Formwork System

Information

  • Patent Application
  • 20080023622
  • Publication Number
    20080023622
  • Date Filed
    December 08, 2004
    20 years ago
  • Date Published
    January 31, 2008
    16 years ago
Abstract
The invention relates to a formwork system which comprises formwork elements having opposite formwork interior surfaces, which can be interlinked at a distance to one another by means of formwork ties. Said formwork ties are constituted of a bolt element and two locking elements that are configured so as to be coupled to the bolt elements in the two distal areas thereof facing away from each other and that are adapted to transmit tensile forces from the formwork elements onto the bolt element. The formwork system is characterized in that the locking elements comprise coupling elements for transmitting pressure forces from the formwork elements onto the bolt element.
Description

DRAWINGS

The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.



FIG. 1 is a three-dimensional view of a formwork tie in accordance with the invention;



FIG. 2 is a cross-section through a formwork tie in accordance with FIG. 1, with the formwork tie being coupled to formwork elements of an internal formwork and of an external formwork;



FIGS. 3
a-c are sequential method steps in the coupling of a locking element provided with a thread sleeve with a formwork; and



FIGS. 4
a-c are sequential method steps in the coupling of a bolt element captively connected to a locking element with a formwork in accordance with FIG. 3c.





DETAILED DESCRIPTION

The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features.



FIG. 1 shows a tie bolt 1 which is coupled to one respective locking element 2, 3 each in its two end regions remote from one another.


Both locking elements 2, 3 each consist of a housing 4, 5, with one respective locking block 6, 7 being arranged in each housing 4, 5.


The housings 4, 5 are manufactured by means of an extrusion method or a rolling or roller method as bulk material from which they are cut off in the desired length along the cutting surfaces 8. This has the result that the housings 4, 5 are open at the end face in the region of the cutting surfaces 8 so that the locking blocks 6, 7 can be inserted into the housings 4, 5 through these open sides.


A coupling element 9, 10 is in each case shaped to the housings 4, 5 for the transmission of compressive forces from formwork elements onto the bolt element 1, with these coupling elements 9, 10 having a constant cross-section over the total length of the housings 4, 5 so that the coupling elements 9, 10 can be manufactured simultaneously with the housings 4, 5 by an extrusion method or rolling or roller method. The coupling elements 9, 10 are hook-shaped in cross-section such that they can be hooked with corresponding undercuts of the formwork elements (see FIG. 2). The orientation of the two coupling elements 9, 10 is selected such that they extend in hook shape in mutually opposite directions.


The bolt element 1 is produced from a solid material, in particular a metallic solid material, and has a conical shape which converges as the spacing from the locking element 2 increases. The bolt element 1 is furthermore held captively, but rotatably, in the locking block 6 of the blocking element 2, with it projecting out of the housing 4 in a direction remote from the locking element 3. This projecting region of the bolt element 1 is made as a hexagon 11 via which the bolt element 1 can be rotated around its longitudinal axis relative to the locking elements 2, 3 by hand or by means of a tool.


The locking block 7 received in the housing 5 is fixedly coupled to a thread sleeve 12 which projects out of the housing 5 in the direction of the locking element 2. The thread sleeve 12 is provided at the inside with a thread into which the end of the bolt element 1 remote from the locking element 2 can be screwed. Each of the two housings 4, 5 has one bolt hole 13, 14 each in mutually oppositely disposed housing sides which in each case has the shape of a curved elongate hole. The two bolt holes 13, 14 of each housing 4, 5 are aligned with one another. In FIG. 1, only one respective bolt hole 13, 14 per housing 4, 5 can be seen due to the perspective chosen.


The bolt element 1 extends on sides of the locking element 2 through both bolt holes 13, whereas with the locking element 3 the thread sleeve 12 extends through the bolt hole 14 facing the locking element 2 and not visible in FIG. 1. The other bolt hole 14 visible in FIG. 1 permits the passage of the bolt element end 15 if this has been screwed sufficiently into the thread sleeve 12.


The bolt holes 13, 14 are curved as elongate holes such that their respective upper regions are closer to the sides of the housings 4, 5 provided with the coupling elements 9, 10.



FIG. 2 shows a section through a formwork tie in accordance with FIG. 1, with this formwork tie in accordance with FIG. 2 now being connected to framework ties elements an inner formwork and of an outer formwork. The same reference numerals are used with respect to the formwork tie in FIG. 2 as in FIG. 1.



FIG. 2 accordingly shows two mutually coupled formwork elements 16 of an internal formwork as well as two mutually coupled formwork elements 17 of an external formwork.


In the region of the coupling sites of the formwork elements 16, 17, one respective tie hole 18 is provided in the internal formwork and in the external formwork and extends completely through the internal formwork and the external formwork and perpendicular to the inner formwork surfaces 19, 20 of the internal formwork and of the external formwork.


The internal formwork and external formwork each have a contact surface which extends in parallel to the formwork inner surface 19, 20 at their outside remote from the formwork inner surface 19, 20 and at which tensile force transmission surfaces 21, 22 of the housings 4, 5 are applied. The tensile force transmission surfaces 21, 22 (see FIG. 1) are located at the mutually facing sides of the housings 4, 5.


Furthermore, the formwork elements 16, 17 are each provided on their sides remote from the formwork inner surfaces 19, 20 with an undercut 23, 24 and the latter are engaged behind in each case by the hook-shaped coupling elements 9, 10 so that ultimately a hook connection results between the coupling elements 9 and 10 respectively and the undercuts 23 and 24 respectively. Those regions of the coupling elements 9, 10 in contact with the undercuts 23, 24 form the already mentioned compressive force transmission surfaces of the coupling elements 9, 10.


The bolt element 1 is fixed by means of a circlip 26 in the locking block 6 such that it is rotatable around a longitudinal axis, but cannot be released from the locking block 6.


Furthermore, the bolt element 1 has an external thread 25 at its end remote from the hexagon 11 and this external thread is screwed into a corresponding internal thread of the thread sleeve 12. The threaded sections of the said external thread 25 and of the internal thread of the thread sleeve 12 extend only in the region of the housing 5; in the embodiment shown, they therefore do not extend up to and into that region which comes to lie inside the formwork elements 17. Alternatively, however, it would also be possible to arrange the internal thread of the thread sleeve 12 and the external thread 25 of the bolt element 1 such that they extend at least sectionally up to and into that region which ultimately comes to lie inside the formwork elements 17.


The length of the thread sleeve 12 is dimensioned such that it extends completely through the formwork elements 17 so that the tie hole 18 formed in the formwork elements 17 is closed in a sufficient manner and sealed by the thread sleeve 12 and the bolt element 1.


The arrangement shown in FIG. 2 shows that tensile forces can be transmitted from the formwork elements 16, 17 via the housings 4, 5 onto the bolt element 1 by the cooperation of the tensile force transmission surfaces 21, 22 with the outer sides of the formwork elements 16, 17. In the same way, compressive forces can be transmitted from the formwork elements 16, 17 via the housings 4, 5 onto the bolt element 1 since the coupling elements 9, 10 are hooked to the undercuts 23, 24 in the region of their compressive force transmission surfaces.


The manner how a formwork tie in accordance with FIGS. 1 and 2 can be connected to a formwork in accordance with FIG. 2 will be described with reference to FIGS. 3a-c and FIGS. 4a-c explained in the following.



FIGS. 3
a-4c each show a section through formwork elements 16, 17 in accordance with FIG. 2 as well as through the corresponding elements of the formwork tie, in each case including a plan view of the housings 4, 5 of the locking elements 2, 3 in the direction of the arrows A. Respective plan views of the housings 5 are shown in FIGS. 3a-c; and respective plan views of the housings 4 are shown in FIGS. 4a-c.


In accordance with FIG. 3a, the locking element 3 (FIG. 1) is taken up at its housing 5 and introduced with the thread sleeve 12 at the front into the tie hole 18 which is formed in the formwork elements 17. During this introduction, at which position the thread sleeve 12 displaceable in the bolt hole 14 is located in said bolt hole 14 it is not important. The thread sleeve 12 can, for example, be located in the upper region of the bolt hole 14, as is shown in FIG. 3a.


If the thread sleeve 12 is now pushed so far into the tie hole 18 that the coupling element 10 would abut the undercut 24, the housing 5 must be raised relative to the thread sleeve 12 such that the thread sleeve 12 moves downwardly inside the bolt hole 14. It is achieved by this movement due to the curvature of the bolt hole 14 that the coupling element 10 moves in the direction of the arrow B in accordance with FIG. 3b so that it does not collide with the undercut 24 on the further insertion of the thread sleeve 12 into the tie hole 18. Accordingly, in the said position of the thread sleeve 12 in the bolt hole 14, the coupling element 10 can be moved beyond the undercut 24, as can be seen from FIG. 3b. The thread sleeve 12 is completely inserted into the tie hole 18 in this position. However, in the position in accordance with FIG. 3b, a pulling of the thread sleeve 12 out of the tie hole 18 would still be possible, since the coupling element 10 and the undercut 24 are not yet hooked to one another.


Subsequently, in accordance with FIG. 3c, the housing 5 is then lowered again so that the thread sleeve 12 moves into its upper region in the bolt hole 14. A movement of the housing 5 in the direction of the arrow C drawn in FIG. 3c is thereby achieved, and indeed such that the coupling element 10 engages behind the undercut 24 such that the coupling element 10 and the undercut 24 are ultimately hooked to one another. It is achieved by this hook connection that the housing 5 can no longer be moved with the thread sleeve 12 against the direction of the arrow A out of the tie hole 18.


In accordance with FIG. 4a, the bolt element 1 fixedly connected to the locking element 2 (FIG. 1) is now inserted through the tie hole 18 of the formwork elements 16, with it again—analog to FIG. 3a—not being important in this process at which position of the bolt hole 13 formed in the housing 4 the bolt element 11 is located. In the example in accordance with FIG. 4a, the bolt element 1 is located in the region of the upper end of the bolt hole 13.


The bolt element 1 is now introduced so far into the tie hole 18 or screwed into the thread sleeve 12 until the coupling element 9 would collide with the undercut 23 of the formwork elements 16. Subsequently, in accordance with FIG. 4b, a raising of the housing 4 now takes place such that the bolt element 1 is moved into the lower region of the curved bolt hole 13, whereby—analog to FIG. 3b—a movement of the housing 4 is achieved in the direction of the arrow D. In this position, the coupling element 9 can be moved beyond the undercut 23 by a continued screwing into the thread sleeve 12 until the bolt element 1 is completely screwed into the thread sleeve 12 via the hexagon 11.


After the complete screwing of the bolt element 1 into the thread sleeve 12, the housing 4 is then in turn moved downwardly so that the bolt element 1 is moved upwardly inside the bolt hole 13. A movement of the housing 4 in the direction of the arrow E in accordance with FIG. 4c is now thereby achieved such that the coupling element 9 engages behind the undercut 23. A hook connection therefore results between the coupling element 9 and the undercut 23—analog to FIG. 3c.


In the position shown in FIG. 4c—which corresponds to the arrangement in accordance with FIG. 2—the formwork tie is finally connected to the formwork elements 16, 17 and is in a position to transmit tensile forces and compressive forces from the formwork elements 16, 17 via the housings 4, 5 onto the bolt element 1.


The description of the invention is merely exemplary in nature and, thus, variations that do not depart from the gist of the invention are intended to be within the scope of the invention. Such variations are not to be regarded as a departure from the spirit and scope of the invention.

Claims
  • 1-21. (canceled)
  • 22. A formwork system, comprising: formwork elements (16, 17) which have mutually oppositely disposed formwork inner surfaces (19, 20) and are connectable to one another spaced apart from one another by means of formwork ties, wherein a formwork tie comprises a bolt element (1) and two locking elements (2, 3) which, in the two mutually remote end regions of the bolt element (1), can be coupled to it and are formed for the transmission of tensile forces from the formwork elements (16, 17) onto the bolt element (1) and have coupling elements (9, 10) for the transmission of compressive forces from the formwork elements (16, 17) onto the bolt element (1), wherein one of the locking elements (2) is captively connected to the bolt element (1) and the other locking element (3) is releasably connectable to the bolt element (1).
  • 23. A formwork system in accordance with claim 22, wherein the mutually oppositely disposed formwork inner surfaces (19, 20) are each formed by a group of individual formwork elements (16, 17), with each group of formwork elements (16, 17) each having tie holes (18), in particular circular tie holes, for the reception of the bolt elements (1) of the formwork ties.
  • 24. A formwork system in accordance with claim 22, wherein the locking elements (2, 3) each have a tensile force transmission surface (21, 22) cooperating with the respective outer side of the formwork elements (16, 17).
  • 25. A formwork system in accordance with claim 23, wherein the region of the outer side of the formwork elements (16, 17) surrounding the tie holes (18) are made to cooperate with the tensile force transmission surface (21, 22).
  • 26. A formwork system in accordance with claim 22, wherein undercuts (23, 24) are provided at the outer sides of the formwork elements (16, 17) and can be brought into active connection with compressive force transmission surfaces provided at the coupling elements (9, 10).
  • 27. A formwork system in accordance with claim 26, wherein the coupling elements (9, 10) are hook-shape in cross-section so that they can be hooked with the undercuts (23, 24) of the formwork elements (16, 17).
  • 28. A formwork system in accordance with claim 22, wherein the locking elements (2, 3) each have a substantially parallelepiped shaped housing (4, 5) at which the coupling element (9, 10) is shaped.
  • 29. A formwork system in accordance with claim 28, wherein the parallelepiped-shaped housing (4, 5), including the coupling element (9, 10), is manufactured by means of an extrusion method or rolling or roller method, and is open at two oppositely disposed sides which extend perpendicular to the formwork surfaces (19, 20).
  • 30. A formwork system in accordance with claim 22, wherein the bolt element (1) is rotatably journaled around its longitudinal axis in the locking element (2) fixedly connected to it.
  • 31. A formwork system in accordance with claim 22, wherein the bolt element (1) projects on the side remote from the tensile force transmission surface (21, 22) out of the locking element (2) fixedly connected to it and is provided in this projecting region with a contact surface (11) for a tool, in particular with a square or a hexagon.
  • 32. A formwork system in accordance with claim 22, wherein the bolt element (1) is provided at its end region remote from the locking element (2) fixedly connected to it with a thread for screwing into the locking element (3) releasable from the bolt element (1).
  • 33. A formwork system in accordance with claim 22, wherein the bolt element (1) is conical.
  • 34. A formwork system in accordance with claim 33, wherein a thread is provided at the thinner end region of the conically formed bolt element (1).
  • 35. A formwork system in accordance with claim 22, wherein the locking element (3) releasable from the bolt element (1) is provided with a thread sleeve (12) into which the bolt element (1) can be screwed, with the external diameter of the thread sleeve (12) being dimensioned approximately like the internal diameter of the tie holes (18) formed in the formwork elements (16, 17).
  • 36. A formwork system in accordance with claim 35, wherein the length of the section of the thread sleeve (12) projecting out of the locking element (3) is dimensioned such that it extends at least over the total thickness of a formwork element (17) cooperating with the locking element (3).
  • 37. A formwork system in accordance with 35, wherein the thread sleeve (12) is captively connected to the locking element (3) associated with it.
  • 38. A formwork system in accordance with claim 28, wherein a locking block (6, 7) is held in the housing (4, 5) and is releasably connectable or fixedly connected to the bolt element (1).
  • 39. A formwork system in accordance with claim 38, wherein the locking block (7) of the one locking element (3) is fixedly connected to a thread sleeve (12), whereas the bolt element (1) is rotatably journaled around its longitudinal axis in the other locking block (6).
  • 40. A formwork system in accordance with claim 22, wherein a housing (4, 5) is provided with mutually aligned bolt holes (13, 14) at mutually oppositely disposed sides.
  • 41. A formwork system in accordance with claim 40, wherein the bolt holes (13, 14) each have the shape of a curved elongate hole in which the bolt element (1) and/or a thread sleeve (12) are displaceable.
Priority Claims (1)
Number Date Country Kind
102004001091.9 Jan 2004 DE national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EP04/13981 12/8/2004 WO 00 3/29/2007