The present invention provides a low latency error correction mechanism for high data rate transmissions over multiple traffic channels in a wireless communication system.
It is known to include forward error correction (“FEC”) coding and decoding to information signals that are to be transmitted over a wireless channel. Forward error correction, generally speaking, introduces predetermined redundancy into an information signal to permit a receiver to identify and perhaps correct errors that may have been introduced by a transmission medium. For example, the known IS-95 standard for code division multiple access cellular communication specifies a type of convolutional code for each traffic channel transmitted from base station to mobile station or vice versa.
Recently, it has been proposed to provide high data rate exchanges over a wireless communication system. Such high data rate exchanges may be used, for example, to facilitate data transfer for computing applications or for video conferencing applications. In one such proposal, a high rate data signal may be communicated to a receiver over a plurality of parallel traffic channels. For example, the recently proposed IS-95 B standard proposes use of parallel CDMA channels each having a data rate of 9.6 KB/s to provide a higher data rate communication. In such systems, a high rate data signal is demultiplexed into a plurality of lower rate data signals and each of these signals is processed in an independent traffic channel. Thus, each lower rate data signal has FEC applied to it.
Another example of a wireless CDMA system is titled “Dynamic Frame Size Adjustment And Selective Reject On A Multi-Link Channel To Improve Effective Throughput And Bit Error Rate,” Ser. No. 09/030,049 filed Apr. 28, 1999, now U.S. Pat. No. 6,236,647, the disclosure of which is incorporated herein.
Wireless communication channels are inherently “noisy” due to channel impairments caused by atmospheric conditions, multipath effects, co-channel interference and the like. Particularly if used for computing applications, where executable content may be expected to be exchanged over traffic channels, the need for powerful FEC techniques will continue to be prevalent.
Use of more powerful FEC techniques in such wireless systems may increase the latency of data requests. For example, the known turbo codes require large blocks of data to be received entirely by a decoder before decoding can begin. Latency refers generally to the delay that extends from the time a request for data is issued by a user and the time when data responsive to the request is presented to the user. FEC introduces decoding delays at a wireless receiver and, thus, contributes to latency. There is a need in the art for a wireless communication system that provides high data rate exchange having high quality FEC with low latency.
Embodiments of the present invention provide a transmitter/receiver system for high data transfer in a wireless communication system in which a physical layer processor comprises an FEC coder, a demultiplexer and a plurality of modem processors. The FEC coder applies error correction codes to the high data rate signal. Thereafter, the demultiplexer distributes portions of the coded high data rate signal to the modem processors. Each modem processor processes its respective portion of the coded signal for transmission in an independent channel.
The foregoing and other objects, features and advantages of the invention will be apparent from the following more particular description of preferred embodiments of the invention, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention.
The present invention provides low latency forward error correction for a high data rate wireless transmission by applying forward error correction codes to data prior to multiplexing the data across a plurality of parallel fixed bandwidth traffic channels.
According to an embodiment of the present invention, the physical layer 120 of the transmitter 100 may be populated by an FEC coder 122, a demultiplexer 124 and a plurality of modem processors 126a-126n. The number of modem processors 126a-126n may vary and also may be determined by the quantity of data to be transmitted and the capacity of each of the traffic channels over which the data may be transmitted. The FEC coder 122 receives a source signal from a higher layer 110 in the transmitter and enhances it with an error correction code. The enhanced information signal is output from the FEC coder 122 to the demultiplexer 124. The demultiplexer distributes the information signal to the modem processors 126a-126n. The modem processors 126a-126n each format their respective portions of the enhanced signal for transmission. Outputs from the modem processors 126a-126n are summed by an adder 128 and delivered to the transmission layer 130.
At the receiver 200, the physical layer 220 performs processing that is the inverse of the processing that had been applied in the physical layer 120 of the transmitter 100. The physical layer 220 may be populated by an FEC decoder 222, a multiplexer 224 and a plurality of demodulators 226a-226n. There will be one demodulator 226a-226n for each of the traffic channels that had been allocated to carry the enhanced information signal. The recovered digital signal from the transmission layer 230 is input to each of the demodulators 226a-226n. Each demodulator 226a-226n outputs a recovered portion of the enhanced information signal. The multiplexer 224 merges each of the recovered portions of the enhanced information signal into a unitary recovered enhanced information signal. The FEC decoder 222 performs error detection and correction using error correction codes that had been introduced by the FEC coder 122 in the transmitter 100. The FEC decoder 222 outputs a corrected information signal to the higher layers 210 of the receiver 200.
In a CDMA embodiment, which is shown in
According to an embodiment of the present invention, the FEC coder 122 and FEC decoder 222 may generate and decode iterative systematic nested codes, also known as “turbo” codes. These turbo codes provide an advantage in that the FEC decoding process may be repeated iteratively to improve the information signal recovered therefrom. Thus, the output of a first iteration may be reintroduced to the FEC decoding block (path not shown in
The known turbo codes, however, introduce a predetermined amount of latency into the decoding process. Turbo codes operate on blocks of a predetermined size. For example, one turbo code being considered for a wireless communication system for computer network applications possesses a block size of 4,096 channel symbols. An FEC decoder 222 must decode an entire block before a recovered information signal becomes available for the block. This characteristic may be contrasted with convolutional codes which are used in the known IS-95 standard for CDMA cellular communication; convolutional codes are characterized by relatively smaller latency for same-sized block (relative to turbo codes) because it is not necessary to receive an entire block before decoding may begin. It is believed that by distributing the FEC code among several parallel traffic channels as is shown in
For high data rate applications using plural parallel traffic channels, it is believed that use of turbo codes achieves a higher figure of merit (lower E.sub.b/N.sub.0) than for convolutional codes. Using the example of a 4,096 channel symbol sized block and E.sub.b/N.sub.0 of 1.5 dB the turbo code provides a BER of 10.sup.-6. By contrast, for voice systems requiring a less stringent 10.sup.-3 BER, a convolutional code requires an E.sub.b/N.sub.0 of 7 dB or more.
The techniques of the present invention find application in a variety of wireless communication systems including CDMA systems. Typically, in application, the base stations and subscriber stations of the wireless communication system will include functionality of both the transmitter and receiver of
Typically, a base station of a wireless communication system transmits a plurality of data signals to a variety of subscribers simultaneously. According to an embodiment of the present invention, each base station may perform the techniques disclosed herein simultaneously on a number of high rate data signals. It is consistent with the spirit and scope of the present invention that each signal may have a data rate that is independent of the data rates of the other signals. Thus, in such a case, a base station may be configured to include its FEC coder/decoders 122, 222 and modem processor/demodulators 126a, 226a in a pooled configuration. Such an embodiment permits the base station to assign, for example, a variable number of modem processors 126a-126n to a data signal depending upon the rate of the signal to be transmitted. Similarly, by including a pool of FEC coders 122 (shown singly in
Several embodiments of the present invention are specifically illustrated and described herein. However, it will be appreciated that modifications and variations of the present invention are covered by the above teachings and within the purview of the appended claims without departing from the spirit and intended scope of the invention.
This application is a continuation of U.S. patent application Ser. No. 10/634,148, filed Aug. 4, 2003, now U.S. Pat. No. 7,366,154, which is a continuation of U.S. application Ser. No. 09/301,484, filed Apr. 28, 1999, now U.S. Pat. No. 6,614,776, which was reexamined in Ser. No. 90/008,982, the entire teachings of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4460992 | Gutleber | Jul 1984 | A |
4625308 | Kim et al. | Nov 1986 | A |
4862453 | West et al. | Aug 1989 | A |
4866709 | West et al. | Sep 1989 | A |
5027348 | Curry | Jun 1991 | A |
5103459 | Gilhousen et al. | Apr 1992 | A |
5115309 | Hang | May 1992 | A |
5373502 | Turban | Dec 1994 | A |
5394473 | Davidson | Feb 1995 | A |
5410538 | Roche et al. | Apr 1995 | A |
5414728 | Zehavi | May 1995 | A |
5442625 | Gitlin et al. | Aug 1995 | A |
5487072 | Kant | Jan 1996 | A |
5559788 | Zscheile, Jr. et al. | Sep 1996 | A |
5559790 | Yano et al. | Sep 1996 | A |
5602834 | Dean et al. | Feb 1997 | A |
5606574 | Hasegawa et al. | Feb 1997 | A |
5608725 | Grube et al. | Mar 1997 | A |
5663958 | Ward | Sep 1997 | A |
5663990 | Bolgiano et al. | Sep 1997 | A |
5673259 | Quick, Jr. | Sep 1997 | A |
5699364 | Sato et al. | Dec 1997 | A |
5699369 | Guha | Dec 1997 | A |
5734646 | I et al. | Mar 1998 | A |
5777990 | Zehavi et al. | Jul 1998 | A |
5781542 | Tanaka et al. | Jul 1998 | A |
5784406 | DeJaco et al. | Jul 1998 | A |
5790551 | Chan | Aug 1998 | A |
5805567 | Ramesh | Sep 1998 | A |
5812938 | Gilhousen et al. | Sep 1998 | A |
5825807 | Kumar | Oct 1998 | A |
5828659 | Teder et al. | Oct 1998 | A |
5828662 | Jalali et al. | Oct 1998 | A |
5844894 | Dent | Dec 1998 | A |
5856971 | Gitlin et al. | Jan 1999 | A |
5859840 | Tiedemann, Jr. et al. | Jan 1999 | A |
5862133 | Schilling | Jan 1999 | A |
5910945 | Garrison et al. | Jun 1999 | A |
5914950 | Tiedemann, Jr. et al. | Jun 1999 | A |
5917852 | Butterfield et al. | Jun 1999 | A |
5923650 | Chen et al. | Jul 1999 | A |
5930230 | Odenwalder et al. | Jul 1999 | A |
5950131 | Vilmur | Sep 1999 | A |
5991279 | Haugli et al. | Nov 1999 | A |
6005855 | Zehavi et al. | Dec 1999 | A |
6028868 | Yeung et al. | Feb 2000 | A |
6061359 | Schilling et al. | May 2000 | A |
6064678 | Sindhushayana et al. | May 2000 | A |
6069883 | Ejzak | May 2000 | A |
6078572 | Tanno et al. | Jun 2000 | A |
6088335 | I et al. | Jul 2000 | A |
6104708 | Bergamo | Aug 2000 | A |
6112092 | Benveniste | Aug 2000 | A |
6134233 | Kay | Oct 2000 | A |
6151332 | Gorsuch et al. | Nov 2000 | A |
6157619 | Ozluturk et al. | Dec 2000 | A |
6161013 | Anderson et al. | Dec 2000 | A |
6195362 | Darcie et al. | Feb 2001 | B1 |
6208871 | Hall et al. | Mar 2001 | B1 |
6215798 | Carneheim et al. | Apr 2001 | B1 |
6222828 | Ohlson et al. | Apr 2001 | B1 |
6243372 | Petch et al. | Jun 2001 | B1 |
6259683 | Sekine et al. | Jul 2001 | B1 |
6259724 | Esmailzadeh | Jul 2001 | B1 |
6262971 | Schilling | Jul 2001 | B1 |
6262980 | Leung et al. | Jul 2001 | B1 |
6269088 | Masui et al. | Jul 2001 | B1 |
6272168 | Lomp et al. | Aug 2001 | B1 |
6285665 | Chuah | Sep 2001 | B1 |
6307840 | Wheatleyl, III et al. | Oct 2001 | B1 |
6366570 | Bhagalia | Apr 2002 | B1 |
6373830 | Ozluturk | Apr 2002 | B1 |
6373834 | Lundh et al. | Apr 2002 | B1 |
6377548 | Chuah | Apr 2002 | B1 |
6377809 | Rezaiifar et al. | Apr 2002 | B1 |
6389000 | Jou | May 2002 | B1 |
6396804 | Odenwalder | May 2002 | B2 |
6418148 | Kumar et al. | Jul 2002 | B1 |
6456608 | Lomp | Sep 2002 | B1 |
6469991 | Chuah | Oct 2002 | B1 |
6473623 | Benveniste | Oct 2002 | B1 |
6504830 | Östberg et al. | Jan 2003 | B1 |
6515981 | Schilling et al. | Feb 2003 | B1 |
6519651 | Dillon | Feb 2003 | B1 |
6526039 | Dahlman et al. | Feb 2003 | B1 |
6532365 | Anderson et al. | Mar 2003 | B1 |
6545986 | Stellakis | Apr 2003 | B1 |
6567416 | Chuah | May 2003 | B1 |
6570865 | Masui et al. | May 2003 | B2 |
6571296 | Dillon | May 2003 | B1 |
6574211 | Padovani et al. | Jun 2003 | B2 |
6590873 | Li et al. | Jul 2003 | B1 |
6597913 | Natarajan | Jul 2003 | B2 |
6614776 | Proctor | Sep 2003 | B1 |
6850506 | Holtzman et al. | Feb 2005 | B1 |
6885652 | Ozukturk et al. | Apr 2005 | B1 |
6940840 | Ozluturk et al. | Sep 2005 | B2 |
6973601 | Sabet et al. | Dec 2005 | B2 |
7209709 | Miyazaki et al. | Apr 2007 | B2 |
7257147 | Mack et al. | Aug 2007 | B1 |
7263089 | Hans et al. | Aug 2007 | B1 |
7289476 | Varshney et al. | Oct 2007 | B2 |
7327775 | Gu | Feb 2008 | B1 |
7366154 | Proctor, Jr. | Apr 2008 | B2 |
7636382 | Mack et al. | Dec 2009 | B1 |
Number | Date | Country |
---|---|---|
0443061 | Feb 1990 | EP |
0635949 | Jul 1994 | EP |
0720309 | Jul 1996 | EP |
0827312 | Aug 1997 | EP |
2266389 | Apr 1974 | FR |
2761557 | Mar 1997 | FR |
9508900 | Mar 1995 | WO |
9627250 | Sep 1995 | WO |
9613914 | May 1996 | WO |
9627250 | Sep 1996 | WO |
9726726 | Jul 1997 | WO |
9843373 | Oct 1998 | WO |
9859447 | Dec 1998 | WO |
9914878 | Mar 1999 | WO |
9939472 | Aug 1999 | WO |
9944341 | Sep 1999 | WO |
0052831 | Sep 2000 | WO |
0065764 | Nov 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20090055707 A1 | Feb 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10634148 | Aug 2003 | US |
Child | 12110930 | US | |
Parent | 09301484 | Apr 1999 | US |
Child | 10634148 | US |