The present invention relates to a forward assist assembly for a firearm.
The present invention provides a forward assist assembly for use with an upper receiver assembly of a firearm or an upper receiver including such a forward assist assembly. The upper receiver assembly includes a chamber, a forward assist bore communicating with the chamber, and a bolt carrier group within the chamber. The bolt carrier group includes a bolt carrier having at least one external ratchet tooth accessible through the forward assist bore. The forward assist assembly is adapted to be received in the forward assist bore. The forward assist assembly comprises a button having an integrally-formed pivot seat; a single-piece pawl including an integrally-formed engagement surface; and a pivot boss received in the pivot seat and supporting the pawl, the pivot boss defining a pivot axis about which the pawl pivots with respect to the button. In one aspect of the invention, linear actuation of the button in the forward assist bore is transferred to the pawl through the interaction of the pivot seat and pivot boss to bring the engagement surface into engagement with the ratchet tooth. Continued linear actuation of the button, after engagement of the ratchet tooth, urges the bolt carrier in a forward direction in the chamber as the pawl pivots about the pivot axis, to maintain engagement of the engagement surface with the ratchet tooth.
In one aspect of the invention, the pivot seat comprises an open channel in the button. In another aspect of the invention, the pivot boss is integrally formed with the pawl. In another aspect of the invention, the pivot boss is defined by a pin extending through the pawl. In another aspect of the invention, the single-piece pawl further includes an integrally-formed biasing seat, the forward assist assembly further comprising: a biasing member bearing against the biasing seat to apply a biasing force to the button and pawl toward a standby position in the forward assist bore. In another aspect of the invention, the biasing force acts on a line offset from and transverse to the pivot axis to impart a moment to the pawl about the pivot axis with respect to the button. In another aspect of the invention, the biasing member includes a compression spring having a spring coil; and the integrally-formed biasing seat comprises a raised portion extending into the spring coil. In another aspect of the invention, the single-piece pawl further includes an integrally-formed stop surface which engages a pawl bearing surface of the button to limit a pivoting range of motion of the pawl with respect to the button. In another aspect of the invention, the single-piece pawl further includes an integrally-formed retaining surface engaging a portion of the forward assist bore to resist removal of the forward assist assembly from the forward assist bore. In another aspect of the invention, the single-piece pawl further includes a release lever for manually pivoting the pawl entirely within the envelope of the button for removal of the forward assist assembly from the forward assist bore. In another aspect of the invention, the button includes a release slot and an engagement slot; the single-piece pawl includes an integrally-formed release lever extending through the release slot and an integrally-formed finger extending through the engagement slot and defining the engagement surface; and the pawl is pivotable with respect to the button about the pivot axis to position both the release lever and finger within the envelope of the button to facilitate removal of the forward assist assembly from the forward assist bore. In another aspect of the invention, the button includes an button bore and wherein the release slot and engagement slot are on opposite sides of the button bore.
Other aspects of the invention will become apparent by consideration of the detailed description and accompanying drawings.
Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways.
Referring to
The forward assist bore 250 includes a mouth 280, a biasing member bearing surface 290, guide surfaces 300 inside the bore 250, a button stop 295, a clearance section 310, and an access window 320. A portion of the forward assist assembly 230 extends out of the mouth 280 of the forward assist bore 250. The guide surfaces 300 are smooth to facilitate reliable reciprocation and smooth action of the forward assist assembly 230 in the forward assist bore 250. The guide surfaces 300 are shaped to receive the components of the forward assist assembly 230 for smooth action of the forward assist assembly 230 in the forward assist bore 250. The access window 320 communicates between the chamber 240 and the forward assist bore 250. The biasing member bearing surface 290 is perpendicular to the forward assist axis 270. The button stop 295 is a shoulder on the inner surface of the forward assist bore 250. The clearance section 310 is a widened portion of the forward assist bore 250, resulting in a shoulder 330 at the transition between the guide surface 300 and the clearance section 310, and a retention undercut 340 between the clearance section 310 and the mouth 280. The purposes of these various surfaces of the forward assist bore 250 will be explained in more detail below.
The bolt carrier group 220 is conventional and includes a bolt carrier 410 that supports a firing pin 420, a gas key 430, and a bolt assembly 440 among other components. A round is properly positioned in the chamber 240 for firing (i.e., the round is properly “chambered”) when the bolt carrier group 220 is moved fully forward and the bolt assembly 440 is locked in place. The bolt carrier group 220 can be said to be in a ready-to-fire position when a round is property chambered. With the round properly chambered, the firing pin 420 is actuated by the trigger assembly 150 to fire the properly-chambered round out the barrel 120. During ordinary operation of the firearm 100, high-pressure gases are returned from the barrel 120 to the chamber 240 via the gas key 430. The pressure of the returned high-pressure gases moves the bolt carrier group 220 rearward and ejects the spent round casing. A new round is automatically fed into the chamber 240 and the bolt carrier group 220 again moves forward into the ready-to-fire position.
There are circumstances, however, under which the bolt carrier group 220 fails to achieve the ready-to-fire position. Such circumstances include when there is high friction between the chamber 240 and the bolt carrier 410 (e.g., due to dirt or residue in the chamber 240), when the firearm operator rides the charging handle down when loading a round, and when the firearm operator wishes to silently move the bolt carrier group 220 into the ready-to-fire position. In such circumstances, the forward assist assembly 230 is used to manually move the bolt carrier group 220 into the ready-to-fire position. For this purpose, the bolt carrier 410 includes a plurality of forward assist ratchet teeth 450 along a side that is accessible through the forward assist bore 250.
The illustrated forward assist assembly 230 includes a return spring 510, a button 520, and a pawl 530. As will be discussed in more detail below, the forward assist assembly 230 is biased into a standby position illustrated in
The illustrated return spring 510 comprises a compression spring having a plurality of coils around a spring axis 540 and including a first end 550 that engages the biasing member bearing surface 290 in the forward assist bore 250 and a second end 560 that engages the pawl 530 as will be described. In other embodiments of the invention, the return spring 510 may take the form of a tension spring, a torsion spring, or any other suitable biasing member which has sufficient resilience to return the forward assist assembly 230 to the standby position (
When the forward assist assembly 230 is installed into the forward assist bore 250, the spring axis 540 is parallel to but not collinear with the forward assist axis 270. The return spring 510 provides a biasing force collinear with the spring axis 540 and along the forward assist axis 270 toward the standby position. For the purposes of this disclosure, a force or direction is “along” an axis if it is parallel to or collinear with the axis.
Turning now to
The illustrated head 610 and sidewall 620 are integrally formed as a single component. The longitudinal extent of the button 520 defines a button axis 640 which is parallel to and collinear with the forward assist axis 270.
The head 610 includes an actuation surface 650 at the first end 570 of the button 520. To actuate the forward assist assembly 230, the operator of the firearm 100 applies a linear actuation force AF to the actuation surface 650 in line with the button axis 640. The operator may manually apply the linear actuation force AF with, for example, a thumb, finger, palm, or other suitable portion of the operator's body or another suitable surface or with a suitable tool. The actuation surface 650 may be planar or non-planar, and may include a contour, for example, to better fit the operator's thumb or finger.
The illustrated sidewall 620 extends parallel to the button axis 640 and generally perpendicular to the actuation surface 650 (or the best planar fit of the actuation surface 650 if it is not itself planar). The sidewall 620 defines a button bore 660 that is coaxial with the spring axis 540. The button bore 660 extends from the distal end 580 into the head 610, where it ends as a blind bore. The spring axis 540 is parallel to but not collinear with the button axis 640. In other embodiments, the spring axis 540 and button axis 640 can be collinear.
As illustrated in
Referring now to
The button is dimensioned to fit within the forward assist bore 250 with the outer surface 630 of the button 520 in contact with the guide surfaces 300 of the forward assist bore 250. The outer surface 630 of the button 520 is smooth and the material of the button 520 is preferably a low-friction material to facilitate reliable reciprocation and smooth linear-reciprocating action of the button 520 in the forward assist bore 250. The button bore 660 is dimensioned to receive the return spring 510 such that the return spring 510 cannot significantly move perpendicular to the button bore 660. This results in biasing forces of the return spring 510 being substantially entirely directed parallel to the button axis 640 and forward assist axis 270 during operation.
With continued reference to
The pivot bosses 730 are generally cylindrical shaped and are axially aligned with each other and define a pivot axis 810. The pivot bosses 730 are received in the pivot slot 680 and bear against the pivot seats 690. During operation, the pivot bosses 730 pivot in the pivot seats 690 about the pivot axis 810. The pivot axis 810 is perpendicular to the button axis 640, spring axis 540, and forward assist axis 270. The pivot slot 680 extends radially into the button 520 such that the pivot seats 690 are close to the spring axis 540 when assembled. As a result, the biasing force of the return spring 510 acts along a line offset a small amount from the pivot axis 810. The pivot bosses 730 are not at a geometric center of the pawl 530. In this regard, the pivot axis 810 may be termed a transverse eccentric pivot axis of the pawl 530. The pivot bosses 730 are axially aligned with each other in the illustrated embodiment, but could be offset from each other if the pivot seats 690 are properly positioned for the arrangement. Although the pivot bosses 730 in the illustrated embodiment are integrally formed with the rest of the pawl 530, the pivot bosses 730 could alternatively be provided by a dowel pin or roll pin extending through a hole in the pawl 530. Such alternative construction of the pivot bosses 730 is within the scope of the present invention. Any reference to pivot bosses in the description and claims of this specification should be interpreted to include both integral pivot bosses and a separate pin (e.g., a dowel pin or roll pin provided separate from the pawl 530), unless the pivot bosses are specifically characterized as integrally-formed with or separate from the pawl 530.
The biasing member seat 740 is defined by a raised portion 820 and a pair of grooves 830 at a base of the raised portion 820. When the forward assist assembly 230 is assembled and installed, the second end 560 of the return spring 510 abuts against the grooves 830 and receives the raised portion 820 of the biasing member seat 740. The biasing member seat 740 prevents the second end 560 of the return spring 510 from wandering with respect to the pawl 530.
With additional reference to
Operation of the forward assist assembly 230 will now be described with reference to
With reference to
As the bolt carrier group 220 moves forward, the pawl 530 naturally rotates clockwise (as illustrated) on the pivot axis 810 to maintain the engagement surface 800 in contact with the ratchet tooth 450. This clockwise pivoting action moves the retaining surface 760 into the release slot 670, within the envelope of the button 520 so there is no interference with the shoulder 330 at the transition between the guide surface 300 and the clearance section 310 (i.e., the retaining surface 760 is pivoted out of the clearance section 310 into the envelope of the button 520). The button 520 and pawl 530 will continue moving toward the engaged position until: (1) the linear actuation force AF on the button is discontinued; (2) the linear actuation force AF is no longer sufficient to overcome the resistance afforded by the return spring 510 and bolt carrier group 220; (3) the distal end 620 of the button 520 bottoms out on the button stop 295; or (4) the bolt carrier group 220 reaches the ready-to-fire position. When the linear actuation force AF is discontinued, the return spring 510 pivots the pawl 530 back into the standby position in the button 520 and linearly moves the button 520 back to the standby position.
The forward assist assembly 230 can be installed by reversing the process. First the pawl 530 is pivoted into the release position, then the forward assist assembly 230 is inserted into the forward assist bore 250, and then the release lever 780 is released to permit the pawl 530 to pivot counterclockwise and move linearly into the standby position.
Alternatively, with reference to
Thus, the invention provides, among other things, a forward assist assembly that includes a single-piece pawl providing a pivot axis, a biasing member seat, and an engagement surface for engaging the ratchet teeth of the bolt carrier. Various features and advantages of the invention are set forth in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
7798045 | Fitzpatrick | Sep 2010 | B1 |
8590199 | Overstreet et al. | Nov 2013 | B2 |
8826797 | Overstreet et al. | Sep 2014 | B2 |
8910406 | Huang et al. | Dec 2014 | B1 |
D759780 | Wang | Jun 2016 | S |
9551545 | Rowe | Jan 2017 | B1 |
20170191770 | Stewart | Jul 2017 | A1 |