2.0 mL into sterile 3 c.c. glass vials (West Pharma P/N 68000316), and stoppered with sterile 13 mm serum stoppers (West Pharma P/N 19560001). These samples were analyzed in duplicate at each time point in order to verify any changes in pH and visual observations, during storage at 2-8° C. and 25° C. for two weeks. Table 2 summarizes the conditions and time points at which samples were analyzed throughout the study.









TABLE 2







Conditions and Time Points










Time Point



Storage Conditions
Analyses
Analytical Methods





2-8° C.
 1, 7, 14 days
pH and visual observation


 25° C.
0, 1, 7, 14 days
pH and visual observation









As seen in Tables 3 and 4, at 5 mg/mL (0.5% w/v), fine particulates were seen generally across all lots and at both 4° C. and 25° C., though Sample 1 at 4° C. did not precipitate. At 50 mg/mL (5% w/v), all samples and conditions were clear. At 100 mg/mL (10% w/v), there was a temperature effect as all lots at 4° C. precipitated out while the 25° C. lots remained clear. At 160 mg/mL (16% w/v), there was a temperature effect as all lots at 4° C. precipitated out while the 25° C. lots remained clear. The precipitation observed at 160 mg/mL (16% w/v) was more severe and rapid than 100 mg/mL, however, the precipitated product at these two concentrations could be resolubilized after warming to room temperature and vortexing. The precipitated material at 5 mg/mL (0.5% w/v) could not be brought back into solution. This data is shown graphically in FIGS. 1A to 1F.


The pH profiles for both 4° C. and 25° C. were overlapping, so it appears that temperature did not have an impact at concentrations less than 50 mg/mL (5% w/v). Instead, there appears to be a solubility pH for formulations less than 50 mg/mL (5% w/v). At 100 and 160 mg/mL, the 4° C. samples had a higher pH than the 25° C. samples. However, with increasing concentration, temperature appears to become more important than pH, and the formulation is increasingly sensitive to temperature.









TABLE 3







pH over Time at 4° C. (Average of Two Observations)















%






Sample
Sodium
Weight/


(Lot)
Deoxycholate
Volume


Number
Concentration
(% w/v)
0 days
1 day
7 days
14 days

















1A
5
mg/mL
0.5
7.565
7.56
 7.625
7.67


1B
50
mg/mL
5
7.885
 7.905
7.95
 7.965


1C
100
mg/mL
10
7.89
7.93
 7.995
8  








Precipitate
Precipitate


1D
160
mg/mL
16
7.865
8.14
 8.045
 8.055







Precipitate
Precipitate
Precipitate


2A
5
mg/mL
0.5
7.62
7.53
7.6 
7.66







Precipitate
Precipitate
Precipitate


2B
50
mg/mL
5
7.775
 7.835
 7.865
7.88


2C
100
mg/mL
10
7.77
 7.845
7.98
7.93







Precipitate
Precipitate
Precipitate


2D
160
mg/mL
16
7.745
8  
8.15
 7.975







Precipitate
Precipitate
Precipitate


3A
5
mg/mL
0.5
7.625
7.61
 7.715
7.74







Precipitate
Precipitate
Precipitate


3B
50
mg/mL
5
7.91
 7.945
7.99
8  


3C
100
mg/mL
10
7.905
7.97
7.99
8.01








Precipitate
Precipitate


3D
160
mg/mL
16
7.86
 8.115
8.15
 8.065







Precipitate
Precipitate
Precipitate













4
0
0
6.945
7.08
7.13
6.87



Placebo
















TABLE 4







pH over Time at 25° C. (Average of Two Observations)















%






Sample
Sodium
Weight/


(Lot)
Deoxycholate
Volume


Number
Concentration
(% w/v)
0 days
1 day
7 days
14 days

















1A
5
mg/mL
0.5
7.565
7.595
7.7
7.73







Precipitate
Precipitate
Precipitate


1B
50
mg/mL
5
7.885
7.95
7.95
7.98


1C
100
mg/mL
10
7.89
7.955
7.945
7.975


1D
160
mg/mL
16
7.865
7.94
7.935
7.93


2A
5
mg/mL
0.5
7.62
7.56
7.665
7.69







Precipitate
Precipitate
Precipitate


2B
50
mg/mL
5
7.775
7.845
7.865
7.885


2C
100
mg/mL
10
7.77
7.85
7.865
7.875


2D
160
mg/mL
16
7.745
7.815
7.865
7.83


3A
5
mg/mL
0.5
7.625
7.63
7.71
7.76







Precipitate
Precipitate
Precipitate


3B
50
mg/mL
5
7.91
7.955
7.985
8.015


3C
100
mg/mL
10
7.905
7.965
7.98
8.005


3D
160
mg/mL
16
7.86
7.965
7.955
7.975













4
0
0
6.945
6.825
6.945
6.93



Placebo









Table 5 shows that the solubility of sodium deoxycholate is independent of the lot to lot variability in pH. In general, there was no difference in physical stability across lots under like conditions.









TABLE 5







pH by Sample over Time















%






Sample (Lot)
Sodium
Weight/


Number-
Deoxycholate
Volume


Temperature
Concentration
(% w/v)
0 days
1 day
7 days
14 days


















1A-4°
C.
5
mg/mL
0.5
7.565
7.56
7.625
7.67


2A-4°
C.
5
mg/mL
0.5
7.62
7.53
7.6
7.66


3A-4°
C.
5
mg/mL
0.5
7.625
7.61
7.715
7.74


1B-4°
C.
50
mg/mL
5
7.885
7.905
7.95
7.965


2B-4°
C.
50
mg/mL
5
7.775
7.835
7.865
7.88


3B-4°
C.
50
mg/mL
5
7.91
7.945
7.99
8


1C-4°
C.
100
mg/mL
10
7.89
7.93
7.995
8


2C-4°
C.
100
mg/mL
10
7.77
7.845
7.98
7.93


3C-4°
C.
100
mg/mL
10
7.905
7.97
7.99
8.01


1D-4°
C.
160
mg/mL
16
7.865
8.14
8.045
8.055


2D-4°
C.
160
mg/mL
16
7.745
8
8.15
7.975


3D-4°
C.
160
mg/mL
16
7.86
8.115
8.15
8.065


1A-25°
C.
5
mg/mL
0.5
7.565
7.595
7.7
7.73


2A-25°
C.
5
mg/mL
0.5
7.62
7.56
7.665
7.69


3A-25°
C.
5
mg/mL
0.5
7.625
7.63
7.71
7.76


1B-25°
C.
50
mg/mL
5
7.885
7.95
7.95
7.98


2B-25°
C.
50
mg/mL
5
7.775
7.845
7.865
7.885


3B-25°
C.
50
mg/mL
5
7.91
7.955
7.985
8.015


1C-25°
C.
100
mg/mL
10
7.89
7.955
7.945
7.975


2C-25°
C.
100
mg/mL
10
7.77
7.85
7.865
7.875


3C-25°
C.
100
mg/mL
10
7.905
7.965
7.98
8.005


1D-25°
C.
160
mg/mL
16
7.865
7.94
7.935
7.93


2D-25°
C.
160
mg/mL
16
7.745
7.815
7.865
7.83


3D-25°
C.
160
mg/mL
16
7.86
7.965
7.955
7.975









Three factors have been identified to contribute to solubility. In no particular order these are concentration, pH and temperature. It has been found that the lot to lot variability in pH does not account for better or poorer solubility. Overall, the 50 mg/mL seems to be the most robust condition, where all lots appear to be above the “solubility” pH, and where temperature has no impact within the two-week time frame of this study. The results suggest that concentration, pH, and storage temperature factor into the stability of sodium deoxycholate. The samples at 50 mg/mL showed the best stability at 4° C. and 25° C. for two weeks.


Example 2
Stability Study

This example demonstrates that aqueous formulations of less than 5% w/v sodium deoxycholate at a pH of 8.0 to 8.5 exhibited very good solubility. This example also demonstrates that sodium deoxycholate shows no degradation in aqueous formulations having less than 5% w/v sodium deoxycholate during storage for eight weeks at 4° C., 25° C. and 37° C. A number of formulations were subjected to agitation, UV exposure, and freeze-thaw cycles and exhibited no degradation or precipitation when exposed to those stresses.


A two-month stability study of sodium deoxycholate in several different formulations was conducted. By reverse phase HPLC, sodium deoxycholate showed no degradation in all formulations at all temperatures. However, solubility was best in formulations containing 10 mM phosphate, 0.9% NaCl, 0.9% Benzyl Alcohol at a pH of 8.0 or 8.5. Storage temperatures of 25° C. and 37° C. also assisted solubility. All formulations that were chosen for agitation, UV exposure, and freeze-thaw exhibited no degradation or precipitation when exposed to those stresses.


Table 6 provides a list of chemicals used in the preparation of the formulations disclosed herein.









TABLE 6







Chemicals used in formulation preparation










Manufacturer



Chemical
(Product Number)
Grade





Benzyl Alcohol
J. T. Baker (9041-01)
N.F./Multi




Compendial


Sodium Chloride
EMD Chemicals (7760)
Molecular




Biology Grade




(99.95% pure)


Sodium Hydroxide
J. T. Baker (3728-01)
N.F./F.C.C.


Pellets


Sodium Phosphate
J. T. Baker (3820-01)
U.S.P./F.C.C.


Monobasic, Monohydrate


Sorbitol (Extra Pure)
EM Science (0035835B)
N.F./Ph. Eur.









Stability Studies

The stability of the sodium deoxycholate formulations was examined at the conditions summarized in Table 7. Reverse phase HPLC was used along with visual observations which were conducted at each time point to monitor any precipitation or cloudiness. The formulations tested for vortex, UV exposure, and freeze-thaw, were chosen from the formulations that performed the best in the temperature study. The major stability issues of sodium deoxycholate observed during this study were solubility and pH drift.









TABLE 7







Stresses and time points











Stress
Conditions
Time Points







Temperature
 4° C.
0, 2 weeks, 1 and 2 months




25° C.
0, 2 weeks, 1 and 2 months




37° C.
0, 2 weeks, 1 and 2 months












Agitation
Vortex
4
hours



Light
UV exposure
24
hours



Freeze-Thaw
−70° C. to 25° C.
5
cycles










i. Effect of Temperature on Stability

The formulations were incubated at 4° C., 25° C. and 37° C. and analyzed for a) degradation products, b) pH stability and c) formulation clarity.


Formulations Tested

Except for formulations only consisting of water, sodium deoxycholate was dissolved in buffer that had been titrated to a pH of 6. Each formulation, except for the two only consisting of water, was then titrated to its target pH with NaOH. All formulations were sterile filtered and filled to 1.5 mL in sterile 2 cc glass vials. The filled vials were then autoclaved. The formulations 3A and 3B were cloudy prior to filling.









TABLE 8







List of Formulations
















Sodium
%






Deoxycholate
Weight/






Concentration
Volume


Formulation
Buffer
Excipient(s)
pH
(mg/mL)
(% w/v)















1A
None
WFI only

20
2


WFI20


1B
None
WFI only

5
0.5


WFI5


2A
10 mM
0.9% NaCl;
7.5
20
2


P7.5NB20
phosphate
0.9% Benzyl




Alcohol


2B
10 mM
0.9% NaCl;
7.5
5
0.5


P7.5NB5
phosphate
0.9% Benzyl




Alcohol


3A
10 mM
5% Sorbitol;
7.5
20
2


P7.5SB20
phosphate
0.9% Benzyl




Alcohol


3B
10 mM
5% Sorbitol;
7.5
5
0.5


P7.5SB5
phosphate
0.9% Benzyl




Alcohol


4A
10 mM
0.9% NaCl;
8.0
20
2


P8NB20
phosphate
0.9% Benzyl




Alcohol


4B
10 mM
0.9% NaCl;
8.0
5
0.5


P8NB5
phosphate
0.9% Benzyl




Alcohol


4C
10 mM
0.9% NaCl;
8.0
10
1


P8NB10
phosphate
0.9% Benzyl




Alcohol


5
10 mM
0.9% NaCl
8.0
5
0.5


P8N5
phosphate


6A
10 mM
5% Sorbitol;
8.0
20
2


P8SB20
phosphate
0.9% Benzyl




Alcohol


6B
10 mM
5% Sorbitol;
8.0
5
0.5


P8SB5
phosphate
0.9% Benzyl




Alcohol


7
10 mM
5% Sorbitol
8.0
5
0.5


P8S5
phosphate


8A
10 mM
0.9% NaCl;
8.5
20
2


P8.5NB20
phosphate
0.9% Benzyl




Alcohol


8B
10 mM
0.9% NaCl;
8.5
5
0.5


P8.5NB5
phosphate
0.9% Benzyl




Alcohol


9A
10 mM
5% Sorbitol;
8.5
20
2


P8.5SB20
phosphate
0.9% Benzyl




Alcohol


9B
10 mM
5% Sorbitol;
8.5
5
0.5


P8.5SB5
phosphate
0.9% Benzyl




Alcohol










a) Degradation Products


Reverse phase HPLC was used to visualize degradation products. A sample chromatogram of formulation 4A shows the main peak with respect to the degradation products (FIG. 3). FIG. 4 shows the main peak with respect to the degradation products (i.e. Purity) for all formulations at the incubation temperatures of 4° C., 25° C. and 37° C. FIG. 4 shows the purity at t=0 and 2 months. The results suggest that no chemical degradation occurred in any of the formulations of Table 8.


b) pH Stability


Table 9 shows the pH of the formulations prior to filling and at t=0. In general, the pH drifted towards 8 and remained constant throughout the study. This suggests that sodium deoxycholate has some buffering capacity.









TABLE 9







pH Drift











Formulation
pH prior to fill
pH at t = 0







WFI20
8.1
8.3



WFI5
7.2
7.5



P7.5NB20
7.5
7.7



P7.5NB5
7.5
7.8



P7.5SB20
7.5
7.6



P7.5SB5
7.4
7.6



P8NB20
8.0
8.3



P8NB5
8.0
8.3



P8N5
8.1
8.5



P8NB10
8.0
8.2



P8SB20
7.9
8.0



P8SB5
8.0
7.8



P8S5
8.0
7.9



P8.5NB20
8.5
8.3



P8.5NB5
8.5
8.5



P8.5SB20
8.5
8.1



P8.5SB5
8.5
8.0











c) Formulation Clarity


The clarity of each formulation was determined by two methods. One method was by visual observation, where the vial was held up to an intense light and the presence of particles was determined by what the eye could see. A set of vials filled with the formulation buffers and incubated at the three temperatures where used as reference standards. The other method used light scattering by illuminating the samples across a 1 cm path length with 500 nm light in a spectrophotometer.


The presence of visible precipitates in some formulations increased over time, particularly at 4° C. The formulations containing sorbitol at the lowest pH produced the most precipitation. The formulations that performed the best contained 10 mM phosphate, 0.9% NaCl, 0.9% Benzyl Alcohol at pH 8.0 or 8.5.


Tables 10, 11, 12 and 13 show the clarity results. The “Visual Clarity” column has a ranking system as follows: 0=clear, no particles; 1=clear, few particles; 2=clear, several particles; 3=clear, many large particles, 4=slightly cloudy; 5=very cloudy.









TABLE 10







t = 0













Visual





Formulation
Clarity
Comments
A500







WFI20
0

0.0064



WFI5
0

0.0103



P7.5NB20
0

0.0467




(gelatinous)



P7.5NB5
0

0.0042



P7.5SB20
0

0.0405




(gelatinous)



P7.5SB5
3
Many large
0.1599





particles



P8NB20
0

0.0076



P8NB5
0

0.0059



P8N5
0

0.0053



P8NB10
0

0.0038



P8SB20
0

0.0067



P8SB5
0

0.0426



P8S5
0

0.0099



P8.5NB20
0

0.0012



P8.5NB5
0

0.0048



P8.5SB20
0

0.0130



P8.5SB5
0

0.0230

















TABLE 11







4° C., 2 months













Visual





Formulation
Clarity
Comments
A500
















WFI20
0

−0.0006



WFI5
2
Precipitate
0.0037



P7.5NB20
0
Gelatinous
−0.0001



P7.5NB5
0

−0.0036



P7.5SB20
3
Precipitate
0.0340



P7.5SB5
3
Precipitate
0.2009



P8NB20
2
Possible
−0.0006





precipitate



P8NB5
0

−0.0019



P8N5
1
Similar to buffer
0.0019



P8NB10
0

0.0124



P8SB20
2
Possible
0.0151





precipitate



P8SB5
2
Precipitate
0.0207



P8S5
0

0.0156



P8.5NB20
0

0.0147



P8.5NB5
1
Similar to buffer
0.0156



P8.5SB20
1
Similar to buffer
0.0190



P8.5SB5
0

0.0223

















TABLE 12







25° C., 2 months













Visual





Formulation
Clarity
Comments
A500







WFI20
0

0.0078



WFI5
2
Precipitate
0.0102



P7.5NB20
0

0.0081



P7.5NB5
0

0.0161



P7.5SB20
4
Precipitate
0.2129



P7.5SB5
4
Precipitate
0.1659



P8NB20
0

0.0179



P8NB5
1
Similar to buffer
0.0200



P8N5
0

0.0189



P8NB10
1
Similar to buffer
0.0161



P8SB20
0

0.0183



P8SB5
2
Possible precipitate
0.0262



P8S5
1
Similar to buffer
0.0184



P8.5NB20
0

0.0208



P8.5NB5
1
Similar to buffer
0.0195



P8.5SB20
0

0.0254



P8.5SB5
1
Similar to buffer
0.0229

















TABLE 13







37° C., 2 months













Visual





Formulation
Clarity
Comments
A500
















WFI20
0

0.0187



WFI5
2
Precipitate
0.0266



P7.5NB20
0

0.0196



P7.5NB5
0

0.0225



P7.5SB20
4
Precipitate
0.4785



P7.5SB5
4
Precipitate
0.6743



P8NB20
0

0.0046



P8NB5
0

−0.0016



P8N5
1
Similar to buffer
0.0047



P8NB10
0

−0.0012



P8SB20
0

0.0037



P8SB5
2
Possible
0.0195





precipitate



P8S5
0

0.0086



P8.5NB20
0

0.0013



P8.5NB5
0

0.0039



P8.5SB20
0

0.0056



P8.5SB5
1
Similar to buffer
0.0040










ii. Effects of Agitation, UV Exposure, and Freeze-Thaw on Stability

Based on the results from the temperature study, the following formulations in Table 14 were chosen to test the effects of Agitation, UV Exposure, and Freeze-Thaw on stability.









TABLE 14







Agitation, UV Exposure, and Freeze - Thaw Formulations

















%







Weight/






Concentration
Volume


Formulation
Buffer
Excipients
pH
(mg/mL)
(% w/v)















4A
10 mM
0.9% NaCl;
8.0
20
2


P8NB20
phosphate
0.9% Benzyl




Alcohol


4C
10 mM
0.9% NaCl;
8.0
10
1


P8NB10
phosphate
0.9% Benzyl




Alcohol


4B
10 mM
0.9% NaCl;
8.0
5
0.5


P8NB5
phosphate
0.9% Benzyl




Alcohol


8A
10 mM
0.9% NaCl;
8.5
20
2


P8.5NB20
phosphate
0.9% Benzyl




Alcohol


8C
10 mM
0.9% NaCl;
8.5
10
1


P8.5NB10
phosphate
0.9% Benzyl




Alcohol


8B
10 mM
0.9% NaCl;
8.5
5
0.5


P8.5NB5
phosphate
0.9% Benzyl




Alcohol










a) Degradation Products


Reverse phase HPLC was used to visualize degradation products. FIGS. 5, 6 and 7 show the main peak with respect to the degradation products (i.e. Purity) for the formulations in Table 14 under the stress of agitation, UV exposure, and five freeze-thaw cycles. The results suggest that no chemical degradation occurred as a result of any of the stresses.


b) pH Stability


Table 15 shows the pH of the formulations prior to filling different than the pH's after opening the vials.









TABLE 15







pH Stability











Formulation
pH Prior to Fill
pH at t = 0







4A
8.0
7.8



P8NB20



4C
8.0
7.9



P8NB10



4B
8.0
7.9



P8NB5



8A
8.5
8.3



P8.5NB20



8C
8.5
8.2



P8.5NB10



8B
8.5
8.1



P8.5NB5











c) Formulation Clarity


The clarity of each formulation was determined by two methods. One method was by visual observation, where the vial was held up to an intense light and the presence of particles was determined by what the eye could see. A set of vials filled with the formulation buffers and incubated at the three temperatures where used as reference standards. The other method used light scattering by illuminating the samples across a 1 cm path length with 500 nm light in a spectrophotometer.


Agitation, UV exposure, and freeze-thaw cycles does not appear to induce precipitation.


Tables 16, 17 and 18 show the clarity results. The “Visual Clarity” column has a ranking system as follows: 0=clear, no particles; 1=clear, few particles; 2=clear, several particles; 3=clear, many large particles, 4=slightly cloudy; 5=very cloudy.









TABLE 16







Agitation















Visual





Formulation
Stress
Clarity
Comments
A500

















4A
Control
1
Similar to
0.0023



P8NB20


buffer



P8NB20
4 hr.
0

0.0068



4C
Control
0

−0.0001



P8NB10



P8NB10
4 hr.
0

0.0079



4B
Control
0

0.0002



P8NB5



P8NB5
4 hr.
0

0.0019



8A
Control
0

−0.0002



P8.5NB20



P8.5NB20
4 hr.
0

0.0024



8C
Control
1
Similar to
0.0087



P8.5NB10


buffer



P8.5NB10
4 hr.
1
Similar to
0.0010






buffer



8B
Control
1
Similar to
0.0029



P8.5NB5


buffer



P8.5NB5
4 hr.
0

0.0022

















TABLE 17







UV Exposure















Visual





Formulation
Stress
Clarity
Comments
A500







4A
Control
0

0.0039



P8NB20



P8NB20
24 hr.
0

0.0023



4C
Control
1
Similar to
0.0009



P8NB10


buffer



P8NB10
24 hr.
1
Similar to
0.0011






buffer



4B
Control
0

0.0020



P8NB5



P8NB5
24 hr.
1
Similar to
0.0017






buffer



8A
Control
0

0.0046



P8.5NB20



P8.5NB20
24 hr.
0

0.0072



8C
Control
1
Similar to
0.0121



P8.5NB10


buffer



P8.5NB10
24 hr.
0

0.0023



8B
Control
1
Similar to
0.0027



P8.5NB5


buffer



P8.5NB5
24 hr.
0

0.0029

















TABLE 18







Freeze - Thaw Cycles













Visual




Formulation
Stress
Clarity
Comments
A500














4A
t = 0
1
Similar to buffer
0.0023


P8NB20


P8NB20
F/T 5
0

0.0084


4C
t = 0
0

−0.0001


P8NB10


P8NB10
F/T 5
0

0.0064


4B
t = 0
0

0.0002


P8NB5


P8NB5
F/T 5
0

0.0022


8A
t = 0
0

−0.0002


P8.5NB20


P8.5NB20
F/T 5
0

0.0161


8C
t = 0
1
Similar to buffer
0.0087


P8.5NB10


P8.5NB10
F/T 5
0

−0.0005


8B
t = 0
1
Similar to buffer
0.0029


P8.5NB5


P8.5NB5
F/T 5
0

−0.0036









After screening the stability profile of sodium deoxycholate in seventeen unique formulations, it was determined that formulations containing 10 mM Phosphate, 0.9% NaCl and 0.9% Benzyl Alcohol at pH 8.0 or 8.5 best prevented visible precipitation in addition to maximizing solubility. By reverse phase HPLC, sodium deoxycholate shows no degradation in all formulations at all temperatures, during storage for eight weeks at 4° C., 25° C. and 37° C. As far as visual clarity of formulations, storage temperatures of 25° C. and 37° C. actually improved the solubility of sodium deoxycholate as compared to 4° C.


All formulations that were chosen for agitation, UV exposure, and freeze-thaw exhibited no degradation or precipitation when exposed to those stresses. Upon completion of the eight week storage stability study, selected formulations were subjected to these acute stress conditions. These experiments help determine the stability of sodium deoxycholate during the stress of common manufacturing and shipping procedures. The data obtained from these acute stress studies confirm the stability of sodium deoxycholate in formulations containing 10 mM Phosphate, 0.9% NaCl and 0.9% Benzyl Alcohol at pH 8.0 or 8.5, with sodium deoxycholate concentration of 5, 10 and 20 mg/mL.

Claims
  • 1. An aqueous pharmaceutical formulation consisting of about 0.05% w/v to about 2% w/v sodium deoxycholate and at least one pharmaceutically acceptable excipient and/or carrier wherein the formulation has a pH of from about 8.0 to about 8.5.
  • 2. The aqueous pharmaceutical formulation of claim 1, wherein the aqueous formulation is suitable for subcutaneous injection.
  • 3. The aqueous pharmaceutical formulation of claim 1, wherein said at least one pharmaceutically acceptable excipient and/or carrier is selected from the group consisting of water, and a preservative.
  • 4. The aqueous pharmaceutical formulation of claim 1, wherein the pH is about 8.3.
  • 5. The aqueous pharmaceutical formulation of claim 3, wherein said preservative is benzyl alcohol.
  • 6. The aqueous pharmaceutical formulation of claim 1, wherein said at least one pharmaceutically acceptable excipient and/or carrier is selected from the group consisting of water; a buffer and a base; a preservative; and a tonicity agent.
  • 7. The aqueous pharmaceutical formulation of claim 6, wherein said preservative is benzyl alcohol.
  • 8. The aqueous pharmaceutical formulation of claim 6, wherein said base is sodium hydroxide.
  • 9. The aqueous pharmaceutical formulation of claim 6, wherein said tonicity agent is sodium chloride.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 14/175,086, filed Feb. 7, 2014, which is a continuation of U.S. patent application Ser. No. 13/733,729, filed Jan. 3, 2013, now U.S. Pat. No. 9,186,364, which is a continuation of U.S. patent application Ser. No. 13/323,605, filed Dec. 12, 2011, now U.S. Pat. No. 8,367,649, which is a continuation of U.S. patent application Ser. No. 12/716,070, filed Mar. 2, 2010, now U.S. Pat. No. 8,101,593, which claims the benefit under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application No. 61/274,129, which was converted from U.S. patent application Ser. No. 12/397,229, filed Mar. 3, 2009, all of which are hereby incorporated by reference herein in their entireties.

US Referenced Citations (128)
Number Name Date Kind
4113882 Okazaki et al. Sep 1978 A
4117121 Gallo-Torres et al. Sep 1978 A
4158707 Steffen et al. Jun 1979 A
4664910 Caserio et al. May 1987 A
4681876 Marples et al. Jul 1987 A
4722888 Broder et al. Feb 1988 A
4851435 Sauer et al. Jul 1989 A
4866044 Sato et al. Sep 1989 A
4994439 Longenecker et al. Feb 1991 A
5085864 Cannon et al. Feb 1992 A
5288498 Stanley et al. Feb 1994 A
5326562 Scott Jul 1994 A
5344822 Levine et al. Sep 1994 A
5371104 Feigenbaum Dec 1994 A
5376646 Pittrof et al. Dec 1994 A
5395545 Fischer et al. Mar 1995 A
5506218 Parker et al. Apr 1996 A
5603932 Blaas et al. Feb 1997 A
5616342 Lyons Apr 1997 A
5674855 Levine et al. Oct 1997 A
5747066 Pittrof et al. May 1998 A
5759445 Yamamoto et al. Jun 1998 A
5849883 Boone et al. Dec 1998 A
5863554 Illum Jan 1999 A
5876721 Alexander et al. Mar 1999 A
5891083 Capella et al. Apr 1999 A
5914390 Nathan et al. Jun 1999 A
5942248 Barnwell Aug 1999 A
5952313 Carlson Sep 1999 A
5952392 Katz et al. Sep 1999 A
6025396 Kim et al. Feb 2000 A
6120805 Spenlehauer et al. Sep 2000 A
6136851 Bonte et al. Oct 2000 A
6197327 Harrison et al. Mar 2001 B1
6221378 Modi Apr 2001 B1
6225343 Behl et al. May 2001 B1
6251428 Yoo Jun 2001 B1
6255502 Penkler et al. Jul 2001 B1
6294192 Patel et al. Sep 2001 B1
6313128 Blanc-Ferras et al. Nov 2001 B1
6315984 Modi Nov 2001 B1
6342489 Palmieri et al. Jan 2002 B1
6350458 Modi Feb 2002 B1
6375975 Modi Apr 2002 B1
6383471 Chen et al. May 2002 B1
6416779 D'Augustine et al. Jul 2002 B1
6417179 Burkhart et al. Jul 2002 B1
6451286 Modi Sep 2002 B1
6489312 Stogniew et al. Dec 2002 B1
6537561 Fukui et al. Mar 2003 B1
6544972 Steer et al. Apr 2003 B1
6573299 Petrus Jun 2003 B1
6663885 Hager et al. Dec 2003 B1
6713470 Jackson Mar 2004 B2
6828155 Kaneko et al. Dec 2004 B1
6849263 Modi Feb 2005 B2
6884768 Kimura et al. Apr 2005 B2
7052716 Lanzendorfer et al. May 2006 B1
7226775 Mapleson et al. Jun 2007 B2
7303768 Yoo Dec 2007 B2
7538093 Engler et al. May 2009 B2
7622130 Kolodney et al. Nov 2009 B2
7754230 Kolodney et al. Jul 2010 B2
8101593 Hodge et al. Jan 2012 B2
8258146 Morita et al. Sep 2012 B2
8298556 Kolodney et al. Oct 2012 B2
8367649 Hodge et al. Feb 2013 B2
8653058 Hodge et al. Feb 2014 B2
8846066 Kolodney et al. Sep 2014 B2
9186364 Hodge et al. Nov 2015 B2
9724356 Hodge et al. Aug 2017 B2
20010051595 Lyons et al. Dec 2001 A1
20020028766 Papadimitriou Mar 2002 A1
20020031558 Yoo Mar 2002 A1
20020032159 Maruyama et al. Mar 2002 A1
20020058010 Picard-Lesboueyries et al. May 2002 A1
20020107291 De Tommaso Aug 2002 A1
20020168402 Kipp et al. Nov 2002 A1
20030027833 Cleary et al. Feb 2003 A1
20030035831 Modi Feb 2003 A1
20030054981 Milton et al. Mar 2003 A1
20030064097 Patel et al. Apr 2003 A1
20030072807 Wong et al. Apr 2003 A1
20030077329 Kipp et al. Apr 2003 A1
20030161886 Dickinson et al. Aug 2003 A1
20030186933 Yoo Oct 2003 A1
20030219472 Pauletti et al. Nov 2003 A1
20040022862 Kipp et al. Feb 2004 A1
20040038952 Feher Feb 2004 A1
20040067919 Jee Apr 2004 A1
20040096494 Siekmann et al. May 2004 A1
20040101569 Rang May 2004 A1
20040115255 Leigh et al. Jun 2004 A1
20040118412 Piletti-Reyes Jun 2004 A1
20040141949 Rosenthal et al. Jul 2004 A1
20040161407 Kimura et al. Aug 2004 A1
20040201117 Anderson Oct 2004 A1
20040213855 Pettersson et al. Oct 2004 A1
20040220283 Zhang et al. Nov 2004 A1
20050019404 Sung et al. Jan 2005 A1
20050048126 Rabinow et al. Mar 2005 A1
20050079228 Jaiswal et al. Apr 2005 A1
20050089555 Boderke et al. Apr 2005 A1
20050123582 Sung et al. Jun 2005 A1
20050143347 Boderke et al. Jun 2005 A1
20050158408 Yoo Jul 2005 A1
20050163821 Sung et al. Jul 2005 A1
20050261258 Kolodney et al. Nov 2005 A1
20050266065 Perrier et al. Dec 2005 A1
20050267080 Kolodney et al. Dec 2005 A1
20050287199 Denney et al. Dec 2005 A1
20060074057 Marchewitz Apr 2006 A1
20060127468 Kolodney et al. Jun 2006 A1
20060154906 Kolodney et al. Jul 2006 A1
20060222673 Chern et al. Oct 2006 A1
20060222695 Zadini et al. Oct 2006 A1
20080318870 Moriarty et al. Dec 2008 A1
20090270642 Prasad et al. Oct 2009 A1
20090275545 Boderke et al. Nov 2009 A1
20100048527 Kolodney et al. Feb 2010 A1
20100292650 Kolodney et al. Nov 2010 A1
20110002896 Kolodney et al. Jan 2011 A1
20110218181 Hodge et al. Sep 2011 A1
20120237492 Walker Sep 2012 A1
20130190282 Hodge et al. Jul 2013 A1
20140148429 Hodge et al. May 2014 A1
20140155364 Hodge et al. Jun 2014 A1
20150051182 Kolodney et al. Feb 2015 A1
Foreign Referenced Citations (46)
Number Date Country
2033725 May 2001 CA
2551474 Jul 2005 CA
1348360 May 2002 CN
0 208 519 Jan 1987 EP
0 408 174 Jan 1991 EP
0 426 029 May 1991 EP
0 439 042 Jun 1995 EP
0 439 513 Mar 1996 EP
1 111 390 Jun 2001 EP
0 730 860 Jan 2002 EP
0 806 940 Apr 2003 EP
1 005 324 Mar 2005 EP
61-158995 Jul 1986 JP
03-048622 Mar 1991 JP
04-235918 Aug 1992 JP
11-240835 Sep 1999 JP
2007-515439 Jun 2007 JP
2007-515494 Jun 2007 JP
2007-538104 Dec 2007 JP
2008-530005 Aug 2008 JP
2010-222283 Oct 2010 JP
10-2007-0110351 Nov 2007 KR
WO-9012583 Nov 1990 WO
WO-9305811 Apr 1993 WO
WO-9404177 Mar 1994 WO
WO-9915152 Apr 1999 WO
WO-0013029 Mar 2000 WO
WO-0170151 Sep 2001 WO
WO-02058610 Aug 2002 WO
WO-03018134 Mar 2003 WO
WO-03082340 Oct 2003 WO
WO-03094894 Nov 2003 WO
WO-2004010941 Feb 2004 WO
WO-2004039326 May 2004 WO
WO-2005020894 Mar 2005 WO
WO-2005061004 Jul 2005 WO
WO-2005063169 Jul 2005 WO
WO-2005063205 Jul 2005 WO
WO-2005112942 Dec 2005 WO
WO-2005117832 Dec 2005 WO
WO-2005117900 Dec 2005 WO
WO-2006007675 Jan 2006 WO
WO-2006086038 Aug 2006 WO
WO-2006133160 Dec 2006 WO
WO-2011075701 Jun 2011 WO
WO-2012112940 Aug 2012 WO
Non-Patent Literature Citations (96)
Entry
Shimazawa et al., “Involvement of ER stress in retinal cell death”, Mol Vis, 2007, 13:578-587.
U.S. Appl. No. 11/710,601, filed Feb. 23, 2007, Burkhart et al.
U.S. Appl. No. 12/062,445
U.S. Appl. No. 12/397,229.
U.S. Appl. No. 13/753,366.
“Health Alert: Lipostabil” http://kyw.com/health/local_story_336152706.html, Dec. 2, 2002.
“Lose those love handles” A CBS HealthWatch Special Report http://cbsnewyork.com/healthwatch/local story 329141707.html, Nov. 25, 2002.
“Love handles can be shrunk without surgery” http://www.macleans.ca/topstories/health/article.jsp?content=20040225.sub- .--090843.sub.--4800, Feb. 25, 2004.
“Deoxycholic acid”, Product Information, SIGMA, 2002.
Ablon, et al., “Treatment of lower eyelid fat pads using phosphatidylcholine: clinical trial and review,” Derm. Surgery, (2004), 30(3):422-427.
Alkan-Onyuksel H, Ramakrishnan S, Chai HB, Pezzuto JM. A mixed micellar formulation suitable for the parenteral administration of taxol. Pharm Res 1994, 11:206-12.
Almgren M. Mixed micelles and other structures in the solubilization of bilayer lipid membranes by surfactants. Biochim Biophys Acta 2000,1508:146-63.
Asaadi M, Salas AP, Motamedi B. Mesoplasty: a new approach to non-surgicalliposculpture. Plastic Surgery 2004, Oct. 10, 2004, Philadelphia, PA.
ASAPS. American Society for Aesthetic Plastic Surgery. Lipoplasty (liposuction) without surgery?, Oct. 2002.
Banerjee P, Joo JB, Buse JT, Dawson G. Differential solubilization of lipids along with membrane proteins by different classes of detergents. Chem Phys Lipids 1995, 77:65-78.
Bates B. ‘Fat dissolving’ substance injects CCs of controversy. Skin and Allergy News 2003,34.
Baumann LS. Phosphatidylcholine. Skin and Allergy News 2003, 34.
BAYER_ Press Release, “First Patients enrolled in EU Phase III Clinical Development Program to evaluate ATX-101 for reduction of Submental Fat,” (2008).
Bellman B. Phosphatidylcholine reaction. Skin and Allergy News 2003, 34.
Bryant, R., Controversial mesotherapy: could it be the next botox. Dermatology Times, Dec. 2004, 1-2.
Buko V, Lukivskaya O, Nikitin V, Tarasov Y, Zavodnick L, Borodinsky A, Gorenshtein B, Janz B, Gundermann K-J, Schumacher R. Hepatic and pancreatic effects of polyenoylphosphatidylcholine in rats with alloxan-induced diabetes. Cell Biochem Function 14:131-7, 1996.
Canty D, Zeisel S, Jolitz A. Lecithin and choline: research update on health and nutrition. Fort Wayne, IN: Central Soya Company, Inc., 1998.
Chalmers K. Fat loss a needle away. http://surgerynews.net/news/0204/meso020402.htm, Feb. 1, 2004.
Davidson et al. “Limitations of phosphatidylcholine/deoxycholate mixtures for the analysis of phospholipase A2 inhibition and activation: illustration with annexins.” Biochimica et Biophysica Acta, 1992, 1127(3):270-276.
Duncan et al., “Fat Reduction Using Phosphatidylcholine/Sodium Deoxycholate Injections: Standard of Practice”, Aesthetic Plastic Surgery, 2008, 32(6):858-872.
Duncan et al., “Lipodissolve for Subcutaneous Fat Reduction and Skin Retraction,” Aesthetic Surgery Journal, (2005), 25(5):530-543.
Duncan et al.: “Injectable therapies for localized fat loss: state of the art.”, Clinics in Plastic Surgery, 2011, LNKDPUBMED:21824545, vol. 38, No. 3, 2011, pp. 489-501.
Durr M, Hager J, Lohr JP. Investigation on mixed micelle and liposome preparations for parental use on soya phosphatidylcholine. Eur J Pharm Biopharm 1994, 40: 147-56.
Ebihara L, Hall JE, MacDonald RC, Mcintosh TJ, Simon SA. Effect of benzyl alcohol on lipid bilayers. A comparison of bilayer systems. Biophys J 1979,28:185-96.
Engelke M, Jessel R, Wiechmann A, Diehl HA. Effect of inhalation anaesthetics on the phase behaviour, permeability and order of phosphatidylcholine bilayers. Biophys Chem 1997,67:127-38.
Extended European Search Report for Appl. No. 12747416.1, dated Jun. 10, 2014.
FDA news release: “FDA issues warning letters for drugs promoted in fat elimination procedure”, 2010, Retrieved from the Internet: URL:http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm207453.htm [retrieved on Oct. 18, 2011].
Goldman L, Bennet JC, Cecil RL. Cecil Textbook of Medicine. St. Louis, MO: W.B. Saunders Co., 2001.
Gordon LM, Sauerheber RD, Esgate JA, Dipple I, Marchmont RJ, Houslay MD. The increase in bilayer fluidity of rat liver plasma membranes achieved by the local anesthetic benzyl alcohol affects the activity of intrinsic membrane enzymes. J Biol Chem 1980, 255:4519-27.
Gustafson C, Tagesson C. Influence of organic solvent mixtures on biological membranes. Br J Ind Med 1985, 42:591-5.
Hammad MA, Muller BW. Increasing drug solubility by means of bile salt-phosphatidylcholine-based mixed micelles. Eur J Pharm Biopharm 1998, 46:361-7.
Hasengschwandtner, F. “Phosphatidylcholine treatment to induce lipolysis,” Journal of Cosmetic Dermatology, (2005), 4:308-313.
Heerklotz H, Seelig J. Correlation of membrane/water partition coefficients of detergents with the critical micelle concentration. Biophys J 2000, 78:2435-40.
Hexsel, et al., “Phosphatidylcholine in the treatment of localized fat,” J. Drugs Dermatol., (2003), 2(5):511-518.
Hofmann et al., “Bile acid solubility and precipitation in vitro and in vivo: the role of conjugation, pH, and Ca2+ ions”, Journal of Lipid Research, vol. 33, pp. 617-626 (1992).
Hutchison, ABC News Medical Unit: “Docs Question Bayer's Injection for Dissolving Double Chin”, 2011, Retrieved from Internet: URL:http://abcnews.go.com/Health/WellnessNews/bayer-tests-fat-loss-injection-double-chin/story?id=12600333, [retrieved on May 22, 2014].
Igimi et al., “pH-Solubility relations of chenodeoxycholic and ursodeoxycholic acids: physical-chemical basis for dissimilar solution and membrane phenomena”, Journal of Lipid Research, vol. 21, pp. 72-90 (1980).
Japanese Office Action for Appl. No. 2013-034203, dated Apr. 17, 2014.
Jones MN. Surfactants in membrane solubilisation. Int J Pharm 1999, 177:137-59.
JP Office Action for Application No. 2014-527128 dated Jun. 23, 2015.
Kawanaka et al., NASH, Japanese Journal of Liver, Biliary tract, and Pancreas, 2002, 44(4):521-526.
Kern, et al., “Regulation of Lipoprotein Lipase Immunoreactive Mass in Isolated Human Adipocytes”, J. Clin. Invest., vol. 81, pp. 398-406; (1988).
Klein, et al., “A New Method to Quantify the Effect After Subcutaneous Injection of Lipolytic Substances,” Aesth Plast Surg., (2008), 32:667-672.
Kolonin, et al., “Reversal of obesity by targeted ablation of adipose tissue,” Nature Medicine, Nature Publishing Group, (2004) 10(6): 625-632.
Kythera Biopharmaceuticals: “Evaluation of safety and efficacy of ATX-101 in the reduction of submental fat”, 2011, Retrieved from the Internet: URL:http://clinicaltrials.gov/ct2/show/NCT01294644, [retrieved on Feb. 28, 2011].
Kythera Biopharmaceuticals: “Evaluation of Safety and Efficacy of ATX-101 in the Reduction of Submental Fat”, 2011, Retrieved from the Internet: URL:http://clinicaltrials.gov/ct2/show/NCT01305577 [retrieved on Jan. 2, 2015].
Kythera Newsroom. Two Phase 2 studies with ATX-101—study results demonstrated statistically significant reduction in patients' unwanted submental fat. Kythera Biopharmaceuticals, Inc. (2009), 1-2.
Landman B. Beyond Botox. Oct. 6, 2003 http://newyorkmetro.com/nymetro/health/bestdoctors/cosmeticsurgery/2003/n- .sub.--9281/index.html.
Learn about lecithins. Oxford, CT: American Lecithin Company, 2003.
Lester DS, Baumann D. Action of organic solvents on protein kinase C. Eur J Pharmacol 1991, 206:301-8.
Lichtenberg D, Robson RJ, Dennis EA. Solubilization of phospholipids by detergents. Structural and kinetic aspects. Biochim Biophys Acta 1983, 737:285-304.
Lichtenberg D, Zilberman Y, Greenzaid P, Zamir S. Structural and kinetic studies on the solubilization of lecithin by sodium deoxycholate. Biochemistry 1979, 18:3517-25.
Lichtenberg D. Characterization of the solubilization of lipid bilayers by surfactants. Biochim Biophys Acta 1985, 821:470-8.
Lieber CS, Robins SJ, Li J, DeCarli LM, Mak KM, Fasulo JM, Leo MA. Phosphatidylcholine protects againstfibrosis and cirrhosis in the baboon. Gastroenterology 106: 152-9, 1994.
Lipostabil. Rhone-Poulenc Rorer. Cologne, West Germany: Natterman International GMBH, 1990.
McCaslin, “Detergent Properties”, Encyclopedia of Biological Chemistry, vol. 1, pp. 577-581 (2004).
Milovic et al. Effects of deoxycholate on human colon cancer cells: apoptosis or proliferation. European Journal of Clinical Investigation. (2002) 32(1):29-34.
Moy, LS. Phosphatidylcholine injections: a study measuring decreased subcutaneous fat thickness. Combined Annual Meeting of the American Society for Dermatologic Surgery and the American Society of Mohs Micrographic Surgery and Cutaneous Oncology, San Diego, CA Sep. 30-Oct. 3, 2004.
Parnham MJ, Wendel A. Phospholipids and liposomes—safety for cosmetical and pharmaceutical use. Nattermann Phospholipid GMBH Scientific Publication No. 2 1995.
Powell, A. A. et al. Bile acid hydrophobicity is correlated with induction of apoptosis and/or growth arrest in HCT116 cells. Biochem. J. 2001; 356:481-486.
Rittes PG. The use of phosphatidylcholine for correction of localized fat deposits. Aesthetic Plast Surg 2003, 27:315-8.
Rittes PG. The use of phosphatidylcholine for correction of lower lid bulging due to prominent fat pads. Dermatol Surg 2001, 27:391-2.
Rosenbaum, M., An exploratory investigation of the morphology and biochemistry of cellulite, Annual Meeting of American Society for Aesthetic Surgery, New York, May 1997, 1934-39.
Rossi ABR, Vergnanini AL. Cellulite: a review. JEADV 14:251-62, 2000.
Rotunda A, Suzuki H, Moy RL, Kolodney MS. Detergent effects of sodium deoxycholate are a major feature of injectable phosphatidylcholine. American Society for Dermatologic Surgery, New Orleans, LA, Oct. 11, 2003.
Rotunda et al. “Lipomas treated with subcutaneous deoxycholate injections”. J. Am. Acad. Dermatol., (2005) pp. 973-978.
Rotunda et al. “Mesotherapy and Phosphatidylcholine Injections: Historical Clarification and Review” Dermatologic Surgery, (2006) 32: 465-480.
Rotunda et al., “Randomized double-blind clinical trial of subcutaneously injected deoxycholate versus a phosphatidylcholine-deoxycholate combination for the reduction of submental fat”, Dermatologic Surgery, 2009, 35(5):792-803.
Rotunda, et al., “Detergent effects of sodium deoxycholate are a major feature of an injectable phosphatidylcholine formulation used for localized fat dissolution,” Dermatol. Surg., (2004), 30(7):1001-1008.
Sager S. New fat removal technique getting raves: Is it safe? Does it work? http://abclocal.go.com/wabc/news/wabc.sub.--020703.sub.--mesotherap- y.html, Feb. 7, 2003.
Salti, et al., “Phosphatidylcholine and Sodium Deoxycholate in the Treatment of Localized Fat: A Double-Blind, Randomized Study,” Dermatol Surg., (2008), 34:60-66.
Schuck S, Honsho M, Ekroos K, Shevchenko A, Simons K. Resistance of cell membranes to different detergents. Proc Natl Acad Sci 2003, 100:5795-800.
Sergio, M. Traitement mesotherapique des xanthelasmas a la phophatidilcoline polyinsaturee (EPL). V Congres Internacional de Mesotherapie, Paris: Dermatologie, 1988; 364 (with English language abstract at end of article).
Serra M., Subcutaneous infiltration with phosphatidylcholine solution for treatment of buffalo hump and fatty pads. 3rd Int'l workshop on adverse drug reactions and lipodystrophy in HIV, Athens, Oct. 2001, 115.
Sigma: “RIPA Buffer”, 2003, retrieved from the internet: URL:http://www.sigmaaldrich.com/etc/medialib/docs/Sigma/Bulletin/r0278bul.Par.0001.File.tmp/r0278bul.pdf.
Singer SJ, Nicolson GL. The fluid mosaic model of the structure of cell membranes. Science 1972, 175:720-31.
Small, “Size and Structure of Bile Salt Micelles. Influence of Structure, Concentration, Counterion Concentration, pH, and Temperature”, In Molecular Association in Biological and Related Systems; Goddard, E.; Advances in Chemistry; American Chemical Society: Washington, DC, 31-52, 1968.
Teelmann K, Schlappi B, Schupbach M, Kistler A. Preclinical safety evaluation of intravenously administered mixed micelles. Arzneimittelforschung 1984,34:1517-23.
Toyama M. Next-Gen Liposuction. http://www.time.com/time/europe/forecast2003/html/liposuction.html, Dec. 8, 2002.
U.S. Office Action in U.S. Appl. No. 14/175,086 dated Sep. 30, 2016.
U.S. Office Action in U.S. Appl. No. 14/175,086 dated Feb. 1, 2016.
U.S. Office Action in U.S. Appl. No. 13/733,729, dated Nov. 18, 2014.
U.S. Office Action in U.S. Appl. No. 12/716,070 dated May 12, 2011.
U.S. Office Action in U.S. Appl. No. 13/323,605 dated Jul. 20, 2012.
U.S. Office Action in U.S. Appl. No. 14/175,086 dated Jun. 18, 2015.
Victor S. Phosphatidylcholine works. Skin and Allergy News 2003, 34.
Womack et al., “Detergent Effects on Enzyme Activity and Solubilization of Lipid Bilayer Membranes”, Biochimica et Biophysica Acta, 733, pp. 210 215 (1983).
Young, VL. Lipostabil: The effect of phosphatidylcholine on subcutaneous fat. Aesthetic Surg J 23:413-417,2003.
Zeghari et al., “Adipocyte and erythrocyte plasma membrane phospholipid composition and hyperinsulinemia: a study in nondiabetic and diabetic obese women”, International Journal of Obesity and Related Metabolic Disorders:Journal of the International Association for the Study of Obesity, 2000, 24(12):1600-1607.
Duncan D. “Injection Lypolysis for Body Contouring,” Springer Berlin Heidelberg, (2010), 59-70.
Fit. The first UK injection technique recommendations. Becton, Dickinson and Company. 2010;1-13.
Related Publications (1)
Number Date Country
20180000835 A1 Jan 2018 US
Provisional Applications (1)
Number Date Country
61274129 Mar 2009 US
Continuations (4)
Number Date Country
Parent 14175086 Feb 2014 US
Child 15650556 US
Parent 13733729 Jan 2013 US
Child 14175086 US
Parent 13323605 Dec 2011 US
Child 13733729 US
Parent 12716070 Mar 2010 US
Child 13323605 US