The present invention relates to a formwork device for a battery formwork for the manufacture of structural elements, in particular prefabricated concrete elements, which comprises at least two partition walls.
Battery formworks are often used in the series production of prefabricated concrete elements. Prefabricated concrete elements are often used, in particular, for building houses with precast concrete slabs. These prefabricated concrete elements can be produced quickly and cheaply in battery formwork. With conventional battery formwork, so-called partition walls are used as formwork devices and arranged adjacent to each other. The partition walls each span vertical planes. Disposed between the partition walls are formwork elements e.g. for doors, windows, etc., which, together with the partition walls arranged on both sides, each define cavities to be filled with concrete. The partition walls are equipped with the respective formwork elements as needed. For this purpose, a worker attaches the formwork elements e.g. with magnetic supports on the partition walls made of steel. During production, the partition walls are clamped (braced) against each other to ensure sufficient tightness of the cavities. The cavities are open at the top and are filled with concrete for producing the prefabricated concrete elements. The cavities arranged between the partition walls are filled with concrete substantially simultaneously. After the concrete has cured, the bracing is released and the cured prefabricated concrete elements can be removed from the battery formwork. The simultaneous production of several prefabricated concrete elements makes it possible to produce prefabricated concrete elements in a rapid and cheap manner with the battery formwork. On the other hand, handling the large and relatively heavy partition walls is not very easy. Also, fitting the partition walls with formwork elements is quite laborious. It is therefore desirable and the object of the invention to further simplify the production of prefabricated concrete elements. In particular, further flexibility in the production process would be desirable.
This object is satisfied according to the invention by a formwork device for a battery formwork for the production of structural elements, in particular prefabricated concrete elements, which comprises at least two partition walls, and the formwork device comprises two formwork panels that are connected to one another preferably in an articulated manner in order to be transferred from an unfolded state to a folded state, where each formwork panel comprises a formwork front side for attaching formwork elements and a formwork rear side, and the formwork rear sides of the two formwork panels face each other in the folded state and the formwork device is intended to be positioned in the folded state between the partition walls.
This solution provides the advantage that a formwork device comprising two formwork panels can be used for the simultaneous production of two different prefabricated concrete elements. In particular, formwork elements, e.g. for doors and windows for a prefabricated concrete element, can be attached to the one formwork panel, whereas formwork elements for another prefabricated concrete element can at the same time be attached to the other formwork panel. For producing the prefabricated concrete elements, the formwork device is positioned between two adjacent partition walls. Due to the possibility of transferring the formwork panels from the unfolded to the folded state, it is possible to equip the formwork panels in the unfolded state with the respective formwork elements while they are lying down. The formwork panels are subsequently raised and transferred to the folded state in which the formwork panels can be suspended between the partition walls. As a result, fitting the formwork panels can be greatly simplified as compared to conventional battery formwork. The possibility of fitting the formwork panels in the lying down state with formwork elements also facilitates automation of this process.
Advantageously, the formwork panels can be formed substantially rectangular. Their shape then corresponds substantially to the shape of the partition walls, so that compatibility with the partition walls is ensured. This can be advantageous, in particular, for a possible retrofit of existing battery formwork. It can be advantageous if the substantially rectangular formwork panels are connected to one another on one side, preferably on the longer longitudinal side. The connection is thereby effected along a line extending horizontally during the insertion process of the folded formwork panels. As a result, the two formwork panels extend downwardly starting from this line, hang down from this line, so to speak. In this way, simple handling of the formwork device is possible.
It can also be advantageous to have the formwork panels be connected to each other by way of a hinge joint. Handling can be further simplified in this way, in particular, by transferring them from the unfolded to the folded state.
In one advantageous further development of the invention, at least the formwork front side of the formwork panel can be magnetic. For example, the formwork panel can at least in part be made of steel. In this way, magnetic formwork elements can be attached to the formwork panel, whereby handling is even further simplified and the formwork device can be used even more efficiently.
It can also be favorable to have the formwork device comprise at least one roller. The formwork device can then be easily positioned and moved in the battery formwork.
It can also be advantageous to have the roller be provided on a narrow side of the formwork device and preferably in the region where the two formwork panels adjoin each other. With such a configuration, the formwork device can be handled in an even easier manner in the battery formwork.
It can also prove to be advantageous to have the roller be arranged at the hinge joint. Such an arrangement is particularly advantageous for battery formwork in which the partition walls and/or the formwork device are arranged in a suspended manner. Independent unfolding of the formwork panels can thereby be counteracted.
In one advantageous development of the invention, the formwork device can comprise a preferably detachably arranged heating device and/or a vibrator. Both the heating device as well as the vibrator can be detachably mounted. This makes it possible to use the formwork devices in a more universal manner. It is no longer necessary to use expensive partition walls with fixedly mounted vibrators. Instead, the formwork device can be equipped with a heating device and/or with a vibrator as needed. The heating device and/or the vibrator can be mounted in particular when fitting the formwork panels with formwork elements. It is conceivable to attach the heating device and/or the vibrator with magnetic supports to the formwork element.
Furthermore, it can prove to be advantageous to have a filler neck be provided on an end portion of the formwork device disposed opposite to the articulated connection, preferably the hinge joint. Such a filler neck can be attached in the lower region of the formwork device when the formwork device is suspended in the battery formwork. It is then possible to fill in the concrete from below. With formwork elements arranged in a suspended manner, the filler neck can optionally be arranged at the bottom on the face side. Preferably, however, it is located at a lower end portion laterally on the formwork device. Such a filler neck can also be designed as a permanent member. It then remains in the molded prefabricated concrete elements and the part not needed can then e.g. be cut off.
The above object is also satisfied by an arrangement consisting of a battery formwork and at least one formwork device according to the invention, where the formwork device is arranged suspended in the battery formwork.
This solution has the advantage that no continuous hard floor e.g. made of concrete, is necessary under the battery formwork and in particular under the suspended formwork device. The requirements for the installation site of the battery formwork are thereby reduced, and the battery formwork can be used in a more universal manner.
It can be advantageous to have the battery formwork comprise at least one support device, preferably a rail, for receiving the roller of the formwork device. The formwork device can be easily moved in the battery formwork in this way.
Furthermore, the invention relates to a formwork device for a battery formwork with at least two partition walls, in which a formwork panel is arranged between the partition walls which formwork panel comprises a front side and a rear side and the front side is associated with one partition wall and the rear side is associated with the other partition wall, and the formwork panel with its front and rear sides and the respectively associated partition walls each define at least one cavity for filling in concrete.
Unlike the previously discussed embodiment, only one formwork panel is provided in this embodiment and can preferably be equipped with formwork elements on both sides. As a result, the formwork device has a double effect and allows for further simplification of a formwork for prefabricated concrete elements in battery formwork.
Furthermore, at least one formwork mold can be provided between the partition walls in both embodiments according to the invention. Such molds can comprise prefabricated arrangements of formwork elements and are positioned between the partition walls and possibly fastened to the partition wall or the formwork device. As a result, the fitting effort can be further reduced. Such molds can also represent only parts of a formwork element. For example, the mold can form an exchangeable core for simple production of different variants of a prefabricated concrete element. Complicated geometries can also be realized therewith, which are difficult to realize with conventional formwork elements. A collection of molds can exist that allows for the production of different prefabricated concrete elements in a simple manner
The above-mentioned features of the formwork device are suitable for partition walls which are suspended, as in the present preferred version of the invention, but are also generally suitable for such partition walls that are mounted on chassis. The partition walls are then supported on the ground and can also be moved e.g. on rails.
The invention shall be explained in more detail below with reference to one embodiment and the associated drawings.
These drawings show:
In the embodiment of
The number of support devices 4, partition walls 5′ and formwork devices 5 is to be regarded as only by way of example and can be varied depending on the circumstances. E.g. formwork devices 5 can be provided for the outer walls, inner walls, the floor and the roof of a house, so that the structural elements for an entire building can be produced at the same time with battery formwork 1. Partition walls 5′ and formwork devices 5 can be clamped between two strut devices 6. The number of strut devices 6 is also to be considered as being by way of example only, and can be varied according to requirements. At least one strut device 6 is received movably, i.e. slidably in the present embodiment, in support devices 4. For stabilization, formwork devices 5 and strut devices 6 can be connected and clamped to each other in the concrete pouring position by one or more rod-shaped connecting devices 10. The number of connecting devices 10 can be adapted to the circumstances. Also hydraulic connecting devices are possible instead of rod-shaped connecting devices 10. However, rod-shaped connecting devices 10 are particularly robust and easy to handle.
In the illustration according to
In battery formwork 1 according to the invention, formwork devices 5 are suspended from above into support devices 4, so that, in the suspended state, they are spaced from the ground between bearing sections 3 in a concrete pouring position. Furthermore, battery formwork 1 comprises a lifting device 7 with which at least one of formwork devices 5 can be transferred from the lowered concrete-pouring position to a raised transport position in which formwork device 5 can be conveyed via a formwork device 5, that is in the concrete-pouring position, in a direction substantially perpendicular to lifting direction X. The configuration of lifting device 7 can be adapted to the requirements. If necessary, several lifting devices 7 can be employed.
Lifting device 7 is movable in a tensioning direction of formwork devices 5 on two spaced guide devices 8, which are presently configured as runner rails 8. Furthermore, guide devices 8 are arranged above support devices 4 and in parallel thereto. In order to configure battery formwork 1 in a more compact manner, formwork devices 5 are attached to the support devices 4 at their upper end.
Battery formwork 1 can comprise at least one weighting device, not shown, with a cavity which can preferably be filled with sand, water and/or concrete. Furthermore, the weighting device can be designed to be emptied and/or it can be removable. This can increase the stability and sturdiness of battery formwork 1.
The filling process can be adapted to the respective conditions at the sites where battery formwork 1 is set up. E.g. filling with sand can be advantageous in desert regions. Battery formwork 1 can be easily transported by emptying the weighting device when filled with sand or water, or when removing the weighting device e.g. when it is filled with concrete.
The fact that battery formwork 1 is modular and can be disassembled, so that each modular component can be transported in a standard 20 feet or 40 feet container also contributes to the transportation of battery formwork 1 being facilitated. In this manner, battery formwork 1 can be rapidly taken to places where living space is quickly needed, e.g. refugee camps.
Battery formwork 1 can be equipped with formwork devices 5 which are configured such that the parts (floor, side walls, inner walls, roof) for the production of an entire building, consisting e.g. of 12 parts, can be produced simultaneously with battery formwork 1.
Battery formwork 1 is configured such that the lifting height of a formwork device 5 or a partition wall 5′ with lifting device 7 corresponds to at least twice the height, preferably 2.5 times the height of formwork device 5.
Formwork devices 5 and strut devices 6 can be arranged such that sufficient space for storing or loading the demolded prefabricated concrete elements or formwork elements 5 remains between a strut device 6 and bearing sections 3, which are arranged on one side of battery formwork 1.
Battery formwork 1 shown in
Formwork device 5 according to the invention shown in
Formwork panels 11 are connected to one another on one side at the longer longitudinal side 16. Handling of formwork device 5 can be simplified if formwork panels 11 are connected to each other by way of a hinge joint 14. At least formwork front side 12 of formwork panel 11 can be magnetic in order to facilitate fitting formwork elements 18, as shown in the example in
As already mentioned above, the configuration of formwork device 5 depends on the component to be produced. Therefore, formwork panels 11 can also be connected to each other on one side other than the longer longitudinal side 16, and can comprise a connection that is different from a hinge joint 14. If an attachment e.g. with bolts instead of the magnetic option is selected as the attachment of formwork elements 18 to formwork panel 11, then it is not necessary that formwork front side 12 of formwork panel 11 be magnetic.
In contrast to formwork device 5 shown in
Formwork devices 5 can be moved easier with rollers 15 in battery formwork 1.
A soiled formwork device 5 is placed from battery formwork 1 in the unfolded state and with formwork front side 12 facing upwardly onto a receiving region 19 of conveyor belt 9. From there, formwork device 5 is conveyed in the conveying direction Y to a cleaning region 20 where formwork device 5 is cleaned and, in particular, freed from concrete residue. Formwork elements 18 that are no longer needed later can also be removed there.
Formwork device 5 is subsequently conveyed to a fitting region 21 where new formwork elements 18 can be mounted.
Formwork device 5 is conveyed from fitting region 21 back to battery formwork 1 into which it is then subsequently suspended. This sequence is to be regarded as being by way of example only and can be adapted as needed. In particular, the number, arrangement and configuration of regions 19, 20, 21 can be varied according to requirements.
Fastening device 24 is intended to temporarily secure prefabricated concrete elements 28 when formwork device 5 is removed. Fastening device 25 is intended to temporarily secure formwork device 5 to partition wall 5′ on the left-hand side in the illustration, while prefabricated concrete element 27 is removed. Fastening devices 24 and 25 are there configured as a folding brackets to allow formwork device 5 or prefabricated concrete element 28 to be temporarily secured. In the illustration according to
Handling of formwork device 5 is significantly facilitated due to the fact that formwork device 5 according to the invention comprises two formwork panels 2 which are connected to each other in an articulated manner to be transferred from an unfolded state to a folded state. Formwork device 5 according to the invention can be used more efficiently than conventional formwork devices, whereby the production costs for structural elements can be reduced.
Number | Date | Country | Kind |
---|---|---|---|
10 2015 209 157.0 | May 2015 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2016/061220 | 5/19/2016 | WO | 00 |